Rice and rice bran from different cultivars: physicochemical, spectroscopic, and thermal analysis characterization

Daneysa Lahis Kalschne, Rosana Aparecida da Silva-Buzanello, Ana Paula Iglikowski Byler, Fernando Reinoldo Scremin, Ariano Martins de Magalhães Junior, Cristiane Canan

Abstract


Different rice cultivars have been developed in order to obtain grains with optimal cultivation and compositional characteristics, which affect their potential applications. Therefore, the characterization of these different rice cultivars is required. In the present study, white rice and rice bran from the cultivars BRS AG, BRS Pampa, and BRS 358 provided by EMBRAPA were characterized by physicochemical means, infrared spectroscopy (FTIR-ATR), and thermal analyses. The moisture, lipid, and ash contents did not differ among the white rice cultivars. The cultivar BRS Pampa exhibited the highest protein and lowest total carbohydrate contents. Both BRS Pampa and BRS 358 showed a higher phytic acid content than BRS AG. The highest total carbohydrate content was observed in BRS AG white rice samples, which confirmed its suitability for use in ethanol production. Among the rice bran samples, BRS 358 demonstrated the highest contents of lipid, protein, and phytic acid, and the lowest total carbohydrate content. FTIR-ATR and thermal analyses were suitable for correlating the physicochemical properties of white rice and rice bran with the molecular composition in the respective cultivars studied. Both white rice and rice bran exhibited a thermal degradation temperature at 300 °C. Lipids, protein, ash and phytic acid were considerably higher in rice bran than white rice in all cultivars studied, which demonstrates the importance of the use of this by-product.

Keywords


BRS AG; BRS Pampa; BRS 358; Irrigated rice; Oryza sativa.

Full Text:

PDF

References


Adu-Kwarteng, E., Ellis, W. O., Oduro, I., & Manful, J. T. (2003). Rice grain quality: A comparison of local varieties with new varieties under study in Ghana. Food Control, 14(7), 507-514. doi: 10.1016/S0956-7135(03)00063-X

Amagliani, L., O’Regan, J., Kelly, A. L., & O’Mahony, J. A. (2017). Composition and protein profile analysis of rice protein ingredients. Journal of Food Composition and Analysis, 59, 18-26. doi: 10. 1016/j.jfca.2016.12.026

Bagchi, T. B., Sharma, S., & Chattopadhyay, K. (2016). Development of NIRS models to predict protein and amylose content of brown rice and proximate compositions of rice bran. Food Chemistry, 191, 21-27. doi: 10.1016/j.foodchem.2015.05.038

Bhatnagar, A. S., Prabhakar, D. S., Prasanth Kumar, P. K., Raja Rajan, R. G., & Gopala Krishna, A. G. (2014). Processing of commercial rice bran for the production of fat and nutraceutical rich rice brokens, rice germ and pure bran. LWT - Food Science and Technology, 58(1), 306-311. doi: 10.1016/j.lwt. 2014.03.011

Bragantini, C., & Eifert, E. C. (2013). Secagem e beneficiamento. In C. M. Santiago, H. C. de P. Breseghello, & C. M. Ferreira (Eds.), Arroz (2a ed., pp. 227-236). Brasília: EMBRAPA.

Canan, C., Cruz, F. T. L., Delaroza, F., Casagrande, R., Sarmento, C. P. M., Shimokomaki, M., & Ida, E. I. (2011). Studies on the extraction and purification of phytic acid from rice bran. Journal of Food Composition and Analysis, 24(7), 1057-1063. doi: 10.1016/j.jfca.2010.12.014

Castro, A. P., Castro, E. M., & Morais, O. P. (2013). Cultivares. In C. M. Santiago, H. C. de P. Breseghello, & C. M. Ferreira (Eds.), Arroz (2a ed., pp. 75-88). Brasília: EMBRAPA.

Cheryan, M. (1980). Phytic acid interactions in food systems. Critical Reviews in Food Science and Nutrition, 13(4), 297-335.

Choi, Y. S., Choi, J. H., Han, D. J., Kim, H. Y., Lee, M. A., Kim, H. W.,… Kim, C. J. (2011). Effects of rice bran fiber on heat-induced gel prepared with pork salt-soluble meat proteins in model system. Meat Science, 88(1), 59-66. doi: 10.1016/j.meatsci.2010.12.003

Companhia Nacional de Abastecimento (2015). A cultura do arroz. Recuperado de https://www.conab. gov.br/outras-publicacoes/item/download/2523_efd93e81ea2d9ae8f0302a6d4f9 ce fc6

Companhia Nacional de Abastecimento (2020). Acompanhamento da Safra Brasileira de Grãos. 5° levantamento. Recuperado de https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos

Demirci, T., Akta?, K., Sözeri, D., Öztürk, H. ?., & Ak?n, N. (2017). Rice bran improve probiotic viability in yoghurt and provide added antioxidative benefits. Journal of Functional Foods, 36, 396-403. doi: 10. 1016/j.jff.2017.07.019

Empresa Brasileira de Pesquisa Agropecuária (2015). EMBRAPA apresenta tecnologias na abertura da colheita do arroz. Recuperado de https://www.embrapa.br/busca-de-noticias/-/noticia/2472889/ embrapa-apresenta-tecnologias-na-abertura-da-colheita-do-arroz

Fan, D., Ma, W., Wang, L., Huang, J., Zhao, J., Zhang, H., & Chen, W. (2012). Determination of structural changes in microwaved rice starch using Fourier transform infrared and Raman spectroscopy. Starch/Staerke, 64(8), 598-606. doi: 10.1002/star.201100200

Favaro, L., Cagnin, L., Basaglia, M., Pizzocchero, V., van Zyl, W. H., & Casella, S. (2017). Production of bioethanol from multiple waste streams of rice milling. Bioresource Technology, 244, 151-159. doi: 10.1016/j.biortech.2017.07.108

Fuster, J. M., Cortés, P. S, Bestard, J. P., & Freixedas, F., G. (2017). Plant phosphates, phytate and pathological calcifications in chronic kidney disease. Nefrologia, 37(1), 20-28. doi: 10. 1016/j.nefroe.2017.01.018

Gomes, T. R., Carvalho, L. E., Freitas, E. R., Nepomuceno, R. C., Ellery, E. A. C., & Rufino, R. H. M. (2012). Effect of inclusion of rice bran in diets for piglets from 21 to 42 days of age. Archivos de Zootecnia, 61(233), 1-10. doi: 10.4321/S0004-05922012000100014

Huang, Y. P., & Lai, H. M. (2016). Bioactive compounds and antioxidative activity of colored rice bran. Journal of Food and Drug Analysis, 24(3), 564-574. doi: 10.1016/j.jfda.2016.01.004

Instituto Adolfo Lutz (2005). Métodos físico-químicos para alimentos (4a ed.). São Paulo: IAL.

Kaminski, T. A., Brackmann, A., Silva, L. P. da, Bender, A. B. B., & Speroni, C. S. (2013). Composição química e alterações estruturais do arroz irrigado durante o armazenamento. Semina: Ciências Agrárias, 34(3), 1167-1184. doi: 10.5433/1679-0359.2013v34n3p1167

Kim, S. M., Rico, C. W., Lee, S. C., & Kang, M. Y. (2010). Modulatory effect of rice bran and phytic acid on glucose metabolism in high fat-fed C57BL/6N mice. Journal of Clinical Biochemistry and Nutrition, 42(1), 12-17. doi: 10.3164/jcbn.09-124

Liu, C., Yang, X., Wu, W., Long, Z., Xiao, H., Luo, F.,… Lin, Q. (2017a). Elaboration of curcumin-loaded rice bran albumin nanoparticles formulation with increased in vitro bioactivity and in vivo bioavailability. Food Hydrocolloids, 77, 834-842. doi: 10.1016/j.foodhyd.2017.11.027

Liu, K. L., Zheng, J. B., & Chen, F. S. (2017b). Relationships between degree of milling and loss of Vitamin B, minerals, and change in amino acid composition of brown rice. LWT - Food Science and Technology, 82, 429-436. doi: 10.1016/j.lwt.2017.04.067

Liu, Z. H., Cheng, F. M., Cheng, W. D., & Zhang, G. P. (2005). Positional variations in phytic acid and protein content within a panicle of japonica rice. Journal of Cereal Science, 41(3), 297-303. doi: 10. 1016/j.jcs.2004.09.010

Martinez, A. P. C., Martinez, P. C. C., Souza, M. C., & Brazaca, S. G. C. (2011). Chemical change in soybean grains with germination. Ciência e Tecnologia de Alimentos, 31(1), 23-30. doi: 10.1590/ S0101-20612011000100004

Masunaga, T., Murao, N., Tateishi, H., Koga, R., Ohsugi, T., Otsuka, M., & Fujita, M. (2019). Anti-cancer activity of the cell membrane-permeable phytic acid prodrug. Bioorganic Chemistry, 92, 103240. doi: 10.1016/j.bioorg.2019.103240

Michel, R. J. S., Jr., Canabarro, N. I., Alesio, C., Maleski, T., Laber, T., Sfalcin, P.,… Mazutti, M. A. (2016). Enzymatic saccharification and fermentation of rice processing residue for ethanol production at constant temperature. Biosystems Engineering, 142, 110-116. doi: 10.1016/j.biosystemseng.2015.12. 013

Moongngarm, A., Daomukda, N., & Khumpika, S. (2012). Chemical compositions, phytochemicals, and antioxidant capacity of rice bran, rice bran layer, and rice germ. APCBEE Procedia, 2, 73-79. doi: 10.1016/j.apcbee.2012.06.014

Moro, J. D., Rosa, C. S., & Hoelzel, S. C. S. M. (2004). Composição centesimal e ação antioxidante do farelo de arroz e seus benefícios à saúde. Revista Disciplinarum Scientia, Série: Ciência da Saúde, 4(1), 33-44.

Paraginski, R. T., Ziegler, V., Talhamento, A., Elias, M. C., & Oliveira, M. (2014). Technological properties and cooking of rice grains conditioned at different. Brazilian Journal of Food Technology, 17(2), 146-153. doi: 10.1590/bjft.2014.021

Qi, J., Yokoyama, W., Masamba, K. G., Majeed, H., Zhong, F., & Li, Y. (2015). Structural and physico-chemical properties of insoluble rice bran fiber: effect of acid-base induced modifications. RSC Advances, 5(97), 79915-79923. doi: 10.1039/c5ra15408a

Rafe, A., & Sadeghian, A. (2017). Stabilization of Tarom and Domesiah cultivars rice bran: physicochemical, functional and nutritional properties. Journal of Cereal Science, 74, 64-71. doi: 10. 1016/j.jcs.2017.01.019

Rubens, P., & Heremans, K. (2000). Stability diagram of rice starch as determined with FTIR. High Pressure Research, 19(1-6), 161-166. doi: 10.1080/08957950008202550

Saw, N. K., Chow, K., Rao, P. N., & Kavanagh, J. P. (2007). Effects of inositol hexaphosphate (phytate) on calcium binding, calcium oxalate crystallization and in vitro stone growth. Journal of Urology, 177(6), 2366-2370. doi: 10.1016/j.juro.2007.01.113

Scremin, F. R., Veiga, R. S., Silva-Buzanello, R. A., Becker-Algeri, T. A., Corso, M. P., Torquato, A. S.,… Canan, C. (2017). Synthesis and characterization of protein microcapsules for eugenol storage. Journal of Thermal Analysis and Calorimetry, 131, 653-660. doi: 10.1007/s10973-017-6302-8

Silva, E. O., & Bracarense, A. P. F. R. L. (2016). Phytic acid: from antinutritional to multiple protection factor of organic systems. Journal of Food Science, 81(6), R1357-R1362. doi: 10.1111/1750-3841. 13320

Silva, O. F. (2019a). Estatísticas de produção: arroz. Recuperado de http://www.agencia.cnptia.embrapa. br/gestor/arroz/arvore/CONT000fe7457q102wx5eo07qw4xezy8czjj.html

Silva, O. F. (2019b). Sócioeconomia: arroz e feijão. Recuperado de http://www.agencia.cnptia.embrapa.br/ gestor/arroz/arvore/CONT000fe7457q102wx5eo07qw4xezy8czjj.html

Silva, R. F., Ascheri, J. L. R., & Pereira, R. G. F. A. (2007). Composição centesimal e perfil de aminoácidos de arroz e pó de café. Alimentos e Nutrição, 18(1), 325-330.

Smanalieva, J., Salieva, K., Borkoev, B., Windhab, E. J., & Fischer, P. (2015). Investigation of changes in chemical composition and rheological properties of Kyrgyz rice cultivars (Ozgon rice) depending on long-termstack-storage after harvesting. LWT - Food Science and Technology, 63(1), 626-632. doi: 10. 1016/j.lwt.2015.03.045

Sociedade Nacional de Agricultura (2017). Qualidade do arroz brasileiro é diferencial para exportações. Recuperado de http://sna.agr.br/qualidade-do-arroz-brasileiro-e-diferencial-para-exportacoes/

Souza, A. M., Pereira, R. A, Yokoo, E. M., Levy, R. B., & Sichieri, R. (2013). Alimentos mais consumidos no Brasil: Inquérito Nacional de Alimentação 2008-2009. Revista de Saúde Pública, 47(Supl. 1), 190-199. doi: 10.1590/S0034-89102013000700005

Streck, N. A., Bosco, L. C., Michelon, S., Walter, L. C., & Marcolin, E. (2006). Duração do ciclo de desenvolvimento de cultivares de arroz em função da emissão de folhas no colmo principal. Ciência Rural, 36(4), 1086-1093. doi: 10.1590/S0103-84782006000400007

Tran, U. T., Okadome, H., Murata, M., Homma, S., & Ohtsubo, K. (2001). Comparison of vietnamese and japanese rice cultivars in terms of physicochemical properties. Food Science and Technology Research, 7(4), 323-330. doi: 10.3136/fstr.7.323

Walter, M., Marchezan, E., & Avila, L. A. D. (2008). Rice: composition and nutritional characteristics. Ciência Rural, 38(4), 1184-1192. doi: 10.1590/s0103-84782008000400049

Ying, D. Y., Hlaing, M. M., Lerisson, J., Pitts, K., Cheng, L., Sanguansri, L., & Augustin, M. A. (2017). Physical properties and FTIR analysis of rice-oat flour and maize-oat flour based extruded food products containing olive pomace. Food Research International, 100, 665-673. doi: 10.1016/j. foodres.2017.07.062

Zanão, C. F. P., Canniatti-Brazaca, S. G., Sarmento, S. B. S., & Arthur, V. (2009). Efeito da irradiação gama nas características físico-químicas e sensoriais do arroz (Oryza sativa L.) e no desenvolvimento de Sitophilus oryzae L. Ciência e Tecnologia de Alimentos, 29(1), 46-55. doi: 10.1590/S0101-2061200 9000100008

Zhou, Q., Zhao, Y., Dang, H., Tang, Y., & Zhang, B. (2019). Antibacterial effects of phytic acid against foodborne pathogens and investigation of its mode of action. Journal of Food Protection, 82(5), 826-833. doi: 10.4315/0362-028X.JFP-18-418

Zhou, Y., Ding, C., Qian, X., & An, X. (2015). Further improvement of flame retardancy of polyaniline-deposited paper composite through using phytic acid as dopant or co-dopant. Carbohydrate Polymers, 115, 670-676. doi: 10.1016/j.carbpol.2014.09.025




DOI: http://dx.doi.org/10.5433/1679-0359.2020v41n6Supl2p3081

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional