Tracing the origin of reservoir sediments using magnetic properties in Southeastern Brazil

Pedro Luiz Terra Lima, Marx Leandro Naves Silva, John Quinton, Alona Armstrong, Alberto Vasconcellos Inda, Pedro Velloso Gomes Batista, Giovana Clarice Poggere, Nilton Curi


Determining the origin of eroded soil is essential to design effective soil erosion control strategies which preserve the soil resource, enhance agricultural productivity, and reduce the negative impacts of soil erosion, in-field and off-field. Magnetic properties have been widely used in temperate environments to identify sediment sources, pathways and links, but there have been very few applications in tropical and subtropical environments. Therefore, in this paper we investigated reservoir sediment sources in the Upper Grande River Basin, Southeastern Brazil, using sediment tracing techniques based on magnetic parameters (low and high frequency magnetic susceptibility, frequency dependent susceptibility). The different parent materials and subtropical weathering conditions resulted in soils having different Fe oxide minerals and Fe oxide contents, promoting magnetic variability that allowed comparison and identification of possible sources of reservoir sediments in order to reduce water erosion impacts. The results indicate the suitability of magnetic properties as a tracer for soil erosion studies in tropical environments.


Natural resources; Sediment sources; Soil erosion; Tropical environment.

Full Text:



Alvares, C. A., Stape, J. L., Sentelhas, P. C., Moraes, G. de, Leonardo, J., & Sparovek, G. (2013). Köppen's climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728. doi: 10.1127/0941-2948/2013/0507

Anache, J. A., Wendland, E. C., Oliveira, P. T., Flanagan, D. C., & Nearing, M. A. (2017). Runoff and soil erosion plot-scale studies under natural rainfall: a meta-analysis of the Brazilian experience. Catena, 152(2017), 29-39. doi: 10.1016/j.catena.2017.01.00

Araujo, J. C., Güntner, A., & Bronstert, A. (2006). Loss of reservoir volume by sediment deposition and its impact on water availability in semiarid Brazil. Hydrological Sciences Journal, 51(1), 157-170. doi: 10.1623/hysj.51.1.157

Armstrong, A., Quinton, J. N., & Maher, B. A. (2012). Thermal enhancement of natural magnetism as a tool for tracing eroded soil. Earth Surface Processes and Landforms, 37(14), 1567-1572. doi: 10.1002/esp.3312

Barbosa, R. S., Marques, J., Barron, V., Martins, M. V., Siqueira, D. S., Peluco, R. G.,... Silva, L. S. (2019). Prediction and mapping of erodibility factors (USLE and WEPP) by magnetic susceptibility in basalt-derived soils in northeastern Sao Paulo state, Brazil. Environmental Earth Sciences, 78(1), 12. doi: 10.1007/s12665-018-8015-0

Batista, P. V. G., Davies, J., Silva, M. L. N., & Quinton, J. (2019). On the evaluation of soil erosion models: are we doing enough? Eart-Science Reviews, 197(2019), 102898. doi: 10.1016/j.earscirev.2019.102898

Batista, P. V. G., Silva, M. L. N., Silva, B. P. C., Curi, N., Bueno, I. T., Acérbi, F. W. Jr.,... & Quinton, J. (2017). Modelling spatially distributed soil losses and sediment yield in the upper Grande River Basin-Brazil. Catena, 157(2017), 139-150. doi: 10.1016/j.catena.2017.05.025

Bispo, D. F. A., Silva, M. L. N., Marques, J. J. G. D. S., Bechmann, M., Batista, P. V. G., & Curi, N. (2017). Phosphorus transfer at a small catchment in southeastern Brazil: distributed modelling in different land use scenarios. Ciência e Agrotecnologia, 41(5), 565-579. doi: 10.1590/1413-70542017415012217

Blundell, A., Dearing, J. A., Boyle, J. F., & Hannam, J. A. (2009). Controlling factors for the spatial variability of soil magnetic susceptibility across England and Wales. Earth-Science Reviews, 95(3-4), 158-188. doi: 10.1016/j.earscirev.2009.05.001

Bostanmaneshrad, F., Partani, S., Noori, R., Nachtnebel, H. P., Berndtsson, R., & Adamowski, J. F. (2018). Relationship between water quality and macro-scale parameters (land use, erosion, geology, and population density) in the Siminehrood River Basin. Science of the Total Environment, 639(2018), 1588-1600. doi: 10.1016/j.scitotenv.2018.05.244

Cervi, E. C., Maher, B., Poliseli, P. C., Souza, I. G., Jr., & Costa, A. C. S. (2019). Magnetic susceptibility as a pedogenic proxy for grouping of geochemical transects in landscapes. Journal of Applied Geophysics, 169(2019), 109-117. doi: 10.1016/j.jappgeo.2019.06.017

Claessen, M. E. C. (1997). Manual de métodos de análise de solo. Rio de Janeiro: EMBRAPA Solos-Documentos (INFOTECA-E).

Collins, A. L., Pulley, S., Foster, I. D., Gellis, A., Porto, P., & Horowitz, A. J. (2017). Sediment source fingerprinting as an aid to catchment management: a review of the current state of knowledge and a methodological decision-tree for end-users. Journal of Environmental Management, 194(2017), 86-108. doi: 10.1016/j.jenvman.2016.09.075

Collins, A. L., & Walling, D. E. (2002). Selecting fingerprint properties for discriminating potential suspended sediment sources in river basins. Journal of Hydrology, 261(1-4), 218-244. doi: 10.1016/S0022-1694(02)00011-2

Collins, A. L., Walling, D. E., Sichingabula, H. M., & Leeks, G. J. L. (2001). Suspended sediment source fingerprinting in a small tropical catchment and some management implications. Applied Geography, 21(4), 387-412. doi: 10.1016/S0143-6228(01)00013-3

Costa, A. C. S., Bigham, J. M., Rhoton, F. E., & Traina, S. J. (1999). Quantification and characterization of maghemite in soils derived from volcanic rocks in southern Brazil. Clays and Clay Minerals, 47(4), 466-473. doi: 10.1346/CCMN.1999.0470408

Curi, N., & Kämpf, N. (2012). Caracterização do solo. In J. C. Ker, N. Curi, C. E. Schaefer, & P. Vidal-Torrado (Eds.), Pedologia; fundamentos (pp. 147-169). Viçosa, MG: Sociedade Brasileira de Ciência do Solo.

Curi, N. (1983). Lithosequence and toposequence of Oxisols from Goias and Minas Gerais states, Brazil Doctoral dissertation, Purdue University, West Lafayette, United States of America. Retrieved from

Dantas, A. A. A., Carvalho, L. G. D., & Ferreira, E. (2007). Climatic classification and tendencies in Lavras region, MG. Ciência e Agrotecnologia, 31(6), 1862-1866. doi: 10.1590/S1413-70542007000600039

Dearing, J. A. (1999). Environmental magnetic susceptibility: using the Bartington MS2 system (2nd ed.). Kenilworth: Chi Publishing.

Dearing, J. A., Bird, P. M., Dann, R. J. L., & Benjamin, S. F. (1997). Secondary ferrimagnetic minerals in Welsh soils: a comparison of mineral magnetic detection methods and implications for mineral formation. Geophysical Journal International, 130(3), 727-736. doi: 10.1111/j.1365-246X.1997.tb01867.x

Deasy, C., Titman, A., & Quinton, J. N. (2014). Measurement of flood peak effects as a result of soil and land management, with focus on experimental issues and scale. Journal of Environmental Management, 132(2014), 304-312. doi: 10.1016/j.jenvman.2013.11.027

Environmental Systems Research Institute (2010). ArcGIS Desktop: Release 10.1. Redlands, CA: Environmental Systems Research Institute.

Ferreira, M. M., Fernandes, B., & Curi, N. (1999). Influência da mineralogia da fração argila nas propriedades físicas de Latossolos da região sudeste do Brasil. Revista Brasileira de Ciência do Solo, 23(3), 515-524. doi: 10.1590/S0100-06831999000300004

Fontes, M. P. F., Oliveira, T. S. de, Costa, L. M. da, & Campos, A. A. G. (2000). Magnetic separation and evaluation of magnetization of Brazilian soils from different parent materials. Geoderma, 96(1-2), 81-99. doi: 10.1016/S0016-7061(00)00005-7

Guzmán, G., Quinton, J. N., Nearing, M. A., Mabit, L., & Gómez, J. A. (2013). Sediment tracers in water erosion studies: current approaches and challenges. Journal of Soils and Sediments, 13(4), 816-833. doi: 10.1007/s11368-013-0659-5

Hatfield, R. G., & Maher, B. A. (2008). Suspended sediment characterization and tracing using a magnetic fingerprinting technique: Bassenthwaite Lake, Cumbria, UK. The Holocene, 18(1), 105-115. doi: 10.1177/0959683607085600

Hatfield, R. G., & Maher, B. A. (2009). Fingerprinting upland sediment sources: particle size?specific magnetic linkages between soils, lake sediments and suspended sediments. Earth surface processes and landforms, 34(10), 1359-1373. doi: 10.1002/esp.1824

Jain, S. K., & Singh, V. P. (2003). Water resources systems planning and management. Amsterdam: Elsevier.

Kämpf, N., & Curi, N. (2000). Óxidos de ferro: indicadores de ambientes pedogênicos e geoquímicos. In R. F. Novais, V. H. Alvarez, & C. E. G. R. Schaefer (Eds.), Tópicos em ciência do solo, 1 (pp. 107-138). Viçosa, MG: Sociedade Brasileira de Ciência do Solo.

Kämpf, N., Marques, J. J., & Curi, N. (2012). Mineralogia de solos brasileiros. In J. C. Ker, N. Curi, C. E. Schaefer, & P. V. Torrado (Eds.), Pedologia; fundamentos (pp. 81-145). Viçosa, MG: Sociedade Brasileira de Ciência do Solo.

Ker, J. C. (1997). Latossolos do Brasil: uma revisão. Revista Geonomos, 5(1), 17-40. doi: 10.18285/geonomos.v5i1.187

Laceby, J. P., Evrard, O., Smith, H. G., Blake, W. H., Olley, J. M., Minella, J. P., & Owens, P. N. (2017). The challenges and opportunities of addressing particle size effects in sediment source fingerprinting: a review. Earth-Science Reviews, 169(2017), 85-103. doi: 10.1016/j.earscirev.2017.04.009

Le Gall, M., Evrard, O., Dapoigny, A., Tiecher, T., Zafar, M., Minella, J. P. G.,... & Ayrault, S. (2017). Tracing sediment sources in a subtropical agricultural catchment of Southern Brazil cultivated with conventional and conservation farming practices. Land degradation & development, 28(4), 1426-1436. doi: 10.1002/ldr.2662

Lima, P. L. T., Silva, M. L. N., Quinton, J. N., Batista, P. V. G., Cândido, B. M., & Curi, N. (2018). Relationship among crop systems, soil cover, and water erosion on a Typic Hapludox. Revista Brasileira de Ciência do Solo, 42(2018), e0170081. doi: 10.1590/18069657rbcs20170081

Lu, S. G., Xue, Q. F., Zhu, L., & Yu, J. Y. (2008). Mineral magnetic properties of a weathering sequence of soils derived from basalt in Eastern China. Catena, 73(1), 23-33. doi: 10.1016/j.catena.2007.08.004

Maher, B. A. (1998). Magnetic properties of modern soils and Quaternary loessic paleosols: paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 137(1-2), 25-54. doi: 10.1016/S0031-0182(97)00103-X

Maher, B. A., Thompson, R., & Hounslow, M. W. (1999) Introduction. In B. A. Maher, & R. Thompson (Eds.), Quaternary climates, environments and magnetism (pp. 1-48). Cambridge: Cambridge University Press.

Maher, B. A., Watkins, S. J., Brunskill, G., Alexander, J., & Fielding, C. R. (2009). Sediment provenance in a tropical fluvial and marine context by magnetic ‘fingerprinting’ of transportable sand fractions. Sedimentology, 56(3), 841-861. doi: 10.1111/j.1365-3091.2008.00999.x

Mathias, G. L., Nagai, R. H., Trindade, R. I., & Mahiques, M. M. de. (2014). Magnetic fingerprint of the late Holocene inception of the Río de la Plata plume onto the southeast Brazilian shelf. Palaeogeography, Palaeoclimatology, Palaeoecology, 415(2014), 183-196. doi: 10.1016/j.palaeo.2014.03.034

Morgan, R. P. C. (2009). Soil erosion and conservation (3nd ed.). Oxford: Blackwell Publishing.

Munsell Color Company (1946). Munsell soil colour charts. Baltimore, Maryland.

Oliveira, P. T. S., Nearing, M. A., & Wendland, E. (2015). Orders of magnitude increase in soil erosion associated with land use change from native to cultivated vegetation in a Brazilian savannah environment. Earth Surface Processes and Landforms, 40(11), 1524-1532. doi: 10.1002/esp.3738

Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M.,... & Blair, R. (1995). Environmental and economic costs of soil erosion and conservation benefits. Science, 267(5201), 1117-1123. doi: 10.1126/science.267.5201.1117

Poggere, G. C., Inda, A. V., Barrón, V., Kämpf, N., Brito, A. D. B. de, Barbosa, J. Z., & Curi, N. (2018). Maghemite quantification and magnetic signature of Brazilian soils with contrasting parent materials. Applied Clay Science, 161(2018), 385-394. doi: 10.1016/j.clay.2018.05.014

Pulley, S., & Rowntree, K. (2016). Stages in the life of a magnetic grain: sediment source discrimination, particle size effects and spatial variability in the South African Karoo. Geoderma, 271(2016), 134-143. doi: 10.1016/j.geoderma.2016.02.0

Pulley, S., Van der Waal, B., Rowntree, K., & Collins, A. L. (2018). Colour as reliable tracer to identify the sources of historically deposited flood bench sediment in the Transkei, South Africa: A comparison with mineral magnetic tracers before and after hydrogen peroxide pre-treatment. Catena, 160(2018), 242-251. doi: 10.1016/j.catena.2017.09.018

Resende, M., Curi, N., & Rezende, S. B. (2017). Uso agrícola e não agrícola das informações pedológicas. In N. Curi, J. C. Ker, R. F. Novais, P. V. Torrado, & C. E. G. R. Schaefer (Eds.), Pedologia: solos dos biomas brasileiros (pp. 47-110). Viçosa, MG: Sociedade Brasileira de Ciência do Solo.

Royall, D. (2003). A fifty-year record of historical sedimentation at Deer Lake, North Carolina. The Professional Geographer, 55(3), 356-371. doi: 10.1111/0033-0124.5503012

Saran, L. M., Meneghine, A. K., Célico, A. S., Pinheiro, D. G., & Alves, L. M. C. (2017). Freshwater quality of a stream in agricultural area where organic compost from animal and vegetable wastes is used. Ciência e Agrotecnologia, 41(3), 263-278. doi: 10.1590/1413-70542017413037616

Silva, A. M., Silva, M. L. N., Curi, N., Lima, J. M. de, Avanzi, J. C., & Ferreira, M. M. (2005). Perdas de solo, água, nutrientes e carbono orgânico em Cambissolo e Latossolo sob chuva natural. Pesquisa Agropecuária Brasileira, 40(12), 1223-1230. doi: 10.1590/S0100-204X2005001200010

Silva, A. R. D., Souza, I. G. D., Jr., & Costa, A. C. S. D. (2010). Magnetic susceptibility of B horizon of soils in the state of Paraná. Revista Brasileira de Ciência do Solo, 34(2), 329-338. doi: 10.1590/S0100-06832010000200006

Silva, E. (2018). Mapeamento de solos e uso de algoritimos de aprendizagem em Lavras (MG). Tese de doutorado, Universidade Federal de Lavras, Lavras, Brasil. Recuperado de

Silva, S., Poggere, G., Menezes, M., Carvalho, G., Guilherme, L., & Curi, N. (2016). Proximal sensing and digital terrain models applied to digital soil mapping and modeling of Brazilian Latosols (Oxisols). Remote Sensing, 8(8), 614. doi:

Snowball, I., & Thompson, R. (1988). The occurrence of greigite in sediments from Loch Lomond. Journal of Quaternary Science, 3(2), 121-125. doi: 10.1002/jqs.3390030203

Soil Survey Staff (2014). Keys to soil taxonomy (12nd ed.). Washington, DC: United States Department of Agriculture, Natural Resources Conservation Service.

Tian, P., An, Z., Zhao, G., Gao, P., Li, P., Sun, W., & Mu, X. (2019). Assessing sediment yield and sources using fingerprinting method in a representative catchment of the Loess Plateau, China. Environmental Earth Sciences, 78(8), 261. doi: 10.1007/s12665-019-8240-1

Vahabi, J., & Nikkami, D. (2008). Assessing dominant factors affecting soil erosion using a portable rainfall simulator. International Journal of Sediment Research, 23(4), 376-386. doi: 10.1016/S1001-6279(09)60008-1

Walden, J., Oldfield, F., & Smith, J. (1999). Environmental Magnetism: A practical guide. London: Quaternary Research Association. Technical Guide No. 6.

Walling, D. E. (2013). The evolution of sediment source fingerprinting investigations in fluvial systems. Journal of Soils and Sediments, 13(10), 1658-1675. doi: 10.1007/s11368-013-0767-2

Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses-a guide to conservation planning. Washington, DC: United States Department of Agriculture.

Zhang, X. C., Nearing, M. A., Garbrecht, J. D., & Steiner, J. L. (2004). Downscaling monthly forecasts to simulate impacts of climate change on soil erosion and wheat production. Soil Science Society of America Journal, 68(4), 1376-1385. doi: 10.2136/sssaj2004.1376


Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional