Evaluation of biochemical profile and rumen fluid parameters of sheep supplemented with Saccharomyces cerevisiae and subjected to an abrupt diet change

Ana Paula Schmidt, Joana Piagetti Noschang, Nathaly Ana Carpinelli, Claudia Faccio Demarco, Laura Valadão Vieira, Antônio Amaral Barbosa, Marcio Nunes Corrêa, Eduardo Schmitt, Josiane de Oliveira Feijó, Cássio Cassal Brauner

Abstract


This study examines rumen-fluid parameters and the biochemical profile of feedlot sheep supplemented with a commercial product composed of yeast culture and enzymatically hydrolyzed yeast during an abrupt change of diet. Eight sheep at 30 months of age, with an average weight of 40.2 ± 3.4 kg, were housed in individual stalls where they received the same diet twice daily, which was formulated according to the National Research Council [NRC] (2007). The animals were divided into two groups, namely, supplemented with Saccharomyces cerevisiae (SG, n = 4) and control (CG, n = 4). The experiment consisted of three periods: the first (seven days) consisted of an acclimation to the roughage-only diet; in the second period (five days), the animals of SG started to receive supplementation; lastly, in the third period (five days), all animals underwent a sudden change of diet, which was characterized by an alteration from 100% roughage to a 50:50 ratio (roughage:concentrate) without prior adaptation. Blood samples were collected to evaluate albumin, aspartate amino transferase, calcium, gamma glutamyl transferase, globulins, glucose, magnesium, potassium, sodium, total plasma proteins and urea. Rumen fluid was harvested to evaluate physical aspects. Supplementation increased the protozoa count; the rate of sedimentation and fluctuation remained within the physiological parameters; and total plasma proteins and globulin decreased. Therefore, the yeast appears to be a promising alternative for reducing the deleterious effects of an abrupt change of diet.

Keywords


Immunity; Performance; Rumen environment; Ruminants; Sheep farming; Yeast.

Full Text:

PDF

References


Arakaki, L. C., Stahringer, R. C., Garrett, J. E., & Dehority, B. A. (2000). The effects of feeding monensin and yeast cultures, alone or in combination, on the concentration and generic composition of rumen protozoa in steers fed on low-quality pastures supplemented with increasing levels of concentrate. Animal Feed Science and Technology, 84(1-2), 121-127. doi: 10.1016/S0377-8401(00)00108-5

Aschenbach, J. R., & Gabel, G. (2000). Effect and absorption of histamine in sheep rumen: significance of acidotic epithelial damage. Journal of Animal Science, 78(2), 464-470. doi: 10.2527/2000.782464x

Bannink, A., France, J., & Lopez, S. (2008). Modelling the implications of feeding strategy on rumen fermentation and functioning of the rumen wall. Animal Feed Science Technology, 143(1-4), 3-26. doi: 10.1016/j.anifeedsci.2007.05.002

Borges, N. C., Silva, L. A. F., & Fioravante, M. C. S. (2002). Avaliação do suco ruminal de bovinos “a fresco” e após 12 horas. Ciência Animal Brasileira, 3(2), 57-63. Recuperado de https://www.revistas. ufg.br/vet/article/view/280

Czech, A., Smolczyk, A., Ognik, K., Wlaz?o, ?., Nowakowicz-D?bek, B., & Kiesz, M. (2018). Effect of dietary supplementation with Yarrowia lipolytica or Saccharomyces cerevisiae yeast and probiotic additives on haematological parameters and the gut microbiota in piglets. Research in Veterinary Science, 119(6), 221-227. doi: 10.1016/j.rvsc.2018.06.007

Dehority, B. A. (1997). Classification and morphology of rumen protozoa. Columbus: University of Ohio.

Demarco, C. F., Mumbach, T., Freitas, V. O., Raimondo, R. F. S., Gonçalves, F. M., Corrêa, M. N.,… Cassal, C. B. (2019). Effect of yeast products supplementation during transition period on metabolic profile and milk production in dairy cows. Tropical Animal Health and Production, 51(8), 2193-2201. doi: 10.1007/s11250-019-01933-y

Ding, G., Chang, Y., Zhao, L., Zhou, Z., Ren, L., & Meng, Q. (2014). Effect of Saccharomyces cerevisiae on alfalfa nutrient degradation characteristics and rumen microbial populations of steers fed diets with different concentrate-to-forage ratios. Journal of Animal Science and Biotechnology, 5(1), 24. doi: 10. 1186/2049-1891-5-24

Dolezal, P., Dolezal, J., & Trinacty, J. (2005). The effect of Saccharomyces cerevisiae on ruminal fermentation in dairy cows. Czech Journal. Animal Science, 50(11), 503-510. doi: 10.17221/4255-CJAS

Farenzena, R., Kozloski, G. V., Gindri, M., & Stefanello, S. (2016). Minimum length of the adaptation and collection period in digestibility trials with sheep fed ad libitum only forage or forage plus concentrate. Journal of Animal Physiology and Animal Nutrition, 101(5), 1057-1066. doi: 10.1111/jpn.12550

Food and Drug Administration (2014). CPG Sec. 689.100 direct- fed microbial products.

França, R. A., & Rigo, E. J. (2012). Utilização de leveduras vivas (Saccharomyces cerevisiae) na nutrição de ruminantes - Uma revisão. FAZU em Revista, 2(8), 187-195.

Gonçalves, W. C. (2015). Efeito do período de adaptação e de colheita sobre os resultados em ensaios de metabolismo com ovinos. Itapetinga: UESB.

González, F. H. D., Corrêa, M. N., & Silva, S. C. (2014). Transtornos metabólicos nos animais domésticos. Porto Alegre: Universidade Federal do Rio Grande do Sul.

Gozho, G. N., Plaizier, J. C., Krause, D. O., Kennedy, A. D., & Wittenberg, K. M. (2005). Subacute ruminal acidosis induces ruminal lipopolysaccharide endotoxin release and triggers an inflammatory response. Journal of Dairy Science, 88(4), 1399-1403. doi: 10.3168/jds.S0022-0302(05)72807-1

Kozloski, G. B. (2016). Bioquímica dos ruminantes. Santa Maria: Universidade Federal de Santa Maria.

Mao, H. L., Mao, H. L., Wang, J. K., Liu, J. X., & Yoon, I. (2013). Effects of Saccharomyces cerevisiae fermentation product on in vitro fermentation and microbial communities of low-quality forages and mixed diets. Journal of Animal Science, 91(7), 3291-3298. doi: 10.2527/jas.2012-5851

Mertens, D. R. 2002. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beaker or crucibles: collaborative study, Journal of AOAC International, 85(6), 1217-1240. doi: 10.1093/jaoac/85.6.1217

Nagata, R., Kim, Y. H., Ohkubo, A., Kushibiki, S., Ichijo, T., & Sato, S. (2018). Effects of repeated subacute ruminal acidosis challenges on the adaptation of the rumen bacterial community in Holstein bulls. Journal of Dairy Science, 101(5), 4424-4436. doi: 10.3168/jds.2017-13859

National Research Council (2007). Nutrient requirements of small ruminants: sheep, goats, cervids, and new world camelids. Washington, DC: National Academy Press.

Nocek, J. E., Holt, M. G., & Oppy, J. (2011). Effects of supplementation with yeast culture and enzymatically hydrolyzed yeast on performance of early lactation dairy cattle. Journal of Dairy Science, 94(8), 4046-4056. doi: 10.3168/jds.2011-4277

Pinloche, E., McEwan, N., Marden, J. P., Bayourthe, C., Auclair, E., & Newbold, C. J. (2013). The effects of a probiotic yeast on the bacterial diversity and population structure in the rumen of cattle. PloS One, 8(7), e67824. doi: 10.1371/journal.pone.0067824

Reis, L. F., Sousa, R. R., Oliveira, F. L. C., Rodrigues, F. A. M. L., Araújo, C. A. S. C., Meira, E. B. S., Jr., & Ortolani, E. L. (2018). Comparative assessment of probiotics and monensin in the prophylaxis of acute ruminal lactic acidosis in sheep. BMC Veterinary Research, 14(1), 9. doi: 10.1186/s12917-017-12 64-4

Statistical Analysis System Institute (2016). Help and documentation. SAS 9.1.3. Cary, NC: SAS Institute Inc.

Steele, M. A., Alzahal, O., Walpole, M. E., & Mcbride, M. E. (2012). Short communication: grain-induced subacute ruminal acidosis is associated with the differential expression of insulin-like growth factor-binding proteins in rumen papillae of lactating dairy cattle. Journal of Dairy Science, 95(10), 6072-6076. doi: 10.3168/jds.2011-4864

Tripathi, M. K., & Karim, S. A. (2010). Effect of individual and mixed live yeast culture feeding on growth performance, nutrient utilization and microbial crude protein synthesis in lambs. Animal Feed Science and Technology, 155(2-4), 163-171. doi: 10.1016/j.anifeedsci.2009.11.007

Van Soest, P. J. (1994). Nutritional ecology of the ruminant. New York: Cornell University Press.

Yang, W. Z., Li, Y. L., McAllister, T. A., McKinnon, J. J., & Beauchemin, K. A. (2012). Wheat distillers grains in feedlot cattle diets: feeding behavior, growth performance, carcass characteristics, and blood metabolites. Journal of Animal Science, 90(4), 1301-1310. doi: 10.2527/jas.2011-4372

Yuan, K., Liang, T., Muckey, M. B., Mendonça, L. G. D., Hulbert, L. E., Elrod, C. C., & Bradford, B. J. (2015). Yeast product supplementation modulated feeding behavior and metabolism in transition dairy cows. Journal of Dairy Science, 98(1), 532-540. doi: 10.3168/jds.2014-8468




DOI: http://dx.doi.org/10.5433/1679-0359.2020v41n6Supl2p3311

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional