Pesticide residues in Junca Onion (Allium fistulosum) cultivated in Risaralda, Colombia

Juan Pablo Arrubla Velez, Nathaly Villa Pulgarín, Eddi Arsail Grisales Betancur, Jose Manuel Grisales Bedoya, Melissa Andrea Gómez Benitez, Gloria Edith Guerrero Álvarez, Diego Paredes Cuervo

Abstract


By 2050, the world population will reach 9.2 billion, increasing the food demand by twice. Lowering loss due to pests is still challenging, where pesticides play an important role, but its indiscriminate use causes inadequate residual amounts to be present in foods. This study aims to monitor the organochlorine and organophosphorus pesticide residuality in Allium fistulosum cultivated in Risaralda, Colombia using gas chromatography - mass spectrometry (GC-MS). This method presented a highly sensitive (LOD: 0.11-7.15 µg kg-1), acceptable precision (RSD: 0.83-1.35%) and recoveries percentages between 46.32% - 118.67%. A greater presence of organochlorine pesticides banned or severely restricted by the Rotterdam agreement, such as 4,4'-DDT, was reported in samples of Allium fistulosum, with concentrations up to 221.22 ?g kg-1, while endrin with a concentration of 469.23 ?g kg-1 and its degradation products which exceed the maximum residue limite (MRL) for plant samples, reported by the Codex Alimentarius. According to this MRL, it was found that 73.1% of the samples have residual exceeding the allowed limit of organochlorine pesticides by more than forty times, posing a risk to human health and the ecosystem. Continuous monitoring and strict governmental control are required to reduce the exposure of humans and other living beings.

Keywords


Allium fistulosum; Chromatography; MR; Organophosphorus pesticide; Organochlorine pesticide.

Full Text:

PDF

References


Acosta Rodrigues, S., Souza Caldas, S., & Primel, E. G. (2010). A simple; efficient and environmentally friendly method for the extraction of pesticides from onion by matrix solid-phase dispersion with liquid chromatography tandem mass spectrometric detection. Analytica Chimica Acta, 678(1), 82-89. doi: 10.1016/j.aca.2010.08.026

Ahmed, F. E. (2001). Analyses of pesticides and their metabolites in foods and drinks. TrAC Trends in Analytical Chemistry, 20(11), 649-661. doi:10.1016/S0165-9936(01)00121-2

Aktar, M. W., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology, 2(1), 1-12. doi:10.2478/v10102-009-0001-7

Alamgir Zaman Chowdhury, M., Fakhruddin, A. N. M., Nazrul Islam, M., Moniruzzaman, M., Gan, S. H., & Khorshed Alam, M. (2013). Detection of the residues of nineteen pesticides in fresh vegetable samples using gas chromatography mass spectrometry. Food Control, 34(2), 457-465. doi: 10.1016/j.foodcont.2013.05.006

Alder, L., Greulich, K., Kempe, G., & Vieth, B. (2006). Residue analysis of 500 high priority pesticides: Better by GC-MS or LC-MS/MS? Mass Spectrometry Reviews. 25(6):838-65. doi: 10.1002/mas.20091

Arias, H. F, Arrubla, J. P, & Giraldo, A. I. (2018). Cálculo de la incertidumbre en la determinación de plaguicidas organoclorados y triazoles en café verde por GC-MS. Revista Facultad de Ciencias Basicas, 14(1), 1-9. doi:10.18359/rfcb.3126

Benotti, M. J., Trenholm, R. A., Vanderford, B. J., Holady, J. C., Stanford, B. D., & Snyder, S. A. (2009). Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environmental Science & Technology, 43(3), 597-603. doi: 10.1016/S0021-9673(96)00297-X

Biziuk, B. M., Przyjazny, A., Czerwmskl, J., & Wiergowski, M. (1996). Occurrence and determination of pesticides in natural and treated waters. Journal of Chromatography A, 754, 103-123. doi: 10.1016/S0021-9673(96)00297-X

Carvalho, F. P., Nhan, D. D., Zhong, C., Tavares, T., & Klaine, S. (1998). Result of an International Research Porject Tracking Pesticides in the Tripocs. IAEA BULLETIN, 40(3), 1-7.

Departamento Administrativo Nacional de Estadísticas, DANE. (2015). Boletín Mensual Insumos y Factores Asociados a la Producción Agropecuaria, 35. Bogotá, Colombia.

Dramiñski, W., & Zagorzycki, J. (1984). Evaluación de residuos de plaguicidas organoclorados y organofosforados en granos. Asociación Venezolana para el Avance de la Ciencia. Acta Científica Venezolana, 35(1), 69-78. Recuperado de http://ve.scielo.org/scielo.php?script=sci_arttext&pid= S1316-33612007000200002&lng=es&nrm=iso

Food and Agriculture Organization (1998). Rotterdam Convention. On the prior informed consent procedure for certain hazardous chemicals and pesticides in international trade. Rotterdam, Netherland: Rotterdam Convention Secretariat, United Nations Environment Programme (UNEP) Retrieved from http://www.pic.int/TheConvention/Overview/TextoftheConvention/ tabid/1048/ language/en-US/Default.aspx

Food and Agriculture Organization (2004). Pesticide residues in food 2004. Evaluations. Part I - Residues. Roma, Italia: Rotterdam Convention Secretariat, Food and Agriculture Organization of the United Nations (FAO). Retrieved from http://www.fao.org/fileadmin/templates/agphome/ documents/ Pests_Pesticides/JMPR/Evaluation04/JMPR2004eva.pdf

Food and Agriculture Organization (2009). Feeding the world in 2050. World agricultural summit on food security. Rome: Food and Agriculture Organization of the United Nations

Food and Agriculture Organization (2017). CODEX Alimentarius: Pesticide MRLs. Food and Agriculture Organization of the United Nations, World Health Organization. Retrieved from http://www.fao.org/fao-who-codexalimentarius/standards/pesticide-mrls/en/

Food and Agriculture Organization of the United Nations (2016). CROPS-FAOSTAT. Countries - Select All; Regions - World + (Total); Elements - Production Quantity; Items - Onion, dry + Onions, shallots, green. Retrieved from http://www.fao.org/faostat/en/#data/QC/visualize

Gamón, M., Lleó, C., & Ten, A. (2001). Multiresidue Determination of Pesticides in Fruit and Vegetables by Gas Chromatography/Tandem Mass Spectrometry. Journal of AOAC International, 84(4), 1209-1216. Retrieved from http://lib3.dss.go.th/fulltext/Journal/J.AOAC1999-2003/ J.AOAC2001/v84n4(jul-aug)/v84n4p1209.pdf

Geerdink, R. B., Niessen, W. M. A., & Brinkman, U. A. T. (2002). Trace-level determination of pesticides in water by means of liquid and gas chromatography. Journal of Chromatography A, 970(1–2), 65-93. doi: 10.1016/S0021-9673(02)00234-0

Gent, D. H., du Toit, L. J., Fichtner, S. F., Mohan, S. K., Pappu, H. R., & Schwartz, H. F. (2006). Iris yellow spot virus: An Emerging Threat to Onion Bulb and Seed Production. Plant Disease, 90(12), 1468-1480. doi: 10.1094/PD-90-1468

Giraldo Rivera, A. I., Guerrero Alvarez, G. E., Arrubla, J. P., Baena, L. M, Paredes Cuervo, D., & Gomez Benitez, M. A. (2020) The effects of Annonaceae and Amaryllidaceae extracts in controlling the Thrips tabaci Lindeman (Thysanoptera: Thripidae). Revista Brasileira de Ciências Agrárias, 15(2), e6933, 1-9. doi: 10.5039/agraria.v15i2a6933

Gomiero, T., Paoletti, M. G., & Pimentel, D. (2008). Energy and Environmental Issues in Organic and Conventional Agriculture. Critical Reviews in Plant Sciences, 27(4), 239-254. doi: 10.1080/ 07352680802225456

Goujon, E., Sta, C., Trivella, A., Goupil, P., Richard, C., & Ledoigt, G. (2014). Genotoxicity of sulcotrione pesticide and photoproducts on Allium cepa root meristem. Pesticide Biochemistry and Physiology, 113, 47-54. doi: 10.1016/j.pestbp.2014.06.002

Guan, W., Li, C., Liu, X., Zhou, S., & Ma, Y. (2014). Graphene as dispersive solidphase extraction materials for pesticides LC-MS/MS multi-residue analysis in leek, onion and garlic. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 31(2), 250-261. doi: 10.1080/19440049.2013.865278

Hajjo, R. M., Afifi, F. U., & Battah, A. H. (2007). Multiresidue pesticide analysis of the medicinal plant Origanum syriacum. Food Additives and Contaminants, 24(3), 274-279. doi: 10.1080/ 02652030600986198

Kruve, A., Künnapas, A., Herodes, K., & Leito, I. (2008). Matrix effects in pesticide multi-residue analysis by liquid chromatography-mass spectrometry. Journal of Chromatography A, 1187(1-2), 58-66. doi: 10.1016/j.chroma.2008.01.077

Li, J., Liu, D., Wu, T., Zhao, W., Zhou, Z., & Wang, P. (2014). A simplified procedure for the determination of organochlorine pesticides and polychlorobiphenyls in edible vegetable oils. Food Chemistry, 151, 47-52. doi: 10.1016/j.foodchem.2013.11.047

Naqvi, S. M., & Vaishnavi, C. (1993). Bioaccumulative potential and toxicity of endosulfan insecticide to non-target animals. Comparative Biochemistry and Physiology. C, Comparative Pharmacology and Toxicology, 105(3), 347-361. doi: 10.1016/0742-8413(93)90071-R

Ozcan, C. (2016). Determination of organochlorine pesticides in some vegetable samples using GC-MS. Polish Journal of Environmental Studies, 25(3), 1141-1147. doi: 10.15244/pjoes/61627

Peterson, P. M., Annable, C. R., & Rieseberg, L. H. (1988). Systematic Relationships and Nomenclatural Changes in the Allium douglasii Complex (Alliaceae). Systematic Botany, 13(2), 207. doi: 10.2307/2419099

Popp, J., Pet?, K., & Nagy, J. (2013). Pesticide productivity and food security. A review. Agronomy for Sustainable Development, 33(1), 243-255. doi: 10.1007/s13593-012-0105-x

Quintero, A., Caselles, M. J., Ettiene, G., De Colmenares, N. G., Ramírez, T., & Medina, D. (2008). Monitoring of organophosphorus pesticide residues in vegetables of agricultural area in Venezuela. Bulletin of Environmental Contamination and Toxicology, 81(4), 393-396. doi: 10.1007/s00128-008-9511-9

Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS ONE, 8(6), e66428. doi: 10.1371/journal. pone.0066428

Sapbamrer, R., & Hongsibsong, S. (2014). Organophosphorus pesticide residues in vegetables from farms, markets, and a supermarket around Kwan Phayao Lake of Northern Thailand. Archives of Environmental Contamination and Toxicology, 67(1), 60-67. doi: 10.1007/s00244-014-0014-x

Scherbaum, E., Anastassiades, M., Schüle, E., Bauer, N., Ellendt, K., & Wieland, M. (2008). Evaluation based on Residue Findings GC-MS or LC-MS(/MS)-Which Technique is More Essential? Chemisches und Veterinäruntersuchungsamt | Stuttgart EPRW 2008 (25), 1.

Sinclair, C. J., & Boxall, A. (2003). Assessing the Ecotoxicity of Pesticide Transformation Products. Environmental Science & Technology, 37(20), 4617-4625. doi: 10.1021/ES030038M

Sishu, F. K., Thegaye, E. K., Schmitter, P., Habtu, N. G., Tilahun, S. A., & Steenhuis, T. S. (2020). Endosulfan pesticide dissipation and residue levels in khat and onion in a sub-humid region of Ethiopia. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 308, 16-28. doi: 10.1007/978-3-030-43690-2_2

Skovgaard, M., Renjel Encinas, S., Jensen, O. C., Andersen, J. H., Condarco, G., & Jørs, E. (2017). Pesticide Residues in Commercial Lettuce, Onion, and Potato Samples from Bolivia A Threat to Public Health? Environmental Health Insights, 11, 1-8. doi: 10.1177/1178630217704194

Soler, C., Mañes, J., & Picó, Y. (2005). Routine application using single quadrupole liquid chromatography-mass spectrometry to pesticides analysis in citrus fruits. Journal of Chromatography A, 1088(1-2), 224-233. doi: 10.1016/j.chroma.2005.03.106

Stachniuk, A., & Fornal, E. (2016). Liquid Chromatography-Mass Spectrometry in the Analysis of Pesticide Residues in Food. Food Analytical Methods, 9(6), 1654-1665. doi: 10.1007/s12161-015-0342-0

Tien, C. J., Lin, M. C., Chiu, W. H., & Chen, C. S. (2013). Biodegradation of carbamate pesticides by natural river biofilms in different seasons and their effects on biofilm community structure. Environmental Pollution, 179, 95-104. doi: 10.1016/J.ENVPOL.2013.04.009

Xu, D., Liang, D., Guo, Y., & Sun, Y. (2018). Endosulfan causes the alterations of DNA damage response through ATM-p53 signaling pathway in human leukemia cells. Environmental Pollution, 238, 1048-1055. doi: 10.1016/j.envpol.2018.03.044




DOI: http://dx.doi.org/10.5433/1679-0359.2020v41n5supl1p1875

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional