Effects of tannins and Monensin in a feedlot diet on in vitro ruminal fermentation

Hariany Ferreira Martello, Nelcino Francisco de Paula, Bruna Gomes Macedo, Joanis Tilemahos Zervoudakis, Danielle Dias Brutti, Perivaldo Carvalho, Ronyatta Weich Teobaldo, Luciano da Silva Cabral, Mozart Alves Fonseca


The objective of this study was to evaluate the effects of tannins versus Monensin on in vitro ruminal fermentation of a feedlot diet. The treatments were: control (no additives); low tannin (2 mg g DM-1); medium tannin (4 mg g DM-1), high tannin (6 mg g DM-1), and Monensin (0.02 mg g DM-1). The substrate was a feedlot diet composed by hay and concentrate (15:85 w/w; DM basis). Ruminal fluid was obtained from three rumen-cannulated male Santa Inês sheep. In vitro incubations were carried out during four consecutive weeks (run). Gas production (GP) was recorded at 1, 2, 3, 4, 5, 6, 8, 10, 12, 18, 24, 30, 36, 42, 48, 60, 72, 84, and 96 h of incubation. At 48 and 96 h, two bottles per treatment were withdrawn to measure pH, ammonia concentration (NH3), volatile fatty acid (VFA), in vitro dry matter digestibility (IVDMD), and in vitro neutral detergent fiber digestibility (IVNDFD). Addition of tannin or Monensin did not affect (P > 0.05) the kinetics parameters. Tannin supplementation reduced (P < 0.05) the GP at 24 h compared to Monensin. Addition of Monensin decreased (P < 0.05) IVDMD at 96 h and IVNDFD at 48 and 96 h compared to the control. The IVNDFD was lower (P < 0.05) with Monensin than with tannin at 48 and 96 h. The NH3 was lower (P < 0.05) with tannin compared with Monensin. By increasing tannin dosage, NH3 levels changed quadratically (P < 0.05). The inclusion of tannin in vitro reduced the NH3 concentration considerably when used in low dose.


Additive; Beef cattle; Digestibility; Metabolism; Rumen.

Full Text:



ANASSORI, E.; DALIR-NAGHADEH, B.; PIRMOHAMMADI, R.; TAGHIZADEH, A.; ASRI-REZAEI, S.; FARAHMAND-AZAR, S.; BESHARATI, M.; TAHMOOZI, M. In vitro assessment of the digestibility of forage based sheep diet, supplemented with raw garlic, garlic oil, and monensin. Veterinary Research Forum, Urmia, v. 3, n. 1, p. 5-11, 2012.

BHATTA, R.; UYENO, Y.; TAJIMA, K.; TAKENAKA, A.; YABUMOTO, Y.; NONAKA, I.; ENISHI, O.; KURIHARA, M. Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. Journal of Dairy Science, Madison, v. 92, n. 11, p. 5512-5522, 2009. DOI: 10.3168/jds.2008-1441

BODAS, R.; PRIETO, N.; GARCÍA-GONZÁLEZ, R.; ANDRÉS, S.; GIRÁLDEZ, F. J.; LÓPEZ, S. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Animal Feed Science and Technology, London, v. 176, n. 1-4, p. 78-93, 2012. DOI: 10.1016/j.anifeedsci.2012.07.010

BUENO, I. C. S.; BRANDI, R. A.; FRANZOLIN, R.; BENETEL, G.; FAGUNDES, G. M.; ABDALLA, A. L.; LOUVANDINI, H.; MUIR, J. P. In vitro methane production and tolerance to condensed tannins in five ruminant species. Animal Feed Science and Technology, London, v. 205, n. 1, p. 1-9., 2015. DOI: 10.1016/j.anifeedsci.2015.03.008

CHANEY, A. L.; MARBACH, E. P. Modified reagents for determination of urea and ammonia. Clinical Chemistry, Washington, v. 8, n. 2, p. 130-132, 1962.

CHEN, M.; WOLIN, M. J. Effect of monensin and lasalocid-sodium on the growth of methanogenic and rumen saccharolytic bacteria. Applied Environmental Microbiology, v. 38, n. 1, p. 72-77, 1979. DOI: 0099-2240/79/07-0072/06$02.00/0

CIESLAK, A.; ZMORA, P.; PERS-KAMCZYC, E.; SZUMACHER-STRABEL, M. Effects of tannins source (Vaccinium vitis idaea L.) on rumen microbial fermentation in vivo. Animal Feed Science and Technology, London, v. 176, n. 1-4, p. 102-106, 2012. DOI: 10.1016/j.anifeedsci.2012.07.012.

DETMANN, E.; SOUZA, M. A.; VALADARES FILHO, S. C.; QUEIROZ, A. C.;, BERCHIELLI, T. T.; SALIBA, E. O. S.; CABRAL, L. S.; PINA, D.S .; LADEIRA, M. M.; AZEVEDO, J. A. G. Métodos para análise de alimentos. Visconde do Rio Branco:Suprema, 2012.

DINIUS, D. A.; SIMPSON, M. E.; MARSH, P. B. Effect of monensin fed with forage on digestion and the ruminal ecosystem of steers. Journal of Animal Science, Champaign, v. 42, n. 1, p. 229-234, 1976.

FRUTOS, P.; HERVÁS, G.; GIRÁLDEZ, F. J.; MANTECÓN, A. R. An in vitro study on the ability of polyethylene glycol to inhibit the effect of quebracho tannins and tannic acid on rumen fermentation in sheep, goats, cows, and deer. Australian Journal of Agricultural Research, v. 55, n. 11, p. 1125-1132, 2004. DOI: 10.1071/ar04058

GETACHEW, G.; PITTROFF, W.; PUTNAM, D. H.; DANDEKAR, A.; GOYAL, S.; DEPETERS, E. J. The influence of addition of gallic acid, tannic acid, or quebracho tannins to alfalfa hay on in vitro rumen fermentation and microbial protein synthesis. Animal Feed Science and Technology, London, v. 140, n. 3-4, p. 444-461, 2008. DOI: 10.1016/j.anifeedsci.2007.03.011

GOERING, M. K.; VAN SOEST, P. J. Forage fiber analysis (apparatus, reagents, procedures and some applications). In: GOERING, M. K.; VAN SOEST, P. J. Agriculture handbook. Washington: Ed. Agricultural Research Service, USDA, 1970, n. 379, p. 1-20.

ISHLAK, A.; GUNAL, M.; ABUGHAZALEH, A. A. The effects of cinnamaldehyde, monensin, and quebracho condensed tannin on rumen fermentation, biohydrogenation, and bacteria in continuous culture system. Animal Feed Science and Technology, London, v. 207, , p. 31-40, 2015. DOI: 10.1016/j.anifeedsci.2015.05.023

KIM, D. H.; MIZINGA, K. M.; KUBE, J. C.; FRIESEN, K. G.; MCLEOD, K. R.; HARMON, D. L. Influence of monensin and lauric acid distillate or palm oil on in vitro fermentation kinetics and metabolites produced using forage and high concentrate substrates. Animal Feed Science and Technology, London, v. 189, , p. 19-29, 2014. DOI: 10.1016/j.anifeedsci.2013.12.010

MAKKAR, H. P. S.; SEN, S.; BLUMMEL, M.; BECKER, K. Effects of fractions containing Saponins from Yucca schidigera, Quillaja saponaria, and Acacia auriculoformis on Rumen Fermentation. Journal of Agricultural and Food Chemistry, Washington, v. 46, n. 10, p. 4324-4328, 1998. DOI: 10.1021/jf980269q

MARTIN, S. A. Manipulation of ruminal fermentation with organic acids: a review. Journal of Animal Science, Champaign, v. 76, n. 12, p. 3123-3132, 1998. DOI: 10.2527/1998.76123123x

MAURICIO, R. M.; MOULD, F. L.; DHANOA, M. S.; OWEN, E.; CHANNA, K. S.; THEODOROU, M. K. A semi-automated in vitro gas production technique for ruminant feedstuff evaluation. Animal Feed Science and Technology, Amsterdam, v. 79, n. 4, p. 321-330, 1999. DOI: 10.1016/S0377-8401(99)00033-4

MCGUFFEY, R. K.; RICHARDSON, L. F.; WILKINSON, J. I. D. Ionophores for dairy cattle: current status and future outlook. Journal of Dairy Science, Madison, v. 84, , E194-E203, 2001. DOI: 10.3168/jds.S0022-0302(01)70218-4

MCMAHON, L. R.; MCALLISTER, T. A.; BERG, B. P.; MAJAK, W.; ACHARYA, S. N.; POPP, J. D.; COULMAN, B. E.; WANG, Y.; CHENG, K. J. A review of the effects of forage condensed tannins on ruminal fermentation and bloat in grazing cattle. Canadian Journal of Plant Science, v. 80, n. 3, p. 469-485, 1999. DOI: 10.4141/P99-182

MEZZOMO, R.; PAULINO, P. V. R.; DETMANN, E.; VALADARES FILHO, S. C.; PAULINO, M. F.; MONNERAT, J. P. I. S.; DUARTE, M. S.; SILVA, L. H. P.; MOURA, L. S. Influence of condensed tannin on intake, digestibility, and efficiency of protein utilization in beef steers fed high concentrate diet. Livestock Science, v. 141, n. 1, p. 1-11, 2011. DOI: 10.1016/j.livsci.2011.04.004

RUSSELL, J. B.; STROBEL, H. J. Effect of ionophores on ruminal fermentation. Applied Environmental Microbiology, Washington, v. 55, n. 1, p. 1-6, 1989. DOI: 0099-2240/89/010001-06$02.00/0

SCHOFIELD, P.; PITT, R. E.; PELL, A. N. Kinetics of fiber digestion from in-vitro gas-production. Journal of Animal Science, Champaign, v. 72, n. 11, p. 2980-2991, 1994. DOI: 10.2527/1994.72112980x

STATISTICAL ANALYSIS SYSTEM INSTITUTE - SAS. The SAS System, release 9.3. SAS Institute Inc., Cary: NC, 2016.

TEDESCHI, L. O.; CALLAWAY, T. R.; MUIR, J. P.; ANDERSON, R. C. Potential environmental benefits of feed additives and other strategies for ruminant production. Revista Brasileira de Zootecnia, Viçosa, v. 40, n. 9, p. 291-309, 2011. DOI: 10.1590/S0100-204X2014000900009

THEODOROU, M. K.; WILLIAMS, B. A.; DHANOA, M. S.; MCALLAN, A. B.; FRANCE, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology, Amsterdam, v. 48, n. 3-4, p. 185-197, 1994. DOI: 10.1016/0377-8401(94)90171-6

UDÉN, P.; ROBINSON, P. H.; MATEOS, G. G.; BLANK, R. Use of replicates in statistical analyses in papers submitted for publication in Animal Feed Science and Technology. Animal Feed Science and Technology, Amsterdam, v. 171, , p. 1-5, 2011. DOI: 10.1016/j.anifeedsci.2011.10.008

VAN SOEST, P. J.; ROBERTSON, J. B.; LEWIS, B. A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, Madison, v. 74, n. 10, p. 3583-3597, 1991.

WAGHORN, G. C.; JOHN, A.; JONES, W. T.; SHELTON, I. D. Nutritive value of Lotus corniculatus L. containing low and medium concentrations of condensed tannins for sheep. Proceedings of the New Zealand Society of Animal Production, v. 47, n. 1, p. 25-30, 1987.

YÁÑEZ-RUIZ, D. R.; BANNINK, A.; DIJKSTRA, J.; KEBREAB, E.; MORGAVI, D. P.; O’KIELY, P.; REYNOLDS, C. K.; SCHWARM, A.; SHINGFIELD, K. J.; YU, Z.; HRISTOV, A. N. Design, implementation, and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants-a review. Animal Feed Science and Technology, London, v. 216, p. 1-18, 2016. DOI: 10.1016/j.anifeedsci.2016.03.016

DOI: http://dx.doi.org/10.5433/1679-0359.2019v40n6Supl2p3223

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional