Milk fatty acid composition in Holstein x Gyr dairy cows fed chopped elephantgrass-based diets containing two types of sunflower oil associated with two methods of concentrate feeding

Fernando César Ferraz Lopes, Carlos Gustavo Santos Ribeiro, Norberto Mario Rodriguez, Marco Antônio Sundfeld da Gama, Mirton José Frota Morenz


Two experiments were carried out in a 2 x 2 factorial arrangement with the objective of evaluating two methods of concentrate feeding for Holstein x Gyr cows fed 600 g kg-1 chopped elephantgrass-based diets supplemented at 45 g kg-1 DM with two types of sunflower oil (SO). The types of SO differed in the levels of oleic and linoleic fatty acids (FAs): high oleic/low linoleic acid – HO (73 and 10 g 100 g-1 FA, respectively) and medium oleic/medium linoleic acid – MO (43 and 34 g 100 g-1 FA, respectively). The concentrates containing HO SO or MO SO were supplied separately from the forage twice a day after the two milkings (TAD) or as part of a total mixed ration (TMR). In Experiment 1, a 4 x 4 Latin square design was used to evaluate the ruminal fermentation and degradation parameters in four rumen-cannulated cows (430±39 kg; 79±20 days in milk; 16.4±3.1 kg day-1 of milk). In Experiment 2, a randomized block design was used to evaluate the nutrient intake, plasma contents of metabolites and FAs, milk yield and composition, and FA profile of milk fat in 32 cows (444±84 kg; 75±31 days in milk; 15.4±4.8 kg day-1 of milk). The results were analyzed by mixed models (P ? 0.05). The TMR diets promoted higher nutrient intake and rumen fermentation (higher ammonia N, acetate, propionate and total volatile FA contents) without affecting milk, fat, protein and lactose yields. TAD-fed cows presented higher feed efficiency and produced milk fat with a more nutritionally desirable FA composition, with higher vaccenic and rumenic acid contents and lower trans-10 C18:1 and palmitic acid contents. The DM intake, parameters of rumen fermentation and milk, fat, protein and lactose yields were similar for the HO SO and MO SO diets. The most nutritionally positive characteristics for human health in the milk fat of HO SO-fed cows were the higher eicosapentaenoic (+34%) and oleic acid (+11%) contents and lower palmitic acid content (-10%). Higher contents of vaccenic (+71%) and rumenic (+74%) acids and lower trans-10 C18:1 (-10%), elaidic (-32%), lauric (-14%) and myristic (-11%) acid contents were the most positive aspects of the milk fat of MO SO-fed cows. Considering the magnitudes of the differences in the levels of these FAs, it is concluded that the milk fat of cows fed MO SO showed a healthier milk FA profile.


Conjugated linoleic acid; Oleic acid; Pennisetum purpureum; Rumenic acid; TMR.

Full Text:



Agnew, K. W., Mayne, C. S., & Doherty, J. G. (1996). An examination of the effect of method and level of concentrate feeding on milk production in dairy cows offered a grass silage-based diet. Animal Science, 63(1), 21-31. doi: 10.1017/S1357729800028241

Bernard, L., Bonnet, M., Delavaud, C., Delosière, M., Ferlay, A., Fougère, H., & Graulet, B. (2018). Milk fat globule in ruminant: major and minor compounds, nutritional regulation and differences among species. European Journal of Lipid Science and Technology, 120(5), 1700039. doi: 10.1002/ejlt.201700039

Buccioni, A., Decandia, M., Minieri, S., Molle, G., & Cabiddu, A. (2012). Lipid metabolism in the rumen: new insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors. Animal Feed Science and Technology, 174(1/2), 1-25. doi: 10.1016/j.anifeedsci.2012.02.009

Calder, P. C. (2018). Very long-chain n-3 fatty acids and human health: fact, fiction and the future. Proceedings of the Nutrition Society, 77(1), 52-72. doi: 10.1017/S0029665117003950

Detmann, E., Valadares, S. C., Fº., Berchielli, T. T., Cabral, L. S., Ladeira, M. M., Souza, M. A.,... Azevedo, J. A. G. (2012). Métodos para análise de alimentos. Visconde do Rio Branco: Suprema.

Dorea, J. R. R., & Armentano, L. E. (2017). Effects of common dietary fatty acids on milk yield and concentrations of fat and fatty acids in dairy cattle. Animal Production Science, 57(11), 2224-2236. doi: 10.1071/AN17335

Harvatine, K. J., & Allen, M. S. (2004). Kinetic model of rumen biohydrogenation: fractional rates of fatty acid biohydrogenation and passage. Journal of Animal and Feed Sciences, 13(Suppl. 1), 87-90. doi: 10.22358/jafs/73745/2004

He, M., Perfield, K. L., Green, H. B., & Armentano, L. E. (2012). Effect of dietary fat blend enriched in oleic or linoleic acid and monensin supplementation on dairy cattle performance, milk fatty acid profiles, and milk fat depression. Journal of Dairy Science, 95(3), 1447-1461. doi: 10.3168/jds.2011-4635

Instrução Normativa n° 76, de 26 de novembro de 2018. Diário Oficial da União n° 230 - Seção 1. Ministério da Agricultura, Pecuária e Abastecimento.

Kliem, K. E., & Shingfield, K. J. (2016). Manipulation of milk fatty acid composition in lactating cows: opportunities and challenges. European Journal of Lipid Science and Technology, 118(11), 1661-1683. doi: 10.1002/ejlt.201400543

Lopes, F. C. F., Ribeiro, C. G. S., Rodriguez, N. M., Gama, M. A. S., Morenz, M. J. F., Antoniassi, R., & Bizzo, H. R. (2019). Butter fatty acid composition as a function of soybean oil supplementation and time of milking, and performance of Holstein x Gyr cows fed with chopped elephant grass-based diets. Semina: Ciências Agrárias, 40(5), 2027-2044. doi: 10.5433/1679-0359.2019v40n5p2027

Lopes, J. C., Harper, M. T., Giallongo, F., Oh, J., Smith, L., Ortega-Perez,… Hristov, A. N. (2017). Effect of high-oleic-acid soybeans on production performance, milk fatty acid composition, and enteric methane emission in dairy cows. Journal of Dairy Science, 100(2), 1122-1135. doi: 10.3168/jds.2016-11911

Mahdavi, A., Mahdavi, A., Darabighane, B., Mead, A., & Lee, M. R. F. (2019). Effects of soybean oil supplement to diets of lactating dairy cows, on productive performance, and milk fat acids profile: a meta-analysis. Italian Journal of Animal Science, 18(1), 809-819, doi: 10.1080/1828051X.2019.158 5211

Masood, A., Stark, K. D., & Salem, N, Jr. (2005). A simplified and efficient method for the analysis of fatty acid methyl esters suitable for large clinical studies. Journal of Lipid Research, 46(10), 2299-2305, 2005. doi: 10.1194/jlr.D500022-JLR200

Mourthé, M. H. F., Lopes, F. C. F., Reis, R. B., Gama, M. A. S., Morenz, M. J. F., & Salomão, B. M. (2019). Ruminal metabolic parameters and milk fatty acid profile of cows grazing Marandu grass supplemented with roasted soybeans. Semina: Ciências Agrárias, 40(2), 745-766. doi: 10.5433/1679-0359.2019v40n2 p745

National Research Council (2001). Nutrients requirements of dairy cattle (7nd ed.). Washington: National Academy Press.

Pereira, A. V., Morenz, M. J. F., Ledo, F. J. S., & Ferreira, R. P. (2016). Capim elefante: versatilidades de usos na pecuária de leite. In D. Vilela, R. P. Ferreira, E. N. Fernandes, & F. V. Juntolli (Eds.), Pecuária de leite no Brasil: cenários e avanços tecnológicos (pp. 187- 211). Brasília: EMBRAPA.

Phipps, R. H., Bines, J. A., Fulford, R. J., & Weller, R. F. (1984). Complete diets for dairy cows: a comparison between complete diets and separate ingredients. The Journal of Agricultural Science, 103(1), 171-180. doi: 10.1017/S0021859600043434

Prado, L. A., Schmidely, P., Nozière, P., & Ferlay, A. (2019). Milk saturated fatty acids, odd- and branched-chain fatty acids, and isomers of C18:1, C18:2, and C18:3n-3 according to their duodenal flows in dairy cows: A meta-analysis approach. Journal of Dairy Science, 102(4), 3053-3070. doi: 10.3168/jds.2018-15194

Rabiee, A. R., Breinhild, K., Scott, W., Golder, H. M., Block, E., & Lean, I. J. (2012). Effect of fat additions to diets of dairy cattle on milk production and components: A meta-analysis and meta-regression. Journal of Dairy Science, 95(6), 3225-3247. doi: 10.3168/jds.2011-4895

Renna, M., Cornale, P., Lussiana, C., Battaglini, L. M., Turille, G., & Mimosi, A. (2014). Milk yield, gross composition and fatty acid profile of dual-purpose Aosta Red Pied cows fed separate concentrate-forage versus total mixed ration. Animal Science Journal, 85(1), 37-45. doi: 10.1111/asj.12083

Ribeiro, C. G. S., Lopes, F. C. F., Gama, M. A. S., Morenz, M. J. F., & Rodriguez, N. M. (2014). Desempenho produtivo e perfil de ácidos graxos do leite de vacas que receberam níveis crescentes de óleo de girassol em dietas à base de capim-elefante. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 66(5), 1513-1521. doi: 10.1590/1678-6886

Ribeiro, C. G. S., Lopes, F. C. F., Gama, M. A. S., Rodriguez, N. M., & Morenz, M. J. F. (2018). Ruminal fermentation and degradation, kinetic flow of the digesta and milk fatty acid composition of cows fed chopped elephant grass supplemented with soybean oil. Semina: Ciências Agrárias, 39(4), 1775-1794. doi: 10.5433/1679-0359.2018v39n4p1775

Rico, D. E., Preston, S. H., Risser, J. M., & Harvatine, K. J. (2015). Rapid changes in key ruminal microbial populations during the induction of and recovery from diet-induced milk fat depression in dairy cows. British Journal of Nutrition, 114(3), 358-367. doi: 10.1017/S0007114515001865

Rodrigues, J. P. P., Paula, R. M., Rennó, L. N., Fontes, M. M. S., Machado, A. F., Valadares, S. C., Fº,... Marcondes, M. I. (2017). Short-term effects of soybean oil supplementation on performance, digestion, and metabolism in dairy cows fed sugarcane-based diets. Journal of Dairy Science, 100(6), 4435-4447. doi: 10.3168/jds.2016-11725

Schingoethe, D. J. (2017). A 100-year review: total mixed ration feeding of dairy cows. Journal of Dairy Science, 100(12), 10143-10150. doi: 10.3168/jds.2017-12967

Shingfield, K. J., Bernard, L., Leroux, C., & Chilliard, Y. (2010). Role of trans fatty acids in the nutritional regulation of mammary lipogenesis in ruminants. Animal, 4(7), 1140-1166. doi: 10.1017/S17517311100 00510

Shingfield, K. J., Sæbø, A., Sæbø, P. C., Toivonen, V., & Griinari, J. M. (2009). Effect of abomasal infusions of a mixture of octadecenoic acids on milk fat synthesis in lactating cows. Journal of Dairy Science, 92(9), 4317-4329. doi: 10.3168/jds.2008-2002

Stoffel, C. M., Crump, P. M., & Armentano, L. E. (2015). Effect of dietary fatty acid supplements, varying in fatty acid composition, on milk fat secretion in dairy cattle fed diets supplemented to less than 3% total fatty acids. Journal of Dairy Science, 98(1), 431-442. doi: 10.3168/jds.2014-8328

Vahmani, P., Meadus, W. J., Duff, P., Rolland, D. C., & Dugan, M. E. R. (2017). Comparing the lipogenic and cholesterol genic effects of individual trans-18:1 isomers in liver cells. European Journal of Lipid Science and Technology, 119(3), 1600162. doi: 10.1002/ejlt.201600162

Valadares, S. C., Fº., & Pina, D. S. (2011). Fermentação ruminal. In T. T. Berchielli, A. Vaz Pires, & S. G. Oliveira (Eds.), Nutrição de ruminantes (2a ed., pp. 161-191). Jaboticabal: Funep.

Weld, K. A., & Armentano, L. E. (2018). Feeding high oleic acid soybeans in place of conventional soybeans increases milk fat concentration. Journal of Dairy Science, 101(11), 9768-9776. doi: 10.3168/ jds.2018-14498

Yang, B., Chen, H., Stanton, C., Ross, R. P., Zhang, H., Chen, Y. Q., & Chen, W. (2015). Review of the roles of conjugated linoleic acid in health and disease. Journal of Functional Foods, 15, 314-325. doi: 10.1016/j.jff.2015.03.050

Zhang, Y., Liu, K., Hao, X., & Xin, H. (2017). The relationships between odd- and branched-chain fatty acids to ruminal fermentation parameters and bacterial populations with different dietary ratios of forage and concentrate. Journal of Animal Physiology and Animal Nutrition, 101(6), 1103-1114. doi: 10.1111/ jpn.12602


Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional