Optimisation of the extraction process of antioxidant capacity compounds from beet (Beta vulgaris L.) stalk
Abstract
Keywords
Full Text:
PDFReferences
Ahmadian-Kouchaksaraie, Z., & Niazmand, R. (2017). Supercritical carbon dioxide extraction of antioxidants from Crocus sativus petals of saffron industry residues: optimization using response surface methodology. The Journal of Supercritical Fluids, 121, 19-31. doi: 10.1016/j.supflu.2016. 11.008
Ainsworth, E., & Gillespie, K. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin Ciocalteu reagent. Nature Protocols, 2(4), 875-877. doi: 10.1038/nprot.2007. 102
Albuquerque, B. R., Prieto, M. A., Barreiro, M. F., Rodrigues, A., Curran, T. P., Barros, L., & Ferreira, I. C. F. R. (2017). Catechin-based extract optimization obtained from Arbutus unedo L. fruits using maceration/microwave/ultrasound extraction techniques. Industrial Crops and Products, 95, 404-415. doi: 10.1016/j.indcrop.2016.10.050
Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D. G., & Lightfoot, D. A. (2017). Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants, 42(6), 1-23. doi: 10.3390/plants6040042
Ameer, K., Bae, S. W., Jo, Y., Lee, H. G., Ameer, A., & Kwon, J. H. (2017). Optimization of microwave-assisted extraction of total extract, stevioside and rebaudioside-A from Stevia rebaudiana (Bertoni) leaves, using response surface methodology (RSM) and artificial neural network (ANN) modelling. Food Chemistry, 229, 198-207. doi: 10.1016/j.foodchem.2017.01.121
Backes, E., Pereira, C., Barros, L., Prieto, M. A., Genena, A. Z., Barreiro, M. F., & Ferreira, I. C. R. F. (2018). Recovery of bioactive anthocyanin pigments from Ficus carica L. peel by heat, microwave, and ultrasound based extraction techniques. Food Research International, 133, 197-209. doi: 10.1016/j. foodres.2018.07.016
Biondo, P. B. F., Boeing, J. S., Bariza?o, E. O., Souza, N. E., Matsushita, M., Oliveira, C. C.,... Visentaine, J. V. (2014). Evaluation of beetroot (Beta vulgaris L.) leaves during its developmental stages: a chemical composition study. Food Science and Technology, 34(1), 94-101. doi: 10.1590/S0101-20612014 005000007
Caetano, A. C. S., Araújo, C. R., Lima, V. L. A. G., Maciel, M. I. S., & Melo, E. A. (2011). Evaluation of antioxidant activity of agro-industrial waste of acerola (Malpighia emarginata D.C.) fruit extracts. Ciência e Tecnologia de Alimentos, 31(3), 769-775. doi: 10.1590/S0101-20612011000300034
Castrica, M., Rebucci, R., Giromini, C., Tretola, M., Cattaneo, D., & Baldi, A. (2019). Total phenolic content and antioxidant capacity of agri-food waste and by-products. Italian Journal of Animal Science, 18(1), 336-341. doi: 10.1080/1828051X.2018.1529544
Costa, A. P. D., Hermes, V. S., Rios, A. O., & Flôres, S. H. (2017). Minimally processed beetroot waste as an alternative source to obtain functional ingredients. Journal of Food Science and Technology, 54(7), 2050-2058. doi: 10.1007/s13197-017-2642-4
Gullón, B., Gullón, P., Eibes, G., Cara, C., Torres, A., Lo?pez-Linares, J. C.,… Castro, E. (2018). Valorization of olive agro-industrial by-products as a source of bioactive compounds. Science of the Total Environment, 645, 533-542. doi: 10.1016/j.scitotenv.2018.07.155
Ilaiyaraja, N., Likhith, K. R., Babu, G. R. S., & Khanum, F. (2015). Optimization of extraction of bioactive compounds from Feronia limonia (wood apple) fruit using response surface methodology (RSM). Food Chemistry, 173, 348-354. doi: 10.1016/j.foodchem.2014.10.035
Kumar, V., Kushwaha, R., Goyal, A., Tanwar, B., & Kaur, J. (2018). Process optimization for the preparation of antioxidant rich ginger candy using beetroot pomace extract. Food Chemistry, 245, 168-177. doi: 10.1016/j.foodchem.2017.10.089
Lemes, A. C., Álvares, G. T., Egea, M. B., Brandelli, A., & Kalil, S. J. (2016). Simultaneous production of proteases and antioxidant compounds from agro-industrial by-products. Bioresource Technology, 222, 210-216. doi: 10.1016/j.biortech.2016.10.001
Mensor, L. L., Menezes, F. S., Leitão, G. G., Reis, A. S., Santos, T. C., Coube, C. S., & Leitão, S. G. (2001). Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytotherapy Research, 15(2), 127-130. doi: 10.1002/ptr.687
Munir, A., Sultana, B., Bashir, A., Ghaffar, A., Munir, B., Shar, G. A.,... Iqbal, M. (2018). Evaluation of antioxidant potential of vegetables waste. Polish Journal of Environmental Studies, 27(2), 947-952. doi: 10.15244/pjoes/69944
Nistor, O. V., Seremet, L., Andronoiu, D. G., Rudi, L., & Botez, E. (2017). Influence of different drying methods on the physicochemical properties of red beetroot (Beta vulgaris L. var. Cylindra). Food Chemistry, 236, 59-67. doi: 10.1016/j.foodchem.2017.04.129
Re, R., Pellegrini, N., Proteggente, A., Pannala, M. Y., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26(9), 1231-1237. doi: 10.1016/s0891-5849(98)00315-3
Soares, M., Welter, L., Gonzaga, L., Lima, A., Mancini, J., Fº., & Fett, R. (2008). Avaliação da atividade antioxidante e identificac?a?o dos a?cidos feno?licos presentes no bagac?o de mac?a? cv. Gala. Cie?ncia e Tecnologia de Alimentos, 28(3), 727-732. doi: 10.1590/S0101-20612008000300032
Tran, T. N., Athanassiou, A., Basit, A., & Bayer, I. S. (2017). Starch-based bio-elastomers functionalized with red beetroot natural antioxidant. Food Chemistry, 216, 324-333. doi: 10.1016/j.foodchem.2016. 08.055
Vodnar, D. C., Calinoiu, L. F., Dulf, F. V., Stefãnescu, B. E., Crisan, G., & Socaciu, C. (2017). Identification of the bioactive compounds and antioxidant, antimutagenic and antimicrobial activities of thermally processed agro-industrial waste. Food Chemistry, 231, 131-140. doi: 10.1016/j.foodchem.2017.03.131
DOI: http://dx.doi.org/10.5433/1679-0359.2020v41n6p2621
Londrina - PR
E-mail: semina.agrarias@uel.br
