Growth of canola hybrids resistant and sensitive to herbicides

Miria Rosa Durigon, Joanei Cechin, Franciele Mariani, Gerarda Beatriz Pinto da Silva, Leandro Vargas, Geraldo Chavarria

Abstract


Plant growth analysis is useful for determining adequate management practices and exploring the maximum yield potential of cultivars or hybrids. Canola hybrids with resistance to herbicides have been studied and registered for Brazilian conditions, as they improve weed management in canola crops. This study evaluated the growth of canola hybrids resistant to triazine or imidazolinone herbicides compared to a sensitive hybrid. The experiment was conducted using a completely randomized design, with four replications, in a bifactorial scheme using three hybrids and six sampling times. The canola hybrids used were Hyola 571CL (resistant to imidazolinones), Hyola 555TT (resistant to triazines), and Hyola 61 (sensitive to both herbicides). Height, leaf area, and dry matter of roots, leaves, stems, and shoots of the plants were evaluated at 14, 28, 42, 56, 70, and 119 days after emergence (DAE). The physiological indices absolute growth rate, leaf area ratio, specific leaf area, and net assimilation rate were calculated, and yield indices evaluated. Compared to Hyola 61, the Hyola 555TT hybrid showed lower values of leaf dry matter at 70 DAE, absolute growth rate up to 56 DAE, and net assimilation rate at 14 and 28 DAE, and a higher leaf area ratio at 56 DAE, whereas the hybrid Hyola 571CL presented lower leaf area and lower leaf dry matter at 70 DAE. At flowering, compared to Hyola 61, the hybrid Hyola 571CL presents lower leaf area, and the hybrids Hyola 555TT and Hyola 571CL have lower leaf dry matter accumulation. Differences in the growth of canola hybrids Hyola 555TT, Hyola 571CL and Hyola 61 do not cause differences in their grain yield.

Keywords


Brassica napus L.; Dry matter; Growth rate; Leaf area; Yield indices.

Full Text:

PDF

References


Agostinetto, D., Fontana, L. C., Vargas, L., Markus, C., & Oliveira, E. (2013). Habilidade competitiva relativa de milhã em convivência com arroz irrigado e soja. Pesquisa Agropecuária Brasileira, 48(10), 1315-1322. doi: 10.1590/S0100-204X2013001000002

Benincasa, M. M. P. (2003). Análise de crescimento de plantas: noções básicas. Jaboticabal: FUNEP.

Brandler, D. (2019). Interferência e nível de dano econômico de plantas daninhas na cultura da canola. Dissertação de mestrado, Universidade Federal da Fronteira Sul, Erechim, RS, Brasil.

Carvalho, S. J. P., Moreira, M. S., Nicolai, M., Lopez-Ovejero, R. F., Christoffoleti, P. J., & Medeiros, D. (2005). Crescimento e desenvolvimento da planta daninha capim-camalote. Bragantia, 64(4), 591-600. doi: 10.1590/S0006-87052005000400009

Cechin, J., Vargas, L., Agostinetto, D., Zimmer, V., Pertile, M., & Dal Magro, T. (2017). Fitness costs of susceptible and resistant radish biotypes to ALS-inhibitor herbicides. Comunicata Scientiae, 8(2), 281-286. doi: 10.14295/cs.v8i2.1877

Companhia Nacional de Abastecimento (2018). Acompanhamento da safra brasileira de grãos - safra 2017/18. Brasília: CONAB. Recuperado de http://www.conab.gov.br

Cruz, S. J. S. (2013). Características morfofisiológicas de plantas e produtividade de milho. Tese de doutorado, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, Botucatu, SP, Brasil.

Darmency, H. (2013). Pleiotropic effects of herbicide-resistance genes on crop yield: a review. Pest Management Science, 69(8), 897-904. doi: 10.1002/ps.3522

Délye, C., Jasieniuk, M., & Le Corre, V. (2013). Deciphering the evolution of herbicide resistance in weeds. Trends in Genetics, 29(11), 649-658. doi: 10.1016/j.tig.2013.06.001

Duke, S. O. (2015). Perspectives on transgenic, herbicide-resistant crops in the United States almost 20 years after introduction. Pest Management Science, 71(5), 652-657. doi: 10.1002/ps.3863

Durigon, M. R., Mariani, F., Santos, F. M., Vargas, L., & Chavarria, G. (2018). Properties of the enzyme acetolactate synthase in herbicide resistant canola. Bragantia, 77(3), 485-492. doi: 10.1590/1678-4499. 2017159

Durigon, M. R., Vargas, L., Chavarria, G., & Tomm, G. O. (2016). Indicações de uso e boas práticas de manejo da tecnologia Clearfield® em canola para as regiões Sul e Centro-Oeste. Revista Plantio Direto, 152(2), 22-30.

Edwards, L., & Hertel, K. (2011). Canola growth and development. Retrieved from http://www.dpi.nsw.gov. au/aboutus/

Frenkel, E., Matzrafi, M., Rubin, B., & Peleg, Z. (2017). Effects of environmental conditions on the fitness penalty in herbicide resistant Brachypodium hybridum. Frontiers in Plant Science, 8(94), 1-10. doi: 10. 3389/fpls.2017.00094

Friesen, L. J. S., & Powles, S. B. (2007). Physiological and molecular characterization of atrazine resistance in a wild radish (Raphanus raphanistrum) population. Weed Technology, 21(4), 910-914. doi: 10.1614/ WT-07-008.1

Krüger, C. A. M. B., Silva, J. A. G., Medeiros, S. L. P., Dalmago, G. A., Sartori, C. O., & Schiavo, J. (2011). Arranjo de plantas na expressão dos componentes da produtividade de grãos de canola. Pesquisa Agropecuária Brasileira, 46(11), 1448-1453. doi: 10.1590/S0100-204X2011001100005

Londo, J. P., Bollman, M. A., Sagers, C. L., Lee, E. H., & Watrud, L. S. (2011). Changes in fitness-associated traits due to the stacking of transgenic glyphosate resistance and insect resistance in Brassica napus L. Heredity, 107(4), 328-337. doi: 10.1038/hdy.2011.19

Majerowicz, N. (2013). Fotossíntese. In G. B. Kerbauy (Ed.), Fisiologia vegetal (2a ed., pp. 82-133). Rio de Janeiro: Guanabara Koogan.

Massinga, R. A., Al-Khatib, K., St. Amand, P., & Miller, J. F. (2005). Relative fitness of imazamox-resistant common sunflower and prairie sunflower. Weed Science, 53(2), 166-174. doi: 10.1614/WS-03-152R1

McCourt, J. A., Pang, S. S., King-Scott, J., Guddat, L. W., & Duggleby, R. G. (2006). Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase. Proceedings of the National Academy of Sciences, 103(3), 569-573. doi: 10.1073/pnas.0508701103

Ministério da Agricultura, Pecuária e Abastecimento (2018). Cultivarweb: gerenciamento de informação. Recuperado de http://sistemas.agricultura.gov.br/snpc/cultivarweb/cultivares_registradas.php

Oliveira, L. M., Paiva, R., Alvarenga, A. A., & Nogueira R. C. (2006). Análise do crescimento. In R. Paiva, & L. M. Oliveira (Eds.), Fisiologia e produção vegetal (pp. 93-104). Lavras: UFLA.

Pozniak, C. J., Holm, F. A., & Hucl, R. J. (2004). Field performance of imazamox resistant spring wheat. Canadian Journal of Plant Science, 84(4), 1205-1211. doi: 10.4141/P03-165

Purrington, C. B. (2000). Costs of resistance. Current Opinion in Plant Biology, 3(4), 305-308. doi: 10.1016/ s1369-5266(00)00085-6

Radosevich, S. R., Holt, J., & Ghersa, C. (2007). Ecology of weeds and invasive plants: relationship to agriculture and natural resource management (3rd ed.). Hoboken: Wiley-Interscience.

Silva, A. C., Ferreira, L. R., Silva, A. A., & Ferreira, F. A. (2005). Análise de crescimento de Brachiaria brizantha submetida a doses reduzidas de fluazifop-p-butil. Planta Daninha, 23(1), 85-91. doi: 10.1590/ S0100-83582005000100011

Silva, L. C., Belterão, N. E. M., & Amorim, M. S., Neto. (2000). Análise do crescimento de comunidades vegetais. (Circular Técnica, 34). Campina Grande: EMBRAPA-CNPA.

Systat Software Inc. (2008). Sigmaplot for Windows. Version 11. Retrieved from https://systatsoftware.com/ products/sigmaplot/

Taiz, L., & Zeiger, E. (2017). Fisiologia vegetal (6a ed.). Porto Alegre: Artmed.

Tan, S., Evans, R. R., Dahmer, M. L., Singh, B. K., & Shaner, D. L. (2005). Imidazolinone-tolerant crops: history, current status and future. Pest Management Science, 61(3), 246-257. doi: 10.1002/ps.993

Tardif, F. J., Rajcan, I., & Costea, M. (2006). A mutation in the herbicide target site acetohydroxyacid synthase produces morphological and structural alterations and reduces fitness in Amaranthus powellii. New Phytologist, 169(2), 251-264. doi: 10.1111/j.1469-8137.2005.01596.x

Tomm, G. O., Ferreira, P. E. P., & Vieira, V. M. (2014). Canola: híbridos avaliados em rede coordenada pela EMBRAPA. Passo Fundo: EMBRAPA Trigo. (1 Folder).

Tranel, P. J., & Horvath, D. P. (2009). Molecular biology and genomics: new tools for weed science. BioScience, 59(3), 207-215. doi: 10.1525/bio.2009.59.3.5

Tranel, P. J., & Wright, T. R. (2002). Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Science, 50(6), 700-712. doi: 10.1614/0043-1745(2002)050[0700:RROWTA]2.0.CO;2

Vargas, L., & Roman, E. S. (2006). Resistência de plantas daninhas a herbicidas: conceitos, origem e evolução. (Documentos Online, 58). Passo Fundo: EMBRAPA Trigo. Recuperado de http://www.cnpt. embrapa. br/biblio/ do/p_do58.htm

Vargas, L., Tomm, G. O., Ruchel, Q., & Kaspary, T. E. (2011). Seletividade de herbicidas para a canola PFB-2. (Documentos Online, 130). Passo Fundo: EMBRAPA Trigo. Recuperado de http://www.cnpt. embrapa.br/biblio/do/p_do130.pdf

Vila-Aiub, M. M., Gundel, P. E., & Preston, C. (2015). Experimental methods for estimation of plant fitness costs associated with herbicide-resistance genes. Weed Science, 63(Suppl. 1), 203-216. doi: 10.1614/ WS-D-14-00062.1

Vila-Aiub, M. M., Neve, P., & Powles, S. B. (2009). Fitness costs associated with evolved herbicide resistance alleles in plants. New Phytologist, 184(4), 751-767. doi: 10.1111/j.1469-8137.2009.03055.x

Wei, D., Liping, C., Zhijun, M., Guangwei, W., & Ruirui, Z. (2010). Review of non-chemical weed management for green agriculture. International Journal of Agricultural and Biological Engineering, 3(4), 52-60. doi: 10.3965/j.issn.1934-6344.2010.04.052-060

Yu, Q., Han, H., Vila-Aiub, M. M., & Powles, S. B. (2010). AHAS herbicide resistance endowing mutations: effect on AHAS functionality and plant growth. Journal of Experimental Botany, 61(14), 3925-3934. doi: 10.1093/jxb/erq205

Yu, Q., & Powles, S. B. (2014). Resistance to AHAS inhibitor herbicides: current understanding. Pest Management Science, 70(9), 1340-1350. doi: 10.1002/ps.3710




DOI: http://dx.doi.org/10.5433/1679-0359.2020v41n6Supl2p2911

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional