Can cover sheath model influence semen retention in AI-gun trials and pregnancy rates of cows inseminated at a fixed-time?

André Maciel Crespilho, Lorenzo Garrido Segabinazzi, Helton Nunes Pinto, Tiago Camargo, Cristiano Silva Ferreira, Igor Cavalheiro, Kleber da Cunha Peixoto Junior, Ronaldo Aoki Cerri

Abstract


The achievement of satisfactory results in fixed-time artificial insemination (FTAI) protocols depends on several factors, such as the quality of the materials used to perform the artificial insemination (AI). In this context, three experiments were conducted to evaluate the effect of the cover sheath model on the residual retention of semen during AI and the pregnancy rates of cows submitted to FTAI. In Experiment 1, 400 straws of cryopreserved bovine semen were thawed and repacked in samples with similar weight and volume characteristics. Each new dose of semen (n = 300) was mounted using one of three AI cover sheath models (n = 100 semen/sheath doses): the main brand in the global market (G1), the main model in the Brazilian market (G2), and a model marketed as having a low residual semen retention rate (G3), to determine the percentages of seminal elimination (PSEs) during AI. In Experiment 2, 464 Nelore cows were synchronized through intravaginal progesterone implants and inseminated using the same cover sheaths as those tested in Experiment 1, which were grouped into classes (conventional: G1 and G2 [n = 225]; and low reflux: G3 [n = 239]). In Experiment 3, 859 Nelore cows were synchronized and inseminated as described above, using the same cover sheaths previously tested. After each AI, cover sheaths were visually inspected for the presence of residual semen and pregnancy diagnosis was performed 35 days after FTAI (Experiments 2 and 3). The PSEs in Experiment 1 were 91.7%, 90.6% and 96.5% for groups G1, G2 and G3, respectively (P = 0.05). The pregnancy rates in Experiment 2 were 53.33% and 58.16% for the conventional and low reflux model, respectively (P > 0.05), but there were differences (P = 0.05) among the cover sheath models employed for AI (G1 - 57.72% [71/123]; G2 - 48.04% [49/102]; G3 - 58.16% [139/239]). Additionally, a lower semen reflux incidence (P < 0.05) was observed in the low residual sperm retention model (0.72%) in Experiment 3, compared to the main international (10.42%) and national (22.99%) market models. In conclusion, residual semen retention occurs regardless of the cover sheath model used for AI. However, the PSE is influenced by the model and quality of cover sheath used. According to the results, the cover sheath represents a factor that may compromise the pregnancy rates of synchronized cows for FTAI.

Keywords


Beef cattle; Bovine; Artificial insemination; FTAI; Conception rates.

Full Text:

PDF

References


Andersson, M., Taponen, J., Koskinen, E., & Dahlbom, M. (2004). Effect of insemination with doses of 2 or 15 million frozen-thawed spermatozoa and semen deposition site on pregnancy rate in dairy cows. Theriogenology, 61(7-8), 1583-1588. doi: 10.1016/j.theriogenology.2003.09.006

Ayres, H., Ferreira, R. M., Torres, J. R. S., Jr., Demétrio, C. G. B., Lima, C. G. de, & Baruselli, P. S. (2009). Validation of body condition score as a predictor of subcutaneous fat in Nelore (Bos indicus) cows. Livestock Science, 123(2-3), 175-179. doi: 10.1016/j.livsci.2008.11.004

Baruselli, P. S., Sales, J. N. S., Sala, R. V., Vieira, L. M., & Sá, M. F., Fº. (2012). History, evolution and perspectives of timed artificial insemination programs in Brazil. Animal Reproduction, 9(3), 139-152. Retrieved from http://s3.amazonaws.com/host-article-assets/animreprod/5b5a6055f 7783717068b46d7 /fulltext.pdf

Bishop, B. E., Thomas, J. M., Abel, J. M., Poock, S. E., Ellersieck, M. R., Smith, M. F., & Patterson, D. J. (2017). Split-time artificial insemination in beef cattle: III. Comparing fixed-time artificial insemination to split-time artificial insemination with delayed administration of GnRH in postpartum cows. Theriogenology, 99(1), 48-52. doi: 10.1016/j.theriogenology.2017.04.046

Bodmer, M., Janett, F., Hassig, M., Den Daas, N., Reichert, P., & Thun, R. (2005). Fertility in heifers and cows after low dose insemination with sex-sorted and non-sorted sperm under field conditions. Theriogenology, 64(7), 1647-1655. doi: 10.1016/j.theriogenology.2005.04.011

Colégio Brasileiro de Reprodução Animal (2013). Manual de Exame Andrológico e Avaliação de Sêmen Animal (3a ed.). Belo Horizonte: CBRA.

Carvalho, P. D., Souza, A. H., Sartori, R., Hackbart, K. S., Dresch, A. R., Vieira, L. M.,... Wiltbank, M. C. (2013). Effects of deep-horn AI on fertilization and embryo production in superovulated cows and heifers. Theriogenology, 80(9), 1074-1081. doi: 10.1016/j.theriogenology.2013.08.008

Cazales, N., Fiala-Rechsteiner, S. M., Cavestany, D., & Mattos, R. C. (2018). Insemination dose and site with frozen semen affects the sperm transport and inflammatory response in mares? Journal of Equine Veterinary Science, 66(1), 109-110. doi: 10.1016/j.jevs.2018.05.155

Crespilho, A. M., Chiaradia, L., Cortez, A., Dinelli, M. V., Papa, F. O., Gomes, G. M., & Peixoto, K. C., Jr. (2017). Sensitivity evaluation of the computer-assisted sperm analysis (CASA) in the determination of frozen-thawed bull semen concentration. Brazilian Journal of Veterinary Research and Animal Science, 54(3), 247-252. doi: 10.11606/issn.1678-4456.bjvras.2017.127773

Crespilho, A. M., Papa, F. O., Sá, M. F., Fº., Guasti, P. N., Dell’Aqua, J. A., Jr., Vasconcelos, J. L. C.,... Martins, A., Jr. (2014). The influence of insemination dose on pregnancy per fixed-time artificial insemination in beef cows is affected by semen extender. Animal Reproduction, 11(1), 3-10. Retrieved from https://www.researchgate.net/publication/261876297_The_influence_of_insemination_ dose_on_ pregnancy_per_fixed-time_artificial_insemination_in_beef_cows_is_affected_by_semen_ extender

Dalton, J. C., Nadir, S., Bame, J. H., & Saacke, R. G. (1999). Effect of a deep uterine insemination on spermatozoa accessibility to the ovum in cattle: a competitive insemination study. Theriogenology, 51(5), 883-890. doi: 10.1016/S0093-691X(99)00035-7

Dalton, J. C., Nadir, S., Bame, J. H., Noftsinger, M., Nebel, R. L., & Saacke, R. G. (2001). Effect of time of insemination on number of accessory sperm, fertilization rate, and embryo quality in nonlactating dairy cattle. Journal of Dairy Science, 84(11), 2413-2418. doi: 10.3168/jds.S0022-0302(01)74690-5

Dejarnette, J. M., Saacke, R. G., Bame, J., & Vogler, C. J. (1992). Accessory sperm: their importance to fertility and embryo quality and attempts to alter their numbers in artificially inseminated cattle. Journal of Animal Science, 70(2), 484-491. doi: 10.3168/jds.S0022-0302(92)77809-6

Den Daas, J. H., De Jong, G., Lansbergen, L. M., & Van Wagtendonk-De Leeuw, A. M. (1998). The relationship between the number of spermatozoa inseminated and the reproductive efficiency of individual dairy bulls. Journal of Dairy Science, 81(6), 1714-1723. doi: 10.3168/jds.S0022-0302(98)75739-X

Edwards, S. A. A., Bo, G. A., Chandra, K. A., Atkinson, P. C., & McGowan, M. R. (2015). Comparison of the pregnancy rates and costs per calf born after fixed-time artificial insemination or artificial insemination after estrus detection in Bos indicus heifers. Theriogenology, 83(1), 114-120. doi: 10.1016/j.theriogenology.2014.08.017

Johnson, S. K., & Dahlke, G. (2016). Production practices and value of artificial insemination and estrus synchronization programs of United States beef producers. The Professional Animal Scientist, 32(1), 90-98. doi: 10.15232/pas.2015-01440

Lamb, G. C., & Mercadante, V. R. G. (2016). Synchronization and artificial insemination strategies in beef cattle. Veterinary Clinics: Food Animal Practice, 32(2), 335-347. doi: 10.1016/j.cvfa.2016.01.006

López-Gatius, F. (2012). Factors of a noninfectious nature affecting fertility after artificial insemination in lactating dairy cows. A review. Theriogenology, 77(6), 1029-1041. doi: 10.1016/j.theriogenology. 2011.10.014

Nadir, S., Saacke, R. G., Bame, J., Mullins, J., & Degelos, S. (1993). Effect of freezing and dosage of sperm on number of accessory sperm, fertility, and embryo quality in artificially inseminated cattle. Journal of Animal Science, 71(1), 199-204. doi: 10.2527/1993.711199x

Oliveira, B. M., Arruda, R. P., Thomé, H. E., Maturana, M., Fº., Oliveira, G., Guimarães, C., Celeghini, E. C. C. (2014). Fertility and uterine hemodynamic in cows after artificial insemination with semen assessed by fluorescent probes. Theriogenology, 82(5), 767-772. doi: 10.1016/j.theriogenology.2014.06.007

Oliveira, L. Z., Arruda, R. P., Andrade, A. F. C., Celeghini, E. C. C., Reeb, P. D., Martins, J. P. N., Lima, V. F. M. H. (2013). Assessment of in vitro sperm characteristics and their importance in the prediction of conception rate in a bovine timed-AI program. Animal Reproduction Science, 137(3-4), 145-155. doi: 10.1016/j.anireprosci.2013.01.010

Oliveira, L. Z., Arruda, R. P., Andrade, A. F. C., Santos, R. M., Beletti, M. E., Peres, R. F. G.,... Lima, V. F. M. H. (2012). Effect of sequence of insemination after simultaneous thawing of multiple semen straws on conception rate to timed AI in suckled multiparous Nelore cows. Theriogenology, 78(8), 1800-1813. doi: 10.1016/j.theriogenology.2012.07.007

Pessoa, G. A., Martini, A. P., Baioco, A. P., Trajano, J. G., Weigert, J. M., Minela, T.,... Rubin, M. I. B. (2016). Refluxo de espermatozoides em bainhas utilizadas para inseminação artificial em bovinos. Anais da Reunião Anual da Sociedade Brasileira de Tecnologia de Embriões, Foz do Iguaçu, PR, Brasil, 30. Recuperado de http://www.sbte.org.br/arquivos/anais/anais-2016.pdf

Richards, M. W., Spitzer, C., Newmand, S. K., & Thompson, C. E. (1984). Bovine pregnancy and nonreturn rates following artificial insemination using a covered sheath. Theriogenology, 21(6), 949-957. doi: 10.1016/0093-691X(84)90388-1

Saacke, R. G., Dalton, J. C., Nadir, S., Nebel, R. L., & Bame, J. H. (2000). Relationship of seminal traits an insemination time to fertilization rate and embryo quality. Animal Reproduction Science, 60-61(2), 663-677. doi: 10.1016/S0378-4320(00)00137-8

Thomé, H. E., Arruda, R. P., Oliveira, B. M. M., Maturana, M., Fº., Oliveira, G. C., Guimarães, C. F.,… Celeghini, E. C. C. (2016). Uterine lavage is efficient to recover endometrial cytology sample and does not interfere with fertility rate after artificial insemination in cows. Theriogenology, 85(9), 1549-1554. doi: 10.1016/j.theriogenology.2016.01.014

Verberckmoes, S., Soom, A. V., Pauw, I., Dewulf, J., Vervaet, C., & Kruif, A. (2004). Assessment of a new utero-tubal junction insemination device in dairy cattle. Theriogenology, 61(1), 103-115. doi: 10.1016/S0093-691X(03)00186-9

Vishwanath, R. (2003). Artificial insemination: the state of the art. Theriogenology, 59(2), 571-584. doi: 10.1016/S0093-691X(02)01241-4

Vries, M., & Boer, I. J. M. (2010). Comparing environmental impacts for livestock products: a review of life cycle assessments. Livestock Science, 128(1-3), 1-11. doi: 10.1016/j.livsci.2009.11.007

Wiltbank, M. C., & Pursley, J. R. (2014). The cow as an induced ovulator: timed AI after synchronization of ovulation. Theriogenology, 81(1), 170-185. doi: 10.1016/j.theriogenology.2013.09.017




DOI: http://dx.doi.org/10.5433/1679-0359.2020v41n5p1601

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional