Biological activity using dynamic speckle in blood serum of mares in different reproductive stages

Celso Westphalen Neto, Tobyas Maia de Albuquerque Mariz, Pierre Barnabé Escodro, Emerson de Lima, Carolyny Batista Lima, João Paulo Santos de Oliveira, Arthur Roosevelt Bispo da Silva, Willamys Cristiano Soares Silva, Daiane Maria Medeiros da Silva

Abstract


This study aimed to evaluate the biological activity in blood serum plasma samples from mares at different reproductive stages using dynamic speckle analysis. For this purpose, samples were collected from 40 Mangalarga Machador mares from the Formoso 2S horse farm in Cajueiro, AL. The mares were classified into four groups of ten animals each according to the pregnancy stage: ten empty mares (not pregnant), ten pregnant mares in the early third of pregnancy between one month and four months, ten pregnant mares in the final third of the pregnancy between seven and eleven months, and ten lactating mares (within two months post-partum). The biological activity response using a dynamic speckle (biospeckle) was obtained by capturing images reflected by a coherent light (diode laser with a wavelength of 532 nm and intensity of 3 mW) on a sample using a CCD (charge coupled device) camera. This data was analyzed using image processing techniques through the computational application Speckle-THSP-MCO-Descritores (STMD), applying THSP (time history speckle pattern) methodology, which evaluates the temporal evolution of the interference image from spreading over the sample surface over time. A coherence matrix generated from the THSP was used to present the intensity module dispersion, which provided the bioactivity data. These data were then processed using the program OriginPro 8. Ink, generate graphs and compare the results from the different groups under study. A general biospeckle signature was observed regardless of the mares’ reproductive stage considered in this study. A short phase of movement of the samples associated with an accommodation of the drop on the slide was observed. It was followed by an ascending curve starting between 5 and 10 min of observation, reaching a peak within 15 and 25 min, and finally decayed uniformly until almost zero after 45 min. The group of pregnant mares in the final third of pregnancy presented superior bioactivity compared to pregnant mares in the early third of pregnancy. The curve observed for the group of lactating mares is similar to the curve obtained for the group of pregnant mares in the early third of pregnancy. Bioactive molecules act as dispersion elements of coherent light incident on a sample. The variation inherent to the presence of bioactive molecules in the different stages evaluated influenced the biospeckle pattern detected in each sample. It was concluded that the biological activity peaks of the blood plasma samples from the mares evaluated in this study using the dynamic speckle analysis technique were different for both amplitude and time of occurrence, according to the different reproductive stages.

Keywords


Biospeckle; Equine; Blood.

Full Text:

PDF

References


Allen, W. R. (2001). Fetomaternal interactions and influences during equine pregnancy. Reproduction, 121(4), 513-527. doi: 10.1530/rep.0.1210513

Allen, W. R., Wilsher, S., Stewart, F., Ousey, J., & Fowden, A. (2002). The influence of maternal size on placental, fetal and postnatal growth in the horse. II. Endocrinology of pregnancy. Journal of Endocrinology, 172(2), 237-246. doi: doi.org/10.1677/joe.0.1720237

Andreazzi, M. A., Cavalieri, F. B., Emanuelli, I. P., Santos Sandri, V. dos, Barizão, G., & Simonelli, S. M. (2015). Avaliação da bioquímica sanguínea em éguas gestantes. Archives of Veterinary Science, 20(2). 137-155. doi: 10.5380/avs.v20i2.40663

Bollwein, H., Mayer, R., Weber, F., & Stolla, R. (2002). Luteal blood flow during the estrous cycle in mares. Theriogenology, 57(8), 2043-2051. doi: 10.1016/s0093-691x(02)00705-7

Braga, R. A. (2017). Challenges to apply the biospeckle laser technique in the field. Chemical Engineering Transactions, 58, 577-582. doi: 10.3303/CET1758097

Briers, J. D. (1975). Wavelength dependence of intensity fluctuations in laser speckle patterns from biological specimens. Optics Communications, 13(3), 324-326. doi: 10.1016/0030-4018(75)90111-x

Campelo, J. A. D. S. (2008). Perfil bioquímico sérico de éguas gestantes e não gestantes das raças brasileiro de hipismo e bretão.

Chang, W. S. (2005). Principles of lasers and optics. Cambridge: Cambridge University Press.

González, F. H. D. (2006). Introdução à bioquímica clínica veterinária (2a ed.). Porto Alegre: UFRGS.

Diaz Gonzalez, F. H., & Scheffer, J. L. (2003). Perfil sangüíneo: ferramenta de análise clínica, metabólica e nutricional. Simpósio de Patologia Clínica Veterinária, Porto Alegre, RS, Brasil, 1.

Hafez, E. S. E., & Hafez, B. (2004). Reprodução animal (7a ed.). Barueri: Manole.

Harvey, J. W., Pate, M. G., Kivipelto, J., & Asquith, R. L. (2005). Clinical biochemistry of pregnant and nursing mares. Veterinary Clinical Pathology, 34(3), 248-254. doi: 10.1111/j.1939-165x2005.tb00049.x

Lucena, D., Ferreira, J., Oliveira, M., & Lima, E. (2012). Caracterização da atividade biológica usando análise de textura em speckles. Proceedings of the Workshop of Undergraduate Works (WUW) in SIBGRAPI 2012, Conference on Graphics, Patterns and Images), Ouro Preto, MG, Brasil, 25. Recuperado de http://www.decom.ufop.br/sibgrapi2012/index.php/call/wuw

Matta, M. P. da. (2013). Avaliação dos parâmetros de gestação de éguas da raça Mangalarga Marchador. Dissertação de mestrado, Universidade Federal de Viçosa, Viçosa, MG, Brasil.

Mc Kinnon, A. O., & Voss, J. L. (2011). Equine reproduction. Philadelphia: Lea & Febiger.

Meirelles, M. G., Alonso, M. A., & Affonso, F. J. (2017). Endocrinologia reprodutiva da égua gestante. Revista Brasileira de Reprodução Animal, 1(41), 316-325. Recuperado de http://cbra.org.br/portal/ downloads/ publicacoes/rbra/v41/n1/p316-325%20(RB636).pdf

Mitchell, B. F., Fang, X., & Wong, S. (1998). Oxytocin: a paracrine hormone in the regulation of parturition? Reviews of Reproduction, 3(2), 113-122. doi: 10.1530/ror.0.0030113

Motta, V. T. (2003). Bioquímica clínica para o laboratório: princípios e interpretações.

Ousey, J. C. (2004). Peripartal endocrinology in the mare and foetus. Reproduction in Domestic Animals, 39(4), 222-231. doi: 10.1111/j.1439-0531.2004.00507.x

Ousey, J. C., Forhead, A. J., Rossdale, P. D., Grainger, L., Houghton, E., & Fowden, A. L. (2003). Ontogeny of uteroplacental progestagen production in pregnant mares during the second half of gestation. Biology of Reproduction, 69(2), 540-548. doi: 10.1095/bioreprod.102.013292

Penteado, C., Vaz, B. B. D., Lacerda, J. C., Neto, Santana, A. E., & Summa, R. P. (1999). Perfil de alguns constituintes bioquímicos do sangue de éguas gestantes da raça Árabe. Veterinária Notícias, 5(2), 83-88.

Vivrette, S. L., Kindahl, H., Munro, C. J., Roser, J. F., & Stabenfeldt, G. H. (2000). Oxytocin release and its relationship to dihydro-15-keto PGF. Journal of Reproduction and




DOI: http://dx.doi.org/10.5433/1679-0359.2020v41n6p2633

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional