Azospirillum inoculation of 'Marandu' palisade grass seeds: effects on forage production and nutritional status

Reges Heinrichs, Guilherme Constantino Meirelles, Luiz Felipe de Melo Santos, Maikon Vinicius da Silva Lira, Allan de Marcos Lapaz, Marco Antonio Nogueira, Carolina dos Santos Batista Bonini, Cecílio Viega Soares Filho, Adônis Moreira


Plant-growth-promoting bacteria can be used for sustainable forage grass production while increasing nutrition and biomass. Most of the soils under pasture in the tropics have a degradation level that impairs the forage yield potential, especially because of mismanagement and lack of fertilization. The objective of this work was to evaluate the seed inoculation effects of Azospirillum brasilense on the shoot and root dry mass production and nutritional status of Urochloa brizantha cv. ‘Marandu’ under field conditions for two years in a low-fertility soil. The experimental design was a randomized block design with four replications, arranged in a 2 × 3 factorial scheme, comprised of two doses of A. brasilense (0 and 200 mL ha-1) in combination with three doses of N (0, 25 and 50 kg ha-1). Seed inoculation increased shoot dry mass by 13% in the first year and by 6% in the second year, whereas N application increased dry mass by 27% and 35% in the first and second year, respectively. The concentration of nutrients in the shoots did not change due to the inoculation, but N fertilization affected P, Mg, Fe, Mn, and Zn in the first year and N, P and Cu in the second year. Root dry mass increased 36% with fertilization of 25 kg N ha-1 plus inoculation in relation to the other treatments in the first year. In the second year, the inoculation of A. brasilense increased by 17%. Therefore, seed inoculation of Urochloa brizantha cv. ‘Marandu’ with Azospirillum brasilense increased root and shoot dry mass production in some cuts without influencing tiller numbers. Nitrogen fertilization altered N, Mg, P, Fe, Mn, Zn, and Cu concentrations in shoot dry mass.


Diazotrophic bacteria; Nitrogen; Growth promoting; Pasture; Urochloa brizantha.

Full Text:



Araújo, F. F., Guaberto, L. M., & Silva, I. F. (2012). Bioprospection of plant growth promoter rhizobacteria in Brachiaria brizantha. Brazilian Journal of Animal Science, 41(3), 521-527. doi: 10.1590/S1516-35982012000300007

Baldani, I. J., Reis, V. M., Videira, S. S., Boddey, L. H., & Baldani, V. L. B. (2014). The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiologists. Plant and Soil, 384(1-2), 413-431. doi: 10.1007/s11104-014-2186-6

Bashan, Y., & de-Bashan, L. E. (2005). Fresh-weight measurements of roots provide inaccurate estimates of the effects of plant growth-promoting bacteria on root growth: a critical examination. Soil Biology and Biochemistry, 37(10), 1795-1804. doi: 10.1016/j.soilbio.2005.02.013

Carvalhais, L. C., Dennis, P. G., Fan, B., Fedoseyenko, D., Kierul, K., Becker, A.,… Borriss, R. (2013). Linking plant nutritional status to plant-microbe interactions. PLoS One, 8(7), 1-13, e68555. doi: 10.1371/journal.pone.0068555

Cassán, F., & Diaz-Zorita, M. (2016). Azospirillum sp. in current agriculture: from the laboratory to the field. Soil Biology and Biochemistry, 103(12), 117-130. doi: 10.1016/j.soilbio.2016.08.020

Cezário, A. S., Ribeiro, K. G., Santos, S. A., Valadares, S. de C., Fº., & Pereira, O. G. (2015). Silages of Brachiaria brizantha cv. Marandu harvested at two regrowth ages: microbial inoculant responses in silage fermentation, ruminant digestion and beef cattle performance. Animal Feed Science and Technology, 208(10), 33-43. doi: 10.1016/j.anifeedsci.2015.06.025

Chinnadurai, C., Gopalaswamy, G., & Balachandar, D. (2014). Long term effects of nutrient management regimes on abundance of bacterial genes and soil biochemical processes for fertility sustainability in a semi-arid tropical Alfisol. Geoderma, 232(11), 563-572. doi: 10.1016/j.geoderma.2014.06.015

De Salamone, I. E. G., Di Salvo, L. P., Ortega, J. S. E., Sorte, P. M. B., Urquiaga, S., & Teixeira, K. R. (2010). Field response of rice paddy crop to Azospirillum inoculation: physiology of rhizosphere bacterial communities and the genetic diversity of endophytic bacteria in different parts of the plants. Plant and Soil, 336(1-2), 351-362. doi: 10.1007/s11104-010-0487-y

De Salamone, I. E. G., Funes, J. M., Di Salvo, L. P., Escobar-Ortega, J. S., D’Auria, F., Ferrando, L., & Fernandez-Scavino, A. (2012). Inoculation of paddy rice with Azospirillum brasilense and Pseudomonas fluorescens: impact of plant genotypes on rhizosphere microbial communities and field crop production. Applied Soil Ecology, 61(10), 196-204. doi: 10.1016/j.apsoil.2011.12.012

Delaporte-Quintana, P., Grillo-Puertas, M., Lovaisa, N. C., Teixeira, K. R., Rapisarda, V. A., & Pedraza, R. O. (2017). Contribution of Gluconacetobacter diazotrophicus to phosphorus nutrition in strawberry plants. Plant and Soil, 419(1-2), 335-347. doi: 10.1007/s11104-017-3349-z

Di Salvo, L. P., Ferrando, L., Fernández-Scavino, A., & Salamone, I. E. G. de. (2018). Microorganisms reveal what plants do not: wheat growth and rhizosphere microbial communities after Azospirillum brasilense inoculation and nitrogen fertilization under field conditions. Plant and Soil, 424(1-2), 405-417. doi: 10.1007/s11104-017-3548-7

Dias, M. B., Fº. (2014). Diagnóstico das pastagens no Brasil. Belém: EMBRAPA Amazônia Oriental.

Díaz-Zorita, M., & Fernández-Canigia, M. V. (2009). Field performance of a liquid formulation of Azospirillum brasilense on dryland wheat productivity. European Journal of Soil Biology, 45(1), 3-11. doi: 10.1016/j.ejsobi.2008.07.001

El Zemrany, H., Czarnes, S., Hallett, P. D., Alamercery, S., Bally, R., & Monrozier, L. J. (2007). Early changes in root characteristics of maize (Zea mays) following seed inoculation with the PGPR Azospirillum lipoferum CRT1. Plant and Soil, 291(1-2), 109-118. doi: 10.1007/s11104-006-9178-0

Fagundes, J. L., Fonseca, D. D., Morais, R. D., Mistura, C., Vitor, C. M. T., Gomide, J. A.,... & Lambertucci, D. M. (2006). Avaliação das características estruturais do capim-braquiária em pastagens adubadas com nitrogênio nas quatro estações do ano. Revista Brasileira de Zootecnia, 35(1), 30-37.

Hanisch, A. L., Balbinot, J., & Vogt, G. A. (2017). Productive performance of Urochloa brizantha cv. Marandu as a function of inoculation with Azospirillum and nitrogen doses. Agro@mbiente On-line, 11(3), 200-208.

Huang, X. F., Zhou, D., Lapsansky, E. R., Reardon, K. F., Guo, J., Andales, M. J.,... & Manter, D. K. (2017). Mitsuaria sp. and Burkholderia sp. from Arabidopsis rhizosphere enhance drought tolerance in Arabidopsis thaliana and maize (Zea mays L.). Plant and Soil, 419(1-2), 523-539. doi: 10.1007/s11104-017-3360-4

Hungria, M., Campo, R. J., Souza, E. M., & Pedrosa, F. O. (2010). Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant and Soil, 331(1-2), 413-425. doi: 10.1007/s11104-009-0262-0

Hungria, M., Nogueira, M. A., & Araujo, R. S. (2013). Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biology and Fertility of Soils, 49(7), 791-801. doi: 10.1007/s00374-012-0771-5

Hungria, M., Nogueira, M. A., & Araujo, R. S. (2016). Inoculation of Brachiaria spp. with the plant growth-promoting bacterium Azospirillum brasilense: an environment-friendly component in the reclamation of degraded pastures in the tropics. Agriculture, Ecosystems & Environment, 221(7), 125-131. doi: 10.1016/j.agee.2016.01.024

Kazi, N., Deaker, R., Wilson, N., Muhammad, K., & Trethowan, R. (2016). The response of wheat genotypes to inoculation with Azospirillum brasilense in the field. Field Crops Research, 196(12), 368-378. doi: 10.1016/j.fcr.2016.07.012

Lopes, A. S., & Guilherme, L. G. (2016). A career perspective on soil management in the Cerrado Region of Brazil. Advances in Agronomy, 137, 1-72. doi: 10.1016/bs.agron.2015.12.004

Malavolta, E., G. C. Vitti, & Oliveira S. A. de. (1997). Evaluation of plant nutrient status: principles and their application. (2a. ed.). Piracicaba: Potafos.

Marschner, H. (2011). Marschner's mineral nutrition of higher plants. London: Academic Press.

Martínez, O. A., Crowley, D. E., Mora, M. L., & Jorquera, M. A. (2015). Short-term study shows that phytate-mineralizing rhizobacteria inoculation affects the biomass, phosphorus (P) uptake and rhizosphere properties of cereal plants. Journal of Soil Science and Plant Nutrition, 15(1), 153-166. doi: 10.4067/S0718-95162015005000013

Matthew, C., Assuero, S. G., Black, C. K., & Hamilton, N. R. S. (2000). Tiller dynamics of grazed swards. In G. Lemaire, J. Hodgson, & A. Moraes (Eds.), Grassland Ecophysiology and Grazing Ecology (Cap. 7, pp. 127-150). Wallingford: CABI.

Medica, J. A. D. S., Reis, N. S., & Santos, M. E. R. (2017). Morfologic characterization on Marandu grass pastures submitted to defoliation frequencies and fertilization levels. Ciência Animal Brasileira, 18(1), 1-13, e40460. doi: 10.1590/1089-6891v18e-40460

Morais, J. A. S., Queiroz, M. F. S., Keli, A., Vega, A., Fiorentini, G., Canesin, R. C.,... & Berchielli, T. T. (2014). Effect of supplementation frequency on intake, behavior and performance in beef steers grazing Marandu grass. Animal Feed Science and Technology, 189(3), 63-71. doi: 10.1016/j.anifeedsci.2014.01.005

Moutia, J. F. Y., Saumtally, S., Spaepen, S., & Vanderleyden, J. (2010). Plant growth promotion by Azospirillum sp. in sugarcane is influenced by genotype and drought stress. Plant and Soil, 337(1-2), 233-242. doi: 10.1007/s11104-010-0519-7

Nesper, M., Bünemann, E. K., Fonte, S. J., Rao, I. M., Velásquez, J. E., Ramirez, B.,... & Oberson, A. (2015). Pasture degradation decreases organic P content of tropical soils due to soil structural decline. Geoderma, 257(11), 123-133. doi: 10.1016/j.geoderma.2014.10.010

Pedreira, B. C., Barbosa, P. L., Pereira, L. E. T., Mombach, M. A., Domiciano, L. F., Pereira, D. H., & Ferreira, A. (2017). Tiller density and tillering on Brachiaria brizantha cv. Marandu pastures inoculated with Azospirillum brasilense. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 69(4), 1039-1046. doi: 10.1590/1678-4162-9034

Pedreira, B. C., Pedreira, C. G. S., & Silva, S. C. D. (2007). Sward structure and herbage accumulation in Brachiaria brizantha cultivar Xaraés in response to strategies of grazing. Pesquisa Agropecuária Brasileira, 42(2), 281-287. doi: 10.1590/S0100-204X2007000200018

Piccinin, G. G., Braccini, A. L., Dan, L. G., Scapim, C. A., Ricci, T. T., & Bazo, G. L. (2013). Efficiency of seed inoculation with Azospirillum brasilense on agronomic characteristics and yield of wheat. Industrial Crops and Products, 43(3), 393-397. doi: 10.1016/j.indcrop.2012.07.052

Pimentel-Gomes, F., & Garcia, C. H. (2002). Estatística aplicada a experimentos agronômicos e florestais: exposição com exemplos e orientações para uso de aplicativos. Piracicaba: FEALQ.

Quaggio, J. A., Van Raij, B., & Malavolta, E. (1985). Alternative use of the SMP?buffer solution to determine lime requirement of soils. Communications in Soil Science and Plant Analysis, 16(3), 245-260. doi: 10.1080/00103628509367600

Reuter, D., & Robinson, J. B. (1997). Plant analysis: an interpretation manual. Collingwood: CSIRO Publishing.

Santos, H. G. dos, Jacomine, P. K. T., Anjos, L. H. C. dos, Oliveira, V. A. de, Lumbreras, J. F., Coelho, M. R.,... & Cunha, T. J. F. (2018). Sistema brasileiro de classificação de solos. EMBRAPA Solos-Livro Técnico (INFOTECA-E).

Shaharoona, B., Jamro, G. M., Zahir, Z. A., Arshad, M., & Memon, K. S. (2007). Effectiveness of various Pseudomonas spp. and Burkholderia caryophylli containing ACC-Deaminase for improving growth and yield of wheat (Triticum aestivum I.). Journal of Microbiology and Biotechnology, 17(8), 1300-1307.

Silva, D. R. G., Costa, K. A. de P., Faquin, V., Oliveira, I. P. de, & Bernardes, T. F. (2013). Doses e fontes de nitrogênio na recuperação das características estruturais e produtivas do capim-marandu. Revista Ciência Agronômica, 44(1), 184-191.

Steenhoudt, O., & Vanderleyden, J. (2000). Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiology Reviews, 24(4), 487-506. doi: 10.1111/j.1574-6976.2000.tb00552.x

Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal. Porto Alegre: Artmed Editora.

Zhu, B., Gutknecht, J. L., Herman, D. J., Keck, D. C., Firestone, M. K., & Cheng, W. (2014). Rhizosphere priming effects on soil carbon and nitrogen mineralization. Soil Biology and Biochemistry, 76(6), 183-192. doi: 10.1016/j.soilbio.2014.04.033


Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional