Efficiency of chitosan synergism with clove essential oil in the coating of intentionally contaminated Tambaqui fillets

Brenda Borges Vieira, Elaine Araújo de Carvalho, Aline Simões da Rocha Bispo, Mariza Alves Ferreira, Norma Suely Evangelista-Barreto


The edible coating of chitosan with clove essential oil (CEO) was studied for its ability to reduce the microbial growth of pathogens (Escherichia coli O157:H7 CDCEDL933, Listeria monocytogenes CERELA, Salmonella Enteritidis ATCC13076, Staphylococcus aureus ATCC43300, and Pseudomonas aeruginosa ATCC27853) in Tambaqui fillets kept under refrigeration. In in vitro tests, chitosan showed higher antimicrobial activity against S. aureus and L. monocytogenes (MIC 0.5%), and CEO for L. monocytogenes (MIC 0.08%). Based on the antimicrobial activity of chitosan and CEO, Tambaqui fillets were subjected to different treatments, T1: chitosan 2%; T2: chitosan 2% + CEO 0.16%, and T3: chitosan 0.5% + CEO 0.08%, kept at 4 ºC for 72 h. The chitosan coating, incorporated with CEO, inhibited microorganisms in Tambaqui fillets and enhanced coating efficiency (p < 0.05). It was most effective against L. monocytogenes and S. aureus at the lowest CEO concentration (0.08%). Chitosan coating in combination with CEO enhanced the antimicrobial effect of pathogens on Tambaqui fillets, increased their shelf life under refrigeration, and was more effective against Gram-positive pathogens than Gram-negative pathogens.


Edible coating; Listeria monocytogenes; Natural antimicrobials; Pathogens.

Full Text:



Alsaggaf, M. S., Moussa, S. H., & Tayel, A. A. (2017). Application of fungal chitosan incorporated with pomegranate peel extract as edible coating for microbiological, chemical and sensorial quality enhancement of Nile tilapia fillets. International Journal of Biological Macromolecules, 99(1), 499-505. doi: 10.1016/j.ijbiomac.2017.03.017

Barbosa, L. N., Rall, V. L. M., Fernandes, A. A. H., Ushimaru, P. I., Probst, I. S., & Fernandes, A. (2009). Essential oils against foodborne pathogens and spoilage bacteria in minced meat. Foodborne Pathogenes and Diseases, 6(6), 725-728. doi: 10.1089/fpd.2009.0282

Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods - a review. International Journal of Food Microbiology, 94(3), 223-256. doi: 10.1016/j.ijfoodmicro.2004.03.022

Cahú, T. B., Santos, S. D., Mendes, A., Córdula, C. R., Chavante, S. F., Carvalho, L. B., & Bezerra, R. S. (2012). Recovery of protein, chitin, carotenoids and glycosaminoglycans from Pacific white shrimp (Litopenaeus vannamei) processing waste. Process Biochemistry, 47(4), 570-577. doi: 10.1016/j. procbio.2011.12.012

Cai, J., Dang, Q., Liu, C., Wang, T., Fan, B., Yan, J., & Xu, Y. (2015). Preparation, characterization and antibacterial activity of O-acetyl-chitosan-N-2-hydroxypropyl trimethyl ammonium chloride. International Journal of Biological Macromolecules, 80(1), 8-15. doi: 10.1016/j.ijbiomac.2015.05.061

Chaparro-Hernández, S., Ruíz-Cruz, S., Márquez-Ríos, E., Ocaño-Higuera, V. M., Valenzuela-López, C. C., Ornelas-Paz, J. J., & Del-Toro-Sánchez, C. L. (2015). Effect of chitosan-carvacrol edible coatings on the quality and shelf life of tilapia (Oreochromis niloticus) fillets stored in ice. Food Science and Technology, 35(4), 734-741. doi: 10.1590/1678-457X.6841

Clinical and Laboratory Standards Institute (2018). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. (11 th ed.). CLSI M07-A10. Wayne, PA: Clinical and Laboratory Standards Institute. Retrieved from www.clsi.org

Dehghani, S., Hosseini, S. V., & Regenstein, J. M. (2018). Edible films and coatings in seafood preservation: a review. Food Chemistry, 240(1), 505-513. doi: 10.1016/j.foodchem.2017.07.034

Devi, K. P., Nisha, S. A., Sakthivel, R., & Pandian, S. K. (2010). Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. Journal of Ethnopharmacology, 130(1), 107-115. doi: 10.1016/j.jep.2010.04.025

Devlieghere, F., Vermeiren, L., & Debevere, J. (2004). New preservation technologies: possibilities and limitations. International Dairy Journal, 14(4), 273-285. doi: 10.1016/j.idairyj.2003.07.002

Food and Agriculture Organization (2018). The state of world fisheries and aquaculture 2018 - Meeting the sustainable development goals. Rome: Food and Agriculture Organization of the United Nations. Retrieved from www.fao.org/publications

Heredia-Guerrero, J. A., Ceseracciu, L., Guzman-Puyol, S., Paul, U. C., Alfaro-Pulido, A., Grande, C., & Bayer, I. S. (2018). Antimicrobial, antioxidant, and waterproof RTV silicone-ethyl cellulose composites containing clove essential oil. Carbohydrate Polymers, 192(1), 150-158. doi: 10.1016/j.carbpol.2018. 03.050

Hosseinnejad, M., & Jafari, S. M. (2016). Evaluation of different factors affecting antimicrobial properties of chitosan. International Journal of Biological Macromolecules, 85(1), 467-475. doi: 10.1016/j.ijbiomac. 2016.01.022

Jay, J. M. (2005). Microbiologia de alimentos (6a ed.). Porto Alegre: Artmed.

Jeon, Y. J., Kamil, J. Y. V. A., & Shahidi, F. (2002). Chitosan as an edible invisible film for quality preservation of herring and Atlantic cod. Journal of Agricultural and Food Chemistry, 50(18), 5167-5178. doi: 10.1021/jf011693l

Kalemba, D., & Kunicka, A. (2003). Antibacterial and antifungal properties of essential oils. Current Medical Chemistry, 10(10), 813-829. doi: 10.2174/0929867033457719

Khachatryan, A. R., Hancock, D. D., Besser, T. E., & Call, D. R. (2005). Antimicrobial drug resistance genes do not convey a secondary fitness advantage to calf-adapted Escherichia coli. Applied and Environmental Microbiology, 72(1), 443-448. doi: 10.1128/AEM.72.1.443-448.2006

Kuete, V., Ngameni, B., Simo, C. C. S., Tankeu, R. K., Ngadjui, T., Meyer, J. J. M., & Kuiate, J. R. (2008). Antimicrobial activity of the crude extracts and compounds from Ficus chlamydocarpa and Ficus cordata (Moraceae). Journal of Ethnopharmacology, 120(1), 17-24. doi: 10.1016/j.jep.2008.07.026

Martínez, O., Salmerón, J., Epelde, L., Vicente, M. S., & Vega, C. (2018). Quality enhancement of smoked sea bass (Dicentrarchus labrax) fillets by adding resveratrol and coating with chitosan and alginate edible films. Food Control, 85(1), 168-176. doi: 10.1016/j.foodcont.2017.10.003

Mittelstaedt, S., & Carvalho, V. M. (2006). Escherichia coli enterohemorrágica (EHEC) O157:H7. Revista do Instituto de Ciências da Saúde, 24(1), 175-182.

Mohamed, N. A., & Al-Mehbad, N. Y. (2013). Novel terephthaloyl thiourea cross linked chitosan hydrogels as antibacterial and antifungal agents. International of Journal Biological Macromolecules, 57(1), 111-117. doi: 10.1016/j.ijbiomac.2013.03.007

National Committee for Clinical Laboratory Standards (2003). Performance standards for antimicrobial disk susceptibility tests. Approved standards - Eighth Edition. NCCLS document M02-A08. Wayne, Pennsylvania, USA. Retrieved from www.clsi.org

Ozogul, Y., Yuvka, I., Ucar, Y., Durmus, M., Kosker, A. R., Oz, M., & Ozogul, F. (2017). Evaluation of effects of nanoemulsion based on herb essential oils (rosemary, laurel, thyme and sage) on sensory, chemical and microbiological quality of rainbow trout (Oncorhynchus mykiss) fillets during ice storage. LWT – Food Science Technology, 75(1), 677-684. doi: 10.1016/j.lwt.2016.10.009

R Core Team (2017). A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org

Sartoratto, A., Machado, A. L. M., Delarmelina, C., Figueira, G. M., Duarte, M. C. T., & Reder, V. L. G. (2004). Composition and antimicrobial activity of essential oils from aromatic plants used in Brazil. Brazilian Journal of Microbiology, 35(4), 275-280. doi: 10.1590/S1517-83822004000300001

Seafood Brazil (2018). Seafood Brazil yearbook (4th.). Retrieved from http://seafoodbrasil.com.br/revista/ seafood-brasil-25

Silva, N., Junqueira, V. C. A., Silveira, N. F. A., Taniwaki, N. H., Santos, R. F. S., Gomes, R. A. R., & Okazaki, M. M. (2010). Manual de métodos de análise microbiológica de alimentos e água (4a ed.). São Paulo: Varela.

Silveira, S. M., Cunha, A., Scheuermann, G. N., Secchi, F. L., Verruck, S., Krohn, M., & Vieira, C. R. W. (2012). Composição química e atividade antibacteriana dos óleos essenciais. Revista do Instituto Adolfo Lutz, 71(3), 471-480.

Sivakumar, D., & Bautista-Baños, S. (2014). A review on the use of essential oils for postharvest decay control and maintenance of fruit quality during storage. Crop Protection, 64(1), 27-37. doi: 10.1016/j. cropro.2014.05.012

Upadhyay, A., Upadhyaya, I., Karumathil, D. P., Yin, H., Nair, M. S., Bhattaram, V.,… Venkitanarayanan, K. (2015). Control of Listeria monocytogenes on skinless frankfurters by coating with phytochemicals. LWT - Food Science Technology, 63(1), 37-42. doi: 10.1016/j.lwt.2015.03.100

United State Food and Drug Administration (2013). GRAS notice inventory. Retrieved from http://www.fda. gov

Vieira, B. B., Mafra, J. F., Bispo, A. S. R., Ferreira, M. A., Silva, F. L., Rodrigues, A. V. N., & Evangelista-Barreto, N. S. (2019). Combination of chitosan coating and clove essential oil reduces lipid oxidation and microbial growth in frozen stored tambaqui (Colossoma macropomum) fillets. LWT - Food Science and Technology, 116(1), 108546. doi: 10.1016/j.lwt.2019.108546

Wang, J., & Wang, H. (2011). Preparation of soluble p-aminobenzoyl chitosan ester by Schiff's base and antibacterial activity of the derivatives. International of Journal Biological Macromolecules, 48(3), 523-529. doi: 10.1016/j.ijbiomac.2011.01.016

Yu, D., Li, P., Xu, Y., Jiang, Q., & Xia, W. (2017). Physicochemical, microbiological, and sensory attributes of chitosan-coated grass carp (Ctenopharyngodon idellus) fillets stored at 4 °C. International Journal of Food Properties, 20(2), 390-401. doi: 10.1080/10942912.2016.1163267

Yu, D., Xu, Y., Regenstein, J. M., Xia, W., Yang, F., Jiang, Q., & Wang, B. (2018). The effects of edible chitosan-based coatings on flavor quality of raw grass carp (Ctenopharyngodon idellus) fillets during refrigerated storage. Food Chemistry, 242(1), 412-420. doi: 10.1016/j.foodchem.2017.09.037

DOI: http://dx.doi.org/10.5433/1679-0359.2020v41n6p2793

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional