Fungal cellulases: production by solid-state cultivation in packed-bed bioreactor using solid agro-industrial by-products as substrates and application for hydrolysis of sugarcane bagasse

Priscila Aparecida Casciatori Frassatto, Fernanda Perpétua Casciatori, João Cláudio Thoméo, Eleni Gomes, Maurício Boscolo, Roberto da Silva


Cellulases are essential for the hydrolysis of lignocellulosic materials in the production of second generation ethanol. Solid-state cultivation is a process that provides high concentrations of enzymes that can be used in this hydrolysis. The objectives of this work were to produce cellulases by cultivating the fungus Myceliophthora thermophila I-1D3b in a packed bed bioreactor with sugarcane bagasse (SCB) and wheat bran (WB) as substrate and to evaluate the efficiency of the enzymatic extract in the hydrolysis of SCB in natura (BIN) and pretreated with ozone, alkali and ultrasound (BOU). The conditions for enzyme production in the bioreactor were SCB:WB at a ratio of 2.3:1 (w/w), 75 % moisture content; 45 ºC; aeration rate 240 L h-1 and 96 h. The enzyme production was evaluated by endoglucanase, xylanase, filter paper (FPU) and ?-glycosidase activities. For the application of the enzymes, a central composed response surface design with 5 repetitions of the central point was used, taking enzyme volume and hydrolysis time as factors. Such cultivation yielded the following enzymatic activities: 723 U gss-1 of endoglucanases, 2024 U gss-1 of xylanase, 12.6 U gss-1 of FPU and 41 U gss-1 of ?-glucosidase. The results of the application tests indicated the best conditions as 7.0 ml of the enzyme extract (4.2 FPU) and 6 hours for BIN and BOU. The best cellulose-glucose conversions were obtained for BOU, reaching 32.1 % at 65 ºC. In conclusion, the enzyme production in the packed bed bioreactor was efficient and BOU pretreatment improved the hydrolysis of biomass, increasing the efficiency of conversion of cellulose to glucose.


Bioethanol; Cellulases; Pretreatment; Saccharification; Solid cultivation.

Full Text:



Afonso, L. C. (2012). Produção de celulases por cultivo em estado sólido e aplicação na hidrólise do bagaço de cana-de-açúcar. Dissertação de mestrado, Universidade de São Paulo, SP, Brasil. doi: 10.11606/D.3.2012.tde-20122012-172140

Badhan, A. K., Chadha, B. S., Kaur, J., Saini, H. S., & Bhat, M. K. (2007). Production of multiple xylanilytic and cellulolytic enzymes by thermophilic fungus Myceliophthora sp. IMI 387099. Bioresource Technology, 98 (3), 504-510. doi: 10.1016/j.biortech.2006.02.009

Bailey, M. J., Peterbiely, P., & Poutanen, K. (1992). Interlaboratory testing of methods for assay of xylanase activity. Journal of Biotechnology, 23 (3), 257-270. doi: 10.1016/0168-1656(92)90074-J

Balat, M., Balat, H., & Öz, C. (2008). Progress in bioethanol processing. Progress in Energy and Combustion Science, 34 (5), 551-573. doi: 10.1016/j.pecs.2007.11.001

Baruah, J., Nath, B. K., Sharma, R., Kumar, S., Deka, R. C., Baruah, D. C., & Kalita, E. (2018). Recent Trends in the Pretreatment of Lignocellulosic Biomass for Value-Added Products. Frontiers in Energy Research, 6, 1-19. doi: 10.3389/fenrg.2018.00141

Bi, S., Peng, L., Chen, K., & Zhu, Z. (2016). Enhanced enzymatic saccharification of sugarcane bagasse pretreated by combining O2 and NaOH. Bioresource Technology, 214, 692-699. doi: 10.1016/j.biortech.2016.05.041

Canilha, L., Chandel, A. K., Milessi,T. S. S., Antunes, F. A. F., Freitas, W. L. C., Felipe, M. G. A., & Da Silva, S. S. (2012). Bioconversion of Sugarcane Biomass into Ethanol: An Overview about Composition, Pretreatment Methods, Detoxification of Hydrolysates, Enzymatic Saccharification, and Ethanol Fermentation. Journal of Biomedicine and Biotechnology, 2012, 1-15. doi: 10.1155/2012/989572

Cantwell, B. A., Sharp, P. M., Gormley, E., & Mcconnell, D. J. Molecular cloning of bacillus b-glucanases. In: J. P., Aubert, P., Beguin, & J. Millet (Eds.), Biochemistry and genetics of cellulose degradation (pp. 181-201). San Diego: Academic Press, 1988.

Casciatori, F. P., Casciatori, P. A., & Thoméo, J. C. (2013, June). Cellulase production in packed bed bioreactor by solid-state fermentation. Proceedings of the European Biomass Conference and Exhibition, Copenhagen, DEN, 1539. doi: 10.5071/21stEUBCE2013-3DV.1.13

Da Silva, R., Lago, E. S., Merheb, C. W., Macchione, M. M., & Park, Y. K. (2005). Production of xylanase and CMCase on solid state fermentation in different residues by Thermoascus aurantiacus Miehe. Brazilian Journal of Microbiology, 36 (3), 235-241. doi: 10.1590/S1517-83822005000300006

De Oliveira Rodrigues, P., Pereira, J. C., Queiroz, D., Gurgel, L. V. A., Pasquini, D., & Baffi, M. A. (2017). Synergistic action of an Aspergillus (hemi-) cellulolytic consortium on sugarcane bagasse saccharification. Industrial Crops and Products, 109 (1), 173-181. doi: 10.1016/j.indcrop.2017.08.031

Derakhti, S., Shojaosadati, S. A., Hashemi, M., & Khajeh, K. (2012). Process parameters study of ?-amylase production in a packed-bed bioreactor under solid-state fermentation with possibility of temperature monitoring. Preparative Biochemistry and Biotechnology, 42 (3), 203-216. doi: 10.1080/10826068.2011.599466

Fan, L. T., Gharpuray, M. M., & Lee, Y.H. (1987). Cellulose Hydrolysis Biotechnology Monographs. Berlin: Springer-Verlag.

Florencio, C., Badino, A. C., & Farinas, C. S. (2017). Desafios relacionados à produção e aplicação das enzimas celulolíticas na hidrólise da biomassa lignocelulósica. Química Nova, 40 (9), 1082-1093. doi: 10.21577/0100-4042.20170104

Ghildyal, N. P., Gowthaman, M. K., Raghava Rao, K. S. M. S., & Karanth, N. G. (1994). Interaction of transport resistances with biochemical reaction in packed-bed solid-state fermentors: Effect of temperature gradients. Enzyme and Microbial Technology, 16 (3), 253-257. doi: 10.1016/0141-0229(94)90051-5

Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59 (2), 257-268. doi: 10.1351/pac198759020257

Kalogeris, E., Christakopoulos, P., Katapodis, P., Alexiou, A., Vlachou, S., Kekos, D., & Macris, B. J. (2003). Production and characterization of cellulolytic enzymes from the thermophilic fungus Thermoascus aurantiacus under solid state cultivation of agricultural wastes. Process Biochemistry, 38 (7), 1099-1104. doi: 10.1016/S0032-9592(02)00242-X

Leite, R.S.R., Bocchini, D.A., Martins, E. S., Silva, D., Gomes, E., & Da Silva, R. (2007). Production of cellulolytic and hemicellulolytic enzymes from Aureobasidium pulluanson solid state fermentation. Applied Biochemistry and Biotechnology, 137 (1-12), 281-288. doi: 10.1007/s12010-007-9058-y

Liu, C., Suna, R., Qin, M., Zhang, A., Rena, J., Xub, F., Ye, J., & Wu, S. (2007). Chemical modification of ultrasound-pretreated sugarcane bagasse with maleic anhydride. Industrial Crops and Products, 26 (2), 212-219. doi: 10.1016/j.indcrop.2007.03.007

Lopes, A. M., Ferreira Filho, E. X., & Moreira, L. R. S. (2018). An update on enzymatic cocktails for lignocellulose breakdown. Journal of Applied Microbiology, 125 (3), 632-645. doi: 10.1111/jam.13923

Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for doietermination of reducing sugar. Analytical Chemistry, 31 (3), 426-428. doi: 10.1021/ac60147a030

Mishima, D., Tateda, M., Ike, M., & Fujita, M. (2006). Comparative study on chemical pretreatments to accelerate enzymatic hydrolysis of aquatic macrophyte biomass used in water purification processes. Bioresource Technology, 97 (16), 2166-2172. doi: 10.1016/j.biortech.2005.09.029

Mitchell, D. A., Krieger, N., & Berovic, M. (2006). Solid-state fermentation bioreactors: fundamentals, design and operation. Berlin: Springer-Verlag.

Mitchell, D. A., Pandey, A., Sangsurasak, P., & Krieger, N. (1999). Scale-up strategies for packed bed bioreactors for solid state fermentation. Process Biochemistry, 35 (1-2), 167-178. doi: 10.1016/S0032-9592(99)00048-5

Molina, G., Contesini, F. J., De Melo, C. R. R., Sato, H. H., & PASTORE, G. M. (2016). ?-Glucosidase from Aspergillus. In: V. K. GUPTA (Eds.), New and Future Developments in Microbial Biotechnology and Bioengineering: Aspergillus System Properties and Applications (pp. 155-169). Elsevier. doi: 10.1016/C2014-0-00304-8

Moretti, M. M. S., Bocchini-Martins, D. A., Da Silva, R., Rodrigues, A., Sette, L. D., & Gomes, E. (2012). Selection of thermophilic and thermotolerant fungi for the production of cellulases and xylanases under solid-state fermentation. Brazilian Journal of Microbiology, 43 (3), 1062-1071. doi: 10.1590/S1517-83822012000300032

Pereira, J. C., Travaini, R., Marques, N. P., Bolado-Rodríguez , S., & Martins, D. A. B. (2016). Saccharification of ozonated sugarcane bagasse using enzymes from Myceliophthora thermophila JCP 1-4 for sugars release and etanol production. Bioresource Technology, 204, 122-129. doi: 10.1016/j.biortech.2015.12.064

Perez, C. L., Casciatori, F. P., & Thoméo, J. C. (2019). Strategies for scaling-up packed-bed bioreactors for solid-state fermentation: The case of cellulolytic enzymes production by a thermophilic fungus. Chemical Engineering Journal, 361, 1142-1151. doi: 10.1016/j.cej.2018.12.169

Perrone, O. M., Colombari, F. M., Rossi, J. S., Moretti, M. M. S., Bordignon, S. E., Nunes, C. C. C., Gomes, E., Boscolo, M., & Da Silva, R. (2016). Ozonolysis combined with ultrasound as a pretreatment of sugarcane bagasse: Effect on the enzymatic saccharification and the physical and chemical characteristics of the substrate. Bioresource Technology, 218, 69-76. doi: 10.1016/j.biortech.2016.06.072

Plácido, J., & Capareda, S. (2014). Analysis of alkali ultrasonication pretreatment in bioethanol production from cotton gin trash using FT-IR spectroscopy and principal component analysis. Bioresources and Bioprocessing, 1, 1-9. doi: 10.1186/s40643-014-0023-7

Sandgren, M., Stahlberg, J., & Mitchinson, C. (2005). Structural and biochemical studies of GH family 12 cellulases: improved thermal stability, and ligand complexes. Progress in Biophysics and Molecular Biology, 89 (3), 246-291. doi: 10.1016/j.pbiomolbio.2004.11.002

Sluiter, A., Hames, B., Ruiz, R. O., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2008). Determination of Structural Carbohydrates and Lignin in Biomass. Biomass Anal. National Renewable Energy Laboratory Technol., Golden, CO (Technical Report NREL, TP-510-42618). Recuperado de

Soni, R., Nazir, A., Chadha B. S., & Saini, H. S. (2008). Novel sources of fungal cellulases for efficient deinking of composite paper wast. Bioresources, 3 (1), 234-246.

Souza-Corrêa, J. A., Oliveira, C., Nascimento, V. M., Wolf, L. D., Gómez, E. O., Rocha, G. J. M., & Amorim, J. (2014). Atmospheric pressure plasma pretreatment of sugarcane bagasse: the influence of biomass particle size in the ozonation process. Applied Biochemistry and Biotechnology, 172 (3), 1663-1672. doi: https: 10.1007/s12010-013-0609-0

Souza-Corrêa, J. A., Ridenti, M. A., Oliveira, C., Araújo, S. R., & Amorim, J. (2013). Decomposition of lignin from sugar cane bagasse during ozonation process monitored by optical and mass spectrometries. The Journal of Physical Chemistry, 117 (11), 3110–3119. doi: 10.1021/jp3121879

Sun, J. X., Sun, R., Sun, X. F., & Su, Y. (2004). Fractional and physico-chemical characterization of hemicelluloses from ultrasonic irradiated sugarcane bagasse. Carbohydrate Research, 339 (2), 291-300. doi: 10.1016/j.carres.2003.10.027

Travaini, R., Otero, M. D. M., Coca, M., Da Silva, R., & Bolado, S. (2013). Sugarcane bagasse ozonolysis pretreatment: effect on enzymatic digestibility and inhibitory compound formation. Bioresource Technology, 133, 332-339. doi: 10.1016/j.biortech.2013.01.133

Velmurugan, R., & Muthukumar, K. (2011). Utilization of sugarcane bagasse for bioethanol production: sono-assisted acid hydrolysis approach. Bioresource Technology, 102 (14), 7119-7123. doi: 10.1016/j.biortech.2011.04.045

Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86 (12-13), 1781-1788. doi: 10.1016/j.fuel.2006.12.013

Zanelato, A. I., Shiota, V. M., Gomes, E., & Thoméo, J. C. (2012). Endoglucanase production with the newly isolated Myceliophthora sp. I-1D3b in a packed bed solid state fermentor. Brazilian Journal of Microbiology, 43 (4), 1536-1544. doi: 10.1590/S1517-83822012000400038


Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional