Feasibility of bioethanol production from rice bran

Francieli Begnini Siepmann, Daneysa Lahis Kalschne, Caroline Zabotti, Eder Lisandro de Moraes Flores, Cristiane Canan, Eliane Colla


Rice bran is a by-product of rice production with a high carbohydrate and starch content and the potential for bioethanol production by alcoholic fermentation. This article describes bioethanol production by Saccharomyces cerevisiae from hydrolyzed defatted rice bran (DRB) a rice by-product applying ultrasonic treatment and protease addition, as well as a sequential strategy of experimental design (SEED). In the first Central Composite Rotatable Design (CCRD), the temperature (25-30 °C) and inoculum concentration (0.5-50 g L-1) had positive effects on bioethanol production, while the effect of pH (4.0-6.0) was not significant. In the second CCRD, the temperature (28-35 °C) and inoculum concentration (10-70 g L-1) had negative and positive effects on bioethanol production (p < 0.05). Protease addition (15 µL g-1) increased the conversion of substrate into bioethanol by 76%. The optimized conditions for the production of 40.7 g L-1 bioethanol were a temperature of 31.5 °C and an inoculum concentration of 70 g L-1. Validation in a benchtop bioreactor produced 40.0 g L-1 of bioethanol from hydrolyzed DRB, and the SEED was characterized as a useful tool to improve bioethanol production from DRB. Furthermore, the DRB proved to be a by-product with great potential for bioethanol production, derived from alternative sources not commonly used in human food.


Enzymatic hydrolysis; Ultrasonic treatment; Protease; Response surface methodology; Alcoholic fermentation.

Full Text:



Amagliani, L., O’Regan, J., Kelly, A. L., & O’Mahony, J. A. (2017). Composition and protein profile analysis of rice protein ingredients. Journal of Food Composition and Analysis, 59, 19-26. doi: 10. 1016/j.jfca.2016.12.026

Caldeirão, L., Tanaka, C., Ida, E., & Spinosa, W. (2016). Modeling and kinetic study of bio-ethanol production from soy protein concentrate by-product. Food Science and Technology, 36(2), 369-374. doi: 10.1590/1678-457X.0021

Companhia Nacional de Abastecimento (2020). Acompanhamento da safra brasileira de grãos. Recuperado de https://www.conab.gov.br/info-agro/safras/graos

Dagnino, E. P., Chamorro, E. R., Romano, S. D., Felissia, F. E., & Area, M. C. (2013). Optimization of the acid pretreatment of rice hulls to obtain fermentable sugars for bioethanol production. Industrial Crops and Products, 42, 363-368. doi: 10.1016/j.indcrop.2012.06.019

Das, A., Paul, T., Jana, A., Halder, S. K., Ghosh, K., Maity, C.,… Mondal, K. C. (2013). Bioconversion of rice straw to sugar using multizyme complex of fungal origin and subsequent production of bioethanol by mixed fermentation of Saccharomyces cerevisiae MTCC 173 and Zymomonas mobilis MTCC 2428. Industrial Crops and Products, 46, 217-225. doi: 10.1016/j.indcrop.2013.02.003

François, J., & Parrou, J. L. (2001). Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiology Reviews, 25(1), 125-145. doi: 10.1016/S0168-6445(00)00059-0

Gutiérrez-Rivera, B., Ortiz-Muñiz, B., Gómez-Rodríguez, J., Cárdenas-Cágal, A., Domínguez González, J. M., & Aguilar-Uscanga, M. G. (2015). Bioethanol production from hydrolyzed sugarcane bagasse supplemented with molasses “B” in a mixed yeast culture. Renewable Energy, 74, 399-405. doi: 10. 1016/j.renene.2014.08.030

Hayes, D. J. (2009). An examination of biorefining processes, catalysts and challenges. Catalysis Today, 145(1-2), 138-151. doi: 10.1016/j.cattod.2008.04.017

Johnston, D. B., & McAloon, A. J. (2014). Protease increases fermentation rate and ethanol yield in dry-grind ethanol production. Bioresource Technology, 154, 18-25. doi: 10.1016/j.biortech.2013.11.043

K?osowski, G., Mikulski, D., Czupry?ski, B., & Kotarska, K. (2010). Characterisation of fermentation of high-gravity maize mashes with the application of pullulanase, proteolytic enzymes and enzymes degrading non-starch polysaccharides. Journal of Bioscience and Bioengineering, 109(5), 466-471. doi: 10.1016/j.jbiosc.2009.10.024

Lei, H., Zheng, L., Wang, C., Zhao, H., & Zhao, M. (2013). Effects of worts treated with proteases on the assimilation of free amino acids and fermentation performance of lager yeast. International Journal of Food Microbiology, 161(2), 76-83. doi: 10.1016/j.ijfoodmicro.2012.11.024

Liu, Y., Zhang, Y., Xu, J., Sun, Y., Yuan, Z., & Xie, J. (2015). Consolidated bioprocess for bioethanol production with alkali-pretreated sugarcane bagasse. Applied Energy, 157, 517-522. doi: 10.1016/j. apenergy.2015.05.004

Mendes-Ferreira, A., Mendes-Faia, A., & Leão, C. (2004). Growth and fermentation patterns of Saccharomyces cerevisiae under different ammonium concentrations and its implications in winemaking industry. Journal of Applied Microbiology, 97(3), 540-545. doi: 10.1111/j.1365-2672. 2004.02331.x

Mojovi?, L., Nikoli?, S., Rakin, M., & Vukasinovi?, M. (2006). Production of bioethanol from corn meal hydrolyzates. Fuel, 85(12-13), 1750-1755. doi: 10.1016/j.fuel.2006.01.018

Nelson, N. (1944). A photometric adtation of the Somogyi methid for the determination of glucose. The Journal of Biological Chemistry, 3(2), 375-380.

Oberoi, H. S., Vadlani, P. V., Madl, R. L., Saida, L., & Abeykoon, J. P. (2010). Ethanol production from orange peels: twostage hydrolysis and fermentation studies using optimized parameters through experimental design. Journal of Agricultural and Food Chemistry, 58(6), 3422-3429. doi: 10.1021/ jf903163t

Parrado, J., Miramontes, E., Jover, M., Gutierrez, J. F., Collantes de Terán, L., & Bautista, J. (2006). Preparation of a rice bran enzymatic extract with potential use as functional food. Food Chemistry, 98(4), 742-748. doi: 10.1016/j.foodchem.2005.07.016

Peppler, H. (1970). Food yeats. In A. H. Rose, & J. S. Harrison (Eds.), The yeasts (pp. 421-463). London: Academin Press.

Plata, M. R., Koch, C., Wechselberger, P., Herwig, C., & Lendl, B. (2013). Determination of carbohydrates present in Saccharomyces cerevisiae using mid-infrared spectroscopy and partial least squares regression. Analytical and Bioanalytical Chemistry, 405(25), 8241-8250. doi: 10.1007/s00216-013-7239-9

Rodrigues, M. I., & Iemma, A. F. (2014). Experimental design and process optimization. Boca Raton: CRC Press.

Siepmann, F. B., Canan, C., Jesus, M. M. M. de, Pazuch, C. M., & Colla, E. (2018). Release optimization of fermentable sugars from defatted rice bran for bioethanol production. Acta Scientiarum. Technology, 40(1), 35000. doi: 10.4025/actascitechnol.v40i1.35000

Singh, R., & Singh, S. (2007). Design and development of batch type acetifier for wine-vinegar production. Indian Journal of Microbiology, 47(2), 153-159. doi: 10.1007/s12088-007-0029-3

Somogyi, M. (1945). A new reagent for the determination of sugars. The Journal of Biological Chemistry, 160, 61-68.

Stobienia, M., Kalschne, D. L., Peron-Schlosser, B., Colla, L. M., Baraldo, I. J., & Colla, E. (2020). Evaluation of ultrasound waves on S. cerevisiae stimulation in the bioethanol production from rice bran. BioEnergy Research, 13, 314324. doi: 10.1007/s12155-019-10088-5

Todhanakasem, T., Sangsutthiseree, A., Areerat, K., Young, G. M., & Thanonkeo, P. (2014). Biofilm production by Zymomonas mobilis enhances ethanol production and tolerance to toxic inhibitors from rice bran hydrolysate. New Biotechnology, 31(5), 451-459. doi: 10.1016/j.nbt.2014.06.002

Watanabe, M., Honda, H., Kashiwamura, T., Sasano, K., & Watanabe, K. (2009a). Sedimentation and flocculating properties of solid particles in enzymatic treated rice washing drainage and its mechanism. Japan Journal of Food Engineering, 8, 165-172. doi: 10.11301/jsfe.10.55

Watanabe, M., Takahashi, M., Sasano, K., Kashiwamura, T., Ozaki, Y., Tsuiki, T.,… Kanemoto, S. (2009b). Bioethanol production from rice washing drainage and rice bran. Journal of Bioscience and Bioengineering, 108(6), 524-526. doi: 10.1016/j.jbiosc.2009.06.014

Watanabe, M., Yamada, C., Maeda, I., Techapun, C., Kuntiya, A., Leksawasdi, N.,… Endo, S. (2019). Evaluating of quality of rice bran protein concentrate prepared by a combination of isoelectronic precipitation and electrolyzed water treatment. LWT, 99, 262-267. doi: 10.1016/j.lwt.2018.09.059

Yao, L., Lee, S. L., Wang, T., Moura, J. M. L. N. de, & Johnson, L. A. (2012). Effects of fermentation substrate conditions on corn-soy co-fermentation for fuel ethanol production. Bioresource Technology, 120, 140-148. doi: 10.1016/j.biortech.2012.04.071

Zhu, J., Rong, Y., Yang, J., Zhou, X., Xu, Y., Zhang, L.,… Yu, S. (2015). Integrated production of xylonic acid and bioethanol from acid-catalyzed steam-exploded corn stover. Applied Biochemistry and Biotechnology, 176(5), 1370-1381. doi: 10.1007/s12010-015-1651-x

DOI: http://dx.doi.org/10.5433/1679-0359.2020v41n6Supl2p2951

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional