Optimisation of the extraction process of antioxidant capacity compounds from beet (Beta vulgaris L.) stalk

Emanueli Backes, Aziza Kamal Genena

Abstract


Beet is a traditional root consumed worldwide and is considered a potential source of several bioactive compounds, yet during production and commercialisation activities, its leaves and stalks are discarded. The beet residue has notable quantities of diverse phenolic compounds that are not taken advantage of it. The beet stalks (sample) were obtained from a local producer at the municipality of Marechal Cândido Rondon, Paraná state, Brazil. The optimisation of the extraction process of antioxidant capacity compounds from beet stalk was done by response surface methodology (RSM), with three independent variables (time, from 5 to 85 min; temperature, from 20 to 80 °C and solvent, from 0 to 100% of ethanol/water ratio). Extracts were evaluated for their reducing capacity, measured by the Folin–Ciocalteu method, and antioxidant capacity by the ability to scavenge DPPH and ABTS free radicals. The optimal global extraction conditions determined were 5 min, 80 °C and 50% ethanol, yielding 13.157 mg gallic acid equivalents (GAE) g–1, 21.539 mol Trolox equivalents g-1 (TE; DPPH) and 250.190 ?mol TE g–1 (ABTS). Beet stalk demonstrated to be an alternative and rich source of recovering of natural antioxidant compounds, showing higher contents when compared to other agro-industrial residues.

Keywords


ABTS method; DPPH method; Natural antioxidant; Response surface methodology; Reducing capacity.

Full Text:

PDF

References


Ahmadian-Kouchaksaraie, Z., & Niazmand, R. (2017). Supercritical carbon dioxide extraction of antioxidants from Crocus sativus petals of saffron industry residues: optimization using response surface methodology. The Journal of Supercritical Fluids, 121, 19-31. doi: 10.1016/j.supflu.2016. 11.008

Ainsworth, E., & Gillespie, K. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin Ciocalteu reagent. Nature Protocols, 2(4), 875-877. doi: 10.1038/nprot.2007. 102

Albuquerque, B. R., Prieto, M. A., Barreiro, M. F., Rodrigues, A., Curran, T. P., Barros, L., & Ferreira, I. C. F. R. (2017). Catechin-based extract optimization obtained from Arbutus unedo L. fruits using maceration/microwave/ultrasound extraction techniques. Industrial Crops and Products, 95, 404-415. doi: 10.1016/j.indcrop.2016.10.050

Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D. G., & Lightfoot, D. A. (2017). Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants, 42(6), 1-23. doi: 10.3390/plants6040042

Ameer, K., Bae, S. W., Jo, Y., Lee, H. G., Ameer, A., & Kwon, J. H. (2017). Optimization of microwave-assisted extraction of total extract, stevioside and rebaudioside-A from Stevia rebaudiana (Bertoni) leaves, using response surface methodology (RSM) and artificial neural network (ANN) modelling. Food Chemistry, 229, 198-207. doi: 10.1016/j.foodchem.2017.01.121

Backes, E., Pereira, C., Barros, L., Prieto, M. A., Genena, A. Z., Barreiro, M. F., & Ferreira, I. C. R. F. (2018). Recovery of bioactive anthocyanin pigments from Ficus carica L. peel by heat, microwave, and ultrasound based extraction techniques. Food Research International, 133, 197-209. doi: 10.1016/j. foodres.2018.07.016

Biondo, P. B. F., Boeing, J. S., Bariza?o, E. O., Souza, N. E., Matsushita, M., Oliveira, C. C.,... Visentaine, J. V. (2014). Evaluation of beetroot (Beta vulgaris L.) leaves during its developmental stages: a chemical composition study. Food Science and Technology, 34(1), 94-101. doi: 10.1590/S0101-20612014 005000007

Caetano, A. C. S., Araújo, C. R., Lima, V. L. A. G., Maciel, M. I. S., & Melo, E. A. (2011). Evaluation of antioxidant activity of agro-industrial waste of acerola (Malpighia emarginata D.C.) fruit extracts. Ciência e Tecnologia de Alimentos, 31(3), 769-775. doi: 10.1590/S0101-20612011000300034

Castrica, M., Rebucci, R., Giromini, C., Tretola, M., Cattaneo, D., & Baldi, A. (2019). Total phenolic content and antioxidant capacity of agri-food waste and by-products. Italian Journal of Animal Science, 18(1), 336-341. doi: 10.1080/1828051X.2018.1529544

Costa, A. P. D., Hermes, V. S., Rios, A. O., & Flôres, S. H. (2017). Minimally processed beetroot waste as an alternative source to obtain functional ingredients. Journal of Food Science and Technology, 54(7), 2050-2058. doi: 10.1007/s13197-017-2642-4

Gullón, B., Gullón, P., Eibes, G., Cara, C., Torres, A., Lo?pez-Linares, J. C.,… Castro, E. (2018). Valorization of olive agro-industrial by-products as a source of bioactive compounds. Science of the Total Environment, 645, 533-542. doi: 10.1016/j.scitotenv.2018.07.155

Ilaiyaraja, N., Likhith, K. R., Babu, G. R. S., & Khanum, F. (2015). Optimization of extraction of bioactive compounds from Feronia limonia (wood apple) fruit using response surface methodology (RSM). Food Chemistry, 173, 348-354. doi: 10.1016/j.foodchem.2014.10.035

Kumar, V., Kushwaha, R., Goyal, A., Tanwar, B., & Kaur, J. (2018). Process optimization for the preparation of antioxidant rich ginger candy using beetroot pomace extract. Food Chemistry, 245, 168-177. doi: 10.1016/j.foodchem.2017.10.089

Lemes, A. C., Álvares, G. T., Egea, M. B., Brandelli, A., & Kalil, S. J. (2016). Simultaneous production of proteases and antioxidant compounds from agro-industrial by-products. Bioresource Technology, 222, 210-216. doi: 10.1016/j.biortech.2016.10.001

Mensor, L. L., Menezes, F. S., Leitão, G. G., Reis, A. S., Santos, T. C., Coube, C. S., & Leitão, S. G. (2001). Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytotherapy Research, 15(2), 127-130. doi: 10.1002/ptr.687

Munir, A., Sultana, B., Bashir, A., Ghaffar, A., Munir, B., Shar, G. A.,... Iqbal, M. (2018). Evaluation of antioxidant potential of vegetables waste. Polish Journal of Environmental Studies, 27(2), 947-952. doi: 10.15244/pjoes/69944

Nistor, O. V., Seremet, L., Andronoiu, D. G., Rudi, L., & Botez, E. (2017). Influence of different drying methods on the physicochemical properties of red beetroot (Beta vulgaris L. var. Cylindra). Food Chemistry, 236, 59-67. doi: 10.1016/j.foodchem.2017.04.129

Re, R., Pellegrini, N., Proteggente, A., Pannala, M. Y., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26(9), 1231-1237. doi: 10.1016/s0891-5849(98)00315-3

Soares, M., Welter, L., Gonzaga, L., Lima, A., Mancini, J., Fº., & Fett, R. (2008). Avaliação da atividade antioxidante e identificac?a?o dos a?cidos feno?licos presentes no bagac?o de mac?a? cv. Gala. Cie?ncia e Tecnologia de Alimentos, 28(3), 727-732. doi: 10.1590/S0101-20612008000300032

Tran, T. N., Athanassiou, A., Basit, A., & Bayer, I. S. (2017). Starch-based bio-elastomers functionalized with red beetroot natural antioxidant. Food Chemistry, 216, 324-333. doi: 10.1016/j.foodchem.2016. 08.055

Vodnar, D. C., Calinoiu, L. F., Dulf, F. V., Stefãnescu, B. E., Crisan, G., & Socaciu, C. (2017). Identification of the bioactive compounds and antioxidant, antimutagenic and antimicrobial activities of thermally processed agro-industrial waste. Food Chemistry, 231, 131-140. doi: 10.1016/j.foodchem.2017.03.131




DOI: http://dx.doi.org/10.5433/1679-0359.2020v41n6p2621

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional