Co-inoculation of Bradyrhizobium japonicum and Azospirillum brasilense on the physiological quality of soybean seeds

Paloma Helena da Silva Libório, Ivana Marino Bárbaro-Torneli, Marco Antonio Nogueira, Sandra Helena Unêda-Trevisoli


The success of the soybean crop depends on the physiological quality of seeds, which can be favored by beneficial microorganisms, however, it may be impaired by unfavorable environmental conditions. The aim of this study was to evaluate the effect of co-inoculation with Bradyrhizobium japonicum and Azospirillum brasilense on the physiological quality of soybean seeds obtained in the 2017/2018 crop season, from a field trial involving 23 cultivars submitted to co-inoculation (in-furrow) or without coinoculation. Plants were assessed for nodulation at R1 and, after harvest at R8, seeds were assessed for concentration of proteins, mass of thousand seeds, and seed physiological quality [(Germination, emergence of seedlings in sand, and Emergence Speed Index (ESI)]. In the average of cultivars, the number of nodules per plant increased from 36.0 in the control to 44.4 nodules with co-inoculation. Increases in the concentration of proteins and in the mass of thousand seeds due to co-inoculation were 5.6% and 34.7%, respectively. Seeds originated from co-inoculated plants had higher germination rate at the first (50% vs. 45.3%) and at the final (87% vs. 79.8%) countings, in addition to higher rate of seedlings emergence in sand box (83.3% vs. 80%), and higher ESI (18.5 vs. 17.4). The benefits of coinoculation were observed in 17 of 23 cultivars (74%) for at least two of the seven assessed variables. Considering only the minimal germination of 80%, the seeds originated from 10 non-inoculated cultivars could not be used, whereas for the co-inoculated plants this number fell to four.


Diazotrophic bacteria; Emergence speed index; Germination; Glycine max L.

Full Text:



Alvares, C. A., Stape, J. L., Sentelhas, P. C., Moraes, G. de, Leonardo, J., & Sparovek, G. (2013). Köppen's climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728. doi: 10.1127/0941-2948/2013/0507

Associação Nacional dos Produtores e Importadores de Inoculantes (2019). Inoculantes em alta. Recuperado de

Association of Official Analytical Chemists (1995). Official methods of analysis (16nd ed.). Washington, D.C.: AOAC.

Bárbaro-Torneli, I. M., Finoto, E. L., Borges, W. L. B., Tokuda, F. S., Santos, G. X. L., Martins, M. H.,... Mateus, G. P. (2018). Evaluation of soybean cultivars in the State of São Paulo in response to the application of inoculants in the sowing furrow. Nucleus, (Ed. Esp.), 55-62. doi: 10.3738/1982.2278. 3001

Barbosa, J. C., & Maldonado, W., Jr. (2015). Agronomic experimentation and AgroEstat: system for statistical analysis of agronomic trials. Jaboticabal, SP: Multipress.

Battistus, A. G., Hachmann, T. L., Mioranza, T. M., Muller, M. A., Madalosso, T., Favorito, P. A.,... Bulegon, L. G. (2014). Synergistic action of Azospirillum brasilense combined with thiamethoxam on the physiological quality of maize seedlings. African Journal of Biotechnology, 13(49), 4501-4507 doi: 10.5897/AJB2014.14059

Bulegon, L. G., Rampim, L., Klein, J., Kestring, D., Guimarães, V. F., Battistus, A. G., & Inagaki, A. M. (2016). Components of production and yield of soybean inoculated with Bradyrhizobium and Azospirillum. Terra Latinoamericana, 34(2), 169-176.

Carvalho, N. M.; Nakagawa, J. (2000). Sementes: Ciência, Tecnologia e Produção. Jaboticabal, São Paulo: FUNEP, 4(1), 588.

Cassán, F., Coniglio, A., López, G., Molina, R., Nievas, S., de Carlan, C. Le N.,... Mora, V. (2020). Everything you must know about Azospirillum and its impact on agriculture and beyond. Biology and Fertility of Soils, 56(1), 461-479. doi: 10.1007/s00374-020-01463-y

Centro Integrado de Informações Agrometeorológicas (2018). Balanço hídrico semanal em Guaíra-SP, de 01/11/2017 a 01/03/2018. São Paulo, Brasil. Recuperado de http://www.

Cerezini, P., Kuwano, B. H., Santos, M. B. dos, Terassi, F., Hungria, M., & Nogueira, M. A. (2016). Strategies to promote early nodulation in soybean under drought. Field Crops Research, 196(1), 160-167. doi: 10.1016/j.fcr.2016.06.017

Cheng, W. H., Endo, A., Zhou, L., Penney, J., Chen, H. C., Arroyo, A.,... Koshiba, T. (2002). A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. The Plant Cell, 14(11), 2723-2743. doi: 10.1105/tpc.006494

Chibeba, A. M., Guimarães, M. de F., Brito, O. R., Nogueira, M. A., Araujo, R. S., & Hungria, M. (2015) Co-inoculation of soybean with Bradyrhizobium and Azospirillum promotes early nodulation. American Journal of Plant Sciences, 6(10), 1641-1649. doi: 10.4236/ajps.2015.610164

Companhia Nacional de Abastecimento (2020). Nono levantamento de grãos. Safra 2019/20. Recuperado de

Day, P. R. (1965). Particle fractionation and particle?size analysis. Methods of Soil Analysis: Part 1 Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling, 9(1), 545-567. doi: 10.2134/agronmonogr9.1.c43

Fabre, F., & Planchon, C. (2000). Nitrogen nutrition, yield and protein content in soybean. Plant Science, 152(1), 51-58. doi: 10.1016/S0168-9452(99)00221-6

Fehr, W. R., & Caviness, C. E. (1977). Stages of soybean development: Special Report. Recuperado de

Fipke, G. M., Conceição, G. M., Grando, L. F. T., Ludwig, R. L., Nunes, U. R., & Martin, T. N. (2016). Co-inoculation with diazotrophic bacteria in soybeans associated to urea topdressing. Ciência e Agrotecnologia, 40(5), 522-533. doi: 10.1590/1413-70542016405001316

Fukami, J., Cerezini, P., & Hungria, M. (2018). Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express, 8(1), 73. doi: 10.1186/s13568-018-0608-1

Henning, F. A., Mertz, L. M., Jacob, E. A., Jr., Machado, R. D., Fiss, G., & Zimmer, P. D. (2010). Chemical composition and reserve mobilization in soybean seeds with high and low vigor. Bragantia, 69(3), 727-734. doi: 10.1590/S0006-87052010000300026

Hungria, M., Nogueira, M. A., & Araujo, R. S. (2015). Soybean seed co-inoculation with Bradyrhizobium spp. and Azospirillum brasilense: a new biotechnological tool to improve yield and sustainability. American Journal of Plant Sciences 6(6), 811-817. doi: 10.4236/ajps.2015.66087

Hungria, M., Nogueira, M. A., & Araujo, R. S. (2013). Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biology and Fertility of Soils, 7(49), 791-801. doi: 10.1007/s00374-012-0771-5

Kaster, M., & Farias, J. R. B. (2012). Regionalization of cultivation and use value tests and indication of soybean cultivars-third approximation. (Documents, INFOTECA-E). Londrina: EMBRAPA Soja.

Krzyzanowski, F. C., França, J. B., Neto, & Henning, A. A. (2018). A alta qualidade da semente de soja: fator importante para a produção da cultura (Circular Técnica, nº 136). Londrina: EMBRAPA Soja. Recuperado de

Maguire, J. D. (1962). Speed of germination aid in selection and evaluation for seedling emergence and vigor 1. Crop science, 2(2), 176-177. doi: 10.2135/cropsci1962.0011183X000200020033x

Marcos, J. Fo.(2013). Importância do potencial fisiológico da semente de soja. Informativo Abrates, 23(1), 21-24. Recuperado de babe_IA% 20vol.23%20n.1.pdf#page=21

Ministério da Agricultura, Pecuária e Abastecimento. (2009). Regras para análise de sementes. Secretaria de Defesa Agropecuária. MAPA/ACS.

Ministério da Agricultura, Pecuária e Abastecimento (2013). Instrução Normativa 45. Recuperado de publicacoes-sementes-e-mudas/copy_of_INN45de17desetembrode2013.pdf

Peske, S., Villela, F. A., & Meneghello, G. E. (2012). Seeds: scientific and technological foundations. Pelotas: UFPel.

Raij, B., Quaggio, J. A., Cantarella, H., & Abreu, C. A. (2001). The chemical analysis methods of the IAC soil analysis system in the national context. Chemical Analysis to Assess Fertility of Tropical Soils (pp. 5-39). Campinas, SP.

Queiroz Rego, C. H., Cardoso, F. B., Silva Cândido, A. C., Teodoro, P. E., & Alves, C. Z. (2018). Co-inoculation with Bradyrhizobium and Azospirillum increases yield and quality of soybean seeds. Agronomy Journal, 110(6), 2302-2309. doi: 10.2134/agronj2018.04.0278

Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C. dos, Oliveira, V. A. de, Lumbreras, J. F., Coelho, M. R.,... Cunha, T. J. F. (2018). Brazilian system of soil classification. Brasília, DF: EMBRAPA.

Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3/4), 591-611. doi: 10.2307/2333709

Silva, E. R., Zoz, J., Oliveira, C. E. S., Zuffo, A. M., Steiner, F., Zoz, T., & Vendruscolo, E. P. (2019). Can co-inoculation of Bradyrhizobium and Azospirillum alleviate adverse effects of drought stress on soybean (Glycine max L. Merrill.)? Archives of Microbiology, 201(3), 325-335. doi: 10.1007/s00203-018-01617-5

Taiz, L. Z., & Zeiger, E. E. (2002). Plant physiology.

Torres, A. R., Grunvald, A. K., Martins, T. B., Santos, M. A. D., Lemos, N. G., Silva, L. A. S., & Hungria, M. (2015). Genetic structure and diversity of a soybean germplasm considering biological nitrogen fixation and protein content. Scientia Agricola, 72(1), 47-52. doi: 10.1590/0103-9016-2014-0039

Villegas, E., Ortega Martinez, E. I., & Bauer Mengelberg, J. R. (1985). Chemical methods used at CIMMYT for determining protein quality in cereal grains. CIMMYT.

Zimmer, S., Messmer, M., Haase, T., Piepho, H. P., Mindermann, A., Schulz, H.,... Heß, J. (2016). Effects of soybean variety and Bradyrhizobium strains on yield, protein content and biological nitrogen fixation under cool growing conditions in Germany. European Journal of Agronomy, 72(1), 38-46. doi: 10.1016/ j.eja.2015.09.008


Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional