Effects of dietary protein level on intake, digestibility, and energy expenditure in dairy heifers

Laylles Costa Araújo, Eriton Egidio Lisboa Valente, Valdir da Trindade Filipini, Silvana Teixeira Carvalho, Mariane Stahlhofer, Carla Heloisa Avelino Cabral, Matheus Leonardi Damasceno, Mariana Barbizan


Balancing diets for protein affects both protein and energy use efficiency in cattle. This study aimed to evaluate the effects of dietary protein level on intake, digestibility and energy expenditure in Holstein heifers. Four Holstein heifers with a mean BW of 266.5 ± 10.7 kg were distributed in a 4 x 4 balanced Latin square design. Each period was comprised of 14 d for adaptation and 6 d for samplings. The heifers were fed diets with 9, 12, 15 and 18% of crude protein (CP). Total feces and urine were collected. Rumen fluid was collected at 2, 4, 6 and 8 h after feeding. The energy expenditure was evaluated at 6 a.m., 12 a.m., 6 p.m. and 12 p.m. by a closed-circuit mask technique. The intake of dry matter (DM), organic matter (OM) and neutral detergent fiber (NDF) were similar between treatments (P > 0.05). Although the NDF digestibility was not changed (P > 0.05), the digestibilities of DM, OM, CP, non-fibrous carbohydrates, and total digestible nutrients increased linearly (P < 0.05) with increasing CP levels in the diet. Urinary urea nitrogen excretion and nitrogen retained increased linearly (P < 0.01) with increasing CP levels. Dietary CP levels did not affect (P =0.53) energy expenditure in heifers. Ruminal ammonia-nitrogen concentration peaked at 2-4 h after feeding. Increasing dietary CP levels from 9 to 18% does not affect feed intake and energy expenditure in heifers. However, it improves the digestibility of OM and nitrogen retention.


Cattle; Intake; Nitrogen excretion; Urea.

Full Text:



Association of Official Analytical Chemists (1990). Official methods of analysis of AOAC International (15nd ed.). Washington, DC: AOAC.

Belanche, A., Doreau, M., Edwards, J. E., Moorb, J. M., Pinloche, E., & Newbold, C. J. (2012). Shifts in the rumen microbiota due to the type of carbohydrate and level of protein ingested by dairy cattle are associated with changes in rumen fermentation. Journal of Nutrition, 142(9), 1684-1692. doi: 10.3945/ jn.112.159574

Calsamiglia, S., Ferret, A., Reynolds, C. K., Kristensen, N. B., & Van Vuuren, A. M. (2010). Strategies for optimizing nitrogen use by ruminants. Journal of Animal Bioscience, 4(7), 1184-1196. doi: 10.1017/S1 751731110000911

Chaney, A. L., & Marbach, E. P. (1962). Modified reagents for determination of urea and ammonia. Clinical chemistry, 8(2), 130-132. Retrieved from http: webpages.icav.up.pt/ptdc/CVT/09848/2008/Chaney,% 20011962.pdf.

Detmann, E., Paulino, M. F., Valadares, S. C., Fo, & Lana, R. P. (2007). Fatores controladores de consumo em suplementos múltiplos fornecidos ad libitum para bovinos manejados a pasto. Cadernos Técnicos de Veterinária e Zootecnia, 55, 73-93

Detmann, E., Valente, É. E. L., Batista, E. D., & Huhtanen, P. (2014). An evaluation of the performance and efficiency of nitrogen utilization in cattle fed tropical grass pastures with supplementation. Livestock Science, 162, 141-153. doi: 10.1016/j.livsci.2014.01.029

Dijkstra, J., Reynolds, C. K., Kebreab, E., Bannink, A., Ellis, J. L., France, J., & Van Vuuren, A. M. (2013). Challenges in ruminant nutrition: towards minimal nitrogen losses in cattle. In Energy and protein metabolism and nutrition in sustainable animal production (pp. 47-58). Wageningen Academic Publishers, Wageningen. Retrieved fromhttp://old.eaap.org/docs/members/9789086867813EAAP134-e. pdf

Dong, L. F., Zhang, W. B., Zhang, N. F., Tu, Y., & Diao, Q. Y. (2017). Feeding different dietary protein to energy ratios to Holstein heifers: effects on growth performance, blood metabolites and rumen fermentation parameters. Journal of Animal Physiology and Animal Nutrition, 101(1), 30-37. doi: 10. 1111/jpn.12493

Hristov, A. N., Ropp, J. K., Grandeen, K. L., Abedi, S., Etter, R. P., Melgar, A., & Foley, A. K. (2005). Effect of carbohydrate source on ammonia utilization in lactating dairy cows. Journal of Animal Science, 83(2), 408-421. doi: 10.2527/2005.8324

Illius, A. W., & Jessop, N. S. (1996). Metabolic constraints on voluntary intake in ruminants. Journal of Animal Science, 74(12), 3052-3062. doi: 10.2527/1996.74123052x

Koenig, K. M., & Beauchemin, K. A. (2013). Nitrogen metabolism and route of excretion in beef feedlot cattle fed barley-based finishing diets varying in protein concentration and rumen degradability. Jornal of Animal Science, 91(5), 2310-2320. doi: 10.2527/jas.2012-5653

Lazzarini, I., Detmann, E., Sampaio, C. B., Paulino, M. F.,Valadares, S. C., Fº., Souza, M. A., & Oliveira, F. B. (2009). Intake and digestibility in cattle fed low-quality tropical forage and supplemented with nitrogenous compounds. Revista Brasileira de Zootecnia, 38(10), 2021-2030. doi: 10.1590/S1516-3598 2009001000024

Leng, R. A. (1990). Factors affecting the utilization of “poor-quality” forages by ruminants particularly under tropical conditions. Nutrition Research Reviews, 3(1), 277-303. doi: 10.1079/NRR19900016

Licitra, G., Hernandez, T. M., & Van Soest, P. J. (1996). Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science and Technology, 57(4), 347-358. doi: 10.1016/03 77-8401(95)00837-3

McLean, J. A. (1972). On the calculation of heat production from open-circuit calorimetric measurements. Bristish Journal of Nutrition, 27(3), 597-600. doi: 10.1079/BJN19720130

Mertens, D. R. (2002). Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. Journal of AOAC International, 85(6), 1217-1240.

Mutsvangwa, T., Davies, K. L., McKinnon, J. J., & Christensen, D. A. (2016). Effects of dietary crude protein and rumen-degradable protein concentrations on urea recycling, nitrogen balance, omasal nutrient flow, and milk production in dairy cows. Journal of Dairy Science, 99(8), 6298-6310. doi: 10. 3168/jds.2016-10917

Nelson, D. L., Lehninger, A. L., & Cox, M. M. (2008). Lehninger principles of biochemistry. Macmillan.

National Research Council (2001). Requirements of dairy cattle (7nd ed.). Washington, D.C: Nutrient Requirements of Dairy Cattle. Natl. Acad. Press.

Reis, W. L. S., Detmann, E., Batista, E. D., Rufino, L. M. A., Gomes, D. I., Bento, C. B. P., & Valadares, S. C., Fº. (2016). Effects of ruminal and post-ruminal protein supplementation in cattle fed tropical forages on insoluble fiber degradation, activity of fibrolytic enzymes, and the ruminal microbial community profile. Animal Feed Science and Technology, 218(23), 1-16. doi: 10.1016/j.anifeedsci.2016.05.001

Reynolds, C. K. ( 2006). Splanchnic metabolism of amino acids. In K. Sejrsen, T. Hvelplund, & M. O. Nielsen (Eds.), Ruminant physiology. Digestion, metabolism and impact of nutrition on gene expression, immunology and stress. Wageningen Academic.

Reynolds, C. K., Crompton, L. A., & Mills, J. A. N. (2011). Improving the efficiency of energy utilisation in cattle. Animal. Production Science, 51(1), 6-12. doi: 10.1071/AN10160

Richardson, D., Felgate, H., Watmough, N., Thomson, A., & Baggs, E. (2009). Mitigating release of the potent greenhouse gas N2O from the nitrogen cycle - could enzymic regulation hold the key? Trends in Biotectechnology, 27(7), 388-397. doi: 10.1016/j.tibtech.2009.03.009

Sampaio, C. B., Detmann, E., Lazzarini, I., Souza, M. A., Paulino, M. F., & Valadares, S. C., Fº. (2009). Rumen dynamics of neutral detergent fiber in cattle fed low-quality tropical forage and supplemented with nitrogenous compounds. Revista Brasileira de Zootecnia, 38(3), 560-569. doi: 10.1590/S1516-35 982009000300023

Sampaio, C. B., Detmann, E., Paulino, M. F., Valadares, S. C., Fº., Souza, M. A., Lazzarini, I., & Queiroz, A. C. (2010). Intake and digestibility in cattle fed low-quality tropical forage and supplemented with nitrogenous compounds. Tropical Animal Health and Production, 42(10), 1471-1479. doi: 10.1007/s11 250-010-9581-7

Schroeder, G. F., & Titgemeyer, E. C. (2008). Interaction between protein and energy supply on protein utilization in growing cattle: a review. Livestock Science, 114(1), 1-10. doi: 10.1016/j.livsci.2007.12.0 08

Souza, M. A., Detmann, E., Paulino, M. F., Sampaio, C. B., Lazzarini, Í., & Valadares, S. C., Fº. (2010). Intake, digestibility and rumen dynamics of neutral detergent fibre in cattle fed low-quality tropical forage and supplemented with nitrogen and/or starch. Tropical Animal Health and Production, 42(6), 1299-1310. doi: 10.1007/s11250-010-9566-6

SAS Institute Inc. (2017). Cary, NC; University Edition.

Steinberg-Yfrach, G., Rigaud, J. L., Durantini, E. N., Moore, A. L., Gust, D., & Moore, T. A. (1998). Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane. Nature, 392 (6675,), 479-482. doi: 10.1038/33116

Susenbeth, A., Mayer, R., Koehler, B., & Neumann, O. (1998). Energy requirement for eating in cattle. Journal Animal Science, 76(10), 2701-2705. doi: 10.2527/199876102701x

DOI: http://dx.doi.org/10.5433/1679-0359.2020v41n6Supl2p3211

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional