Copper phytotoxicity in agricultural crops cultivated in tropical soils

Mateus Moreira Engelhardt, Francielle Roberta Dias de Lima, Gabriel Caixeta Martins, Isabela Cristina Filardi Vasques, Aline Oliveira Silva, Jakeline Rosa Oliveira, Rayner Hugo Cassa Louzada Reis, Luiz Roberto Guimarães Guilherme, João José Granate de Sá e Melo Marques

Abstract


Copper is a micronutrient for living organisms, but at high concentrations it may cause several deleterious effects. The objective of this study was to evaluate the behavior of agricultural crops to different concentrations of Cu in the soil. The species Triticum aestivum (wheat), Zea mays (maize), Oryza sativa (rice), Phaseolus vulgaris (dry bean), Glycine max (soybean), and Raphanus sativus (radish) were cultivated in the soils Typic Hapludox (TyHpx) and Rhodic Acrudox (RhAcx). The experiment was carried out in a greenhouse and the soils were set in pots in a completely randomized design, with four replicates per treatment adding the following Cu concentrations (as Cu-nitrate): 0, 75, 150, 300, 600, 800, 1000, 1200 mg kg-1 dry soil. Measurements of biological variables, such as shoot dry weight (SDW), plant height, stem diameter, and number of leaves were carried out, in addition to determining Cu content in the SDW. At the TyHpx, a decreasing order of tolerance to Cu phytotoxicity was: dry bean, maize, soybean, wheat, radish, and rice. However, at the RhAcx, the decreasing order was: maize, soybean, radish, wheat, dry bean, and rice. The species that revealed the highest sensitivity to high Cu concentrations in soil was rice and that with the lowest sensitivity was maize.

Keywords


Copper nitrate; Ecotoxicology; Micronutrient; Contamination.

Full Text:

PDF

References


Almeida, B. G., Donagemma, G. K., Ruiz, H. A., Braida, J. A., Viana, J. H. M., Reichert, J. M. M.,... Teixeira, W. G. (2012). Padronização de métodos para análise granulométrica no Brasil. Rio de Janeiro, RJ: EMBRAPA Solos.

Alvarez, V. H. & Ribeiro, A. C. (1999). Calagem. In: V. H. Alvarez, P. T. G. Guimarães, & A. C. Ribeiro (Eds.),. Recomendações para o uso de corretivos e fertilizantes em Minas Gerais (pp. 43-60). Viçosa, MG: CFSEMG.

Ambrosini, V. G., Voges, J. G., Canton, L., Couto, R. D. R., Ferreira, P. A. A., Comin, J. J.,... Soares, C. R. F. S. (2015). Effect of arbuscular mycorrhizal fungi on young vines in copper-contaminated soil. Brazilian Journal of Microbiology, 46(4), 1045-1052. doi: 10.1590/S1517-838246420140622

Bezerra, A. M. E., Momenté, V. G., & Medeiros, S., Fº. (2004). Germinação de sementes e desenvolvimento de plântulas de moringa (Moringao leifera Lam.) em função do peso da semente e do tipo de substrato. Horticultura Brasileira, 22(2), 295-299. doi: 10.1590/S0102-05362004000200026

Bone, J., Head, M., Barraclough, D., Archer, M., Scheib, C., Flight, D., & Voulvoulis, N. (2010). Soil quality assessment under emerging regulatory requirements. Environment International, 36(6), 609-622. doi: 10.1016/j. envint. 2010. 04. 010

Caetano, A. L., Marques, C. R., Gonçalves, F., Silva, E. F. da, & Pereira, R. (2016). Copper toxicity in a natural reference soil: ecotoxicological data for the derivation of preliminary soil screening values. Ecotoxicology, 25(1), 163-177. doi: 10.1007/s10646-015-1577-7

Cavani, L., Manici, L. M., Caputo, F., Peruzzi, E., & Ciavatta, C. (2016). Ecological restoration of a copper polluted vineyard: Long-term impact of farmland abandonment on soil bio-chemical properties and microbial communities. Journal of Environmental Management, 182(1), 37-47. doi: 10.1016/j.jenvman. 2016.07. 050

Conselho Estadual de Política Ambiental (2011). Deliberação Normativa nº 166 de 29 de junho de 2011. Diário do Executivo - 27 de Julho de 2011. Belo Horizonte: COPAM.

Conselho Nacional do Meio Ambiente (2009). Resolução nº 420 de 28 de dezembro de 2009. Diário Oficial da União n° 249. Brasília: Ministério do Meio Ambiente.

Environment Canada (2005). Report EPS 1/RM/46. Guidance document on statistical methods for environmental toxicity tests. Ottawa: EC.

Fageria, N. K. (2007). Adequate and toxic levels of copper and manganese in upland rice, common bean, corn, soybean, and wheat grown on an Oxisol. Communications in Soil Science and Plant Analysis, 32(9), 1659-1676. doi: 10.1081/CSS-100104220

Fatnassi, I. C., Chiboub, M., Saadani, O., Jebara, M., & Jebara, S. H. (2015). Impact of dual inoculation with Rhizobium and PGPR on growth and antioxidant status of Vicia faba L. under copper stress. Comptes Rendus Biologies, 338(4), 241-254. doi: 10.1016/j.crvi.2015.02.001

Ferreira, P. A. A., Marchezan, C., Ceretta, C. A., Tarouco, C. P., Lourenzi, C. R., Silva, L. S.,… Brunetto, G. (2018). Soil amendment as a strategy for the growth of young vines when replanting vineyards in soils with high copper content. Plant Physiology and Biochemistry, 126(1), 152-162. doi: 10.1016/j.plaphy. 2018.03.003

Gharbi, F., Rejeb, S., Ghorbal, M. H., & Jean-Louis, M. (2005). Plant response to copper toxicity as affected by plant species and soil type. Journal of Plant Nutrition, 28(3), 379-392. doi: 10.1081/PLN-200049147

Girotto, E., Ceretta, C. A., Rossato, L. V., Farias, J. G., Brunetto, G., Miotto, A.,… Nicoloso, F. T. (2016). Biochemical changes in black oat (Avena strigosa Schreb) cultivated in vineyard soils contaminated with copper. Plant Physiology and Biochemistry, 103(1), 199-207. doi: 10.1016/j.plaphy.2016.02.030

Guo, X. Y., Zuo, Y. B., Wang, B. R., Li, J. M., & Ma, Y. B. (2010). Toxicity and accumulation of copper and nickel in maize plants cropped on calcareous and acidic field soils. Plant Soil, 333(1), 365-373. doi: 10.1007/s11104-010-0351-0

Hale, B., Gopalapillai, Y., Pellegrino, A., Jennett, T., Kikkert, J., Lau, W.,… McLaughlin, M. J. (2017). Validation of site-specific soil Ni toxicity thresholds with independent ecotoxicity and biogeochemistry data for elevated soil Ni. Environmental Pollution, 231(1), 165-172. doi: 10.1016/j.envpol.2017.08.008

International Organizations for Standardization (2012). Soil quality - determination of the effects of pollutants on soil flora - Part 2: effects of contaminated soil on the emergence and early growth of higher plants, nº 11269-2. Geneva: ISO.

Jensen, J., & Mesman, M. (2006). Ecological risk assessment of contaminated land: decision support for site specific investigations. New York, NY: RIVM.

Kabata-Pendias, A., & Szteke, B. (2015). Trace elements in abiotic and biotic environments. New York, NY: CRC Press.

Lejon, D. P. H., Pascault, N., & Ranjard, L. (2010). Differential copper impact on density, diversity and resistance of adapted culturable bacterial populations according to soil organic status. European Journal of Soil Biology, 46(2), 168-174. doi: 10.1016/j.ejsobi.2009.12.002

Li, B., Zhang, H., Ma, Y., & McLaughlin, M. J. (2011). Influences of soil properties and leaching on nickel toxicity to barley root elongation. Ecotoxicology and Environmental Safety, 74(3), 459-466. doi: 10. 1016/j.ecoenv.2010.10.021

Li, C., Li, Q. G., Dunwell, J. M., & Zhang, Y. M. (2012). Divergent evolutionary pattern of starch biosynthetic pathway genes in grasses and dicots. Molecular Biology and Evolution, 29(10), 3227-3236. doi: 10.1093/molbev/mss131

Luchese, A. V., Goncalves, A. C., Jr., Luchese, E. B., & Braccini, M. C. L. (2004). Emergência e absorção de cobre por plantas de maize (Zea mays) em resposta ao tratamento de sementes com cobre. Ciência Rural, 34(6), 1949-1952. doi: 10.1590/S0103-84782004000600044

Luna, C. M., Casano, I. M., & Trippi, V. S. (1997). Nitrate reductase is inhibited in leaves of Tricuma esticum treated with high levels of copper. Plant Physiology, 101(1), 103-108. doi: 10.1111/j.1399-3054 .1997.tb01825.x

Maguire, J. D. (1962). Speed of germination aid in selection and evaluation for seedling emergence and vigor. Crop Science, 2(2), 176-177. doi: 10.2135/cropsci1962.0011183X0002000200 33x

Malavolta, E. (1981). Manual de química agrícola: adubos e adubação. São Paulo, SP: Agronômica Ceres.

Mantovani, A. (2009). Composição química de solos contaminados por cobre: formas, sorção e feito no desenvolvimento de espécies vegetais. Tese de doutorado, Universidade Federal do Grande do Sul, Porto Alegre, RS, Brasil. Recuperado de https://www.lume.ufrgs.br/bitstream/handle/10183/17085/0007102 87.pdf?sequence=1

Marcos, J., F., & Kikuti, A. L. P. (2006) Vigor de sementes de radish e desempenho de plantas em campo. Revista Brasileira de Sementes, 28(3), 44-51. doi: 10.1590/S0101-31222006000300007

Mendes, A. M. S., Duda, G. P., Nascimento, C. W. A., Lima, J. A. G., & Medeiros, A. D. L. (2010). Acúmulo de metais pesados e alterações químicas em Cambissolo cultivado com meloeiro. Revista Brasileira de Engenharia Agrícola e Ambiental, 14(8), 791-796. doi: 10.1590/S1415-43662010000800 001

Moreira, A., & Moraes, L. A. C. (2019). Soybean response to copper applied to two soils with different levels of organic matter and clay. Journal of Plant Nutrition, 42(18), 2247-2258. doi: 10.1080/019041 67.2019.1655039

Nascimento, C. W. A., & Fontes, R. L. F. (2004). Correlação entre características de Latossolos e parâmetros de equações de adsorção de cobre e zinco. Revista Brasileira de Ciência do Solo, 28(6), 965-971. doi: 10.1590/S0100-06832004000600004

Niva, C. C., Niemeyer, J. C., Silva Jr., F. M. R. D., Nunes, M. E. T., Sousa, D. L. de, Aragão, C. W. S.,... Römbke, J. (2016). Soil ecotoxicology in Brazil is taking its course. Environmental Science and Pollution Research, 23(11), 11363-11378. doi: 10.1007/s11356-016-6597-1

Penha, J. G., Carvalho, G. S., Abreu, L. B. de, Ribeiro, B. T., Souza Costa, E. T. de, & Marques, J. J. (2017). Procedimentos para quantificação de elementos- traço por espectrofotometria de absorção atômica em matrizes de interesse ambiental. (Boletim Técnico). Lavras, MG: Editora UFLA.

Rocheleau, S., Kuperman, R. G., Simini, M., Hawari, J., Checkai, R. T., Thiboutot, S.,… Sunahara, G. I. (2010). Toxicity of 2,4-dinitrotoluene to terrestrial plants in natural soils. Science of the Total Environment, 408(16), 3193-3199. doi: 10.1016/j.scitotenv.2010.04.010

Rooney, C. P., Zhao, F. J., & McGrath, S. P. (2006). Soil factors controlling the expression of copper toxicity to plants in a wide range of European soils. Environmental Toxicology and Chemistry, 25(3), 726-732. doi: 10.1897/04-602R.1

Santos, H. P., Melo, G. W. B., Luz, N. B., & Tomasi, R. J. (2004). Comportamento fisiológicos de plantas de aveia (Avena strigosa) em solos com excesso de cobre. (Comunicado Técnico). Bento Gonçalves, RS: EMBRAPA.

Silva, J. P. S. D., Nascimento, C. W. A. D., Biondi, C. M., & Cunha, K. P. V. D. (2012). Heavy metals in soils and plants in mango orchards in Petrolina, Pernambuco, Brazil. Revista Brasileira de Ciência do Solo, 36(4), 1343-1354. doi: 10.1590/S0100-06832012000400028

Singh, D., Nath, K., & Sharma, Y. K. (2007). Response of wheat seed germination and seedling growth under copper stress. Journal of Environmental Biology, 28(2), 409-414.

Soil Survey Staff (2014). Keys to soil taxonomy. Washington, DC: USDA-Natural Resources Conservation Service.

Statsoft, I. S. (2004). Data Analysis Software System. Version 7.0.

Teixeira, P. C., Donagemma, G. K., Fontana, A., & Teixeira, W. G. (Eds.). (2017). Manual de métodos de análise de solo. Brasília, DF: EMBRAPA.

Toselli, M., Baldi, E., Marcolini, G., Malaguti, D., Quartieri, M., Sorrenti, G., & Marangoni, B. (2008). Response of potted grapevines to increasing soil copper concentration. Australian Journal of Grape and Wine Research, 15(1), 85-92. doi: 10.1111/j.1755-0238.2008.00040.x

United States Environmental Protection (2007). Agency method 3051A (SW-846): microwave assisted acid digestion of sediments, sludges, and oils. Washington: USEPA.

Van Vlaardingen, P. L. A., Traas, T. P., Wintersen, A., & Aldenberg, T. (2004). ETX 2. 0: a program to calculate hazardous concentrations and fraction affected, based on normally distributed toxicity data. Bilthoven, BA: RIVM.

Verbruggen, E. M. J., Posthumus, R., & Van Wezel, A. P. R. (2001). Ecotoxicological serious risk concentrations for soil, sediment and (ground) water: updated proposals for first series of compounds. Bilthoven, BA: RIVM.

Warne, M. S. J., & Van Dam, R. (2008). NOEC and LOEC data should no longer be generated or used - Opinion Piece. Australasian Journal of Ecotoxicology, 14(1), 1-5.

Xu, J., Yang, L., Wang, Z., Dong, G., Huang, J., & Wang, Y. (2006). Toxicity of copper on rice growth and accumulation of copper in rice grain in copper contaminated soil. Chemosphere, 62(4), 602-607. doi: 10. 1016/j.chemosphere.2005.05.050

Yruela, I. (2005). Copper in plants. Brazilian Journal of Plant Physiology, 17(1), 145-146. doi: 10.1590/S16 7704202005000100012




DOI: http://dx.doi.org/10.5433/1679-0359.2020v41n6Supl2p2883

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional