Multidrug resistant and ESBL-producing Salmonella spp. isolated from poultry

Marielen de Souza, Daniela Aguiar Penha Brito, Maísa Fabiana Menck-Costa, Alexandre Oba, Renata Katsuko Takayama Kobayashi, Larissa Justino, Ana Angelita Sampaio Baptista


Salmonella spp. is one of the main agents responsible for foodborne infection in humans, and products of poultry origin are the most common infection sources. Studies have shown the occurrence of antimicrobials resistant Salmonella spp. in animal products. The Extended Spectrum ?-Lactamase (ESBL) are enzymes that confer to bacteria the ability to hydrolyze cephalosporin with an oximino side chain and monobactams. This study aimed to investigate antimicrobial resistance profile, identify phenotypes and genotypes for multiple drug resistance (MDR) and that produce ESBL from isolates of Salmonella spp. in the broiler production chain. We used samples of Salmonella spp. (n=11) isolates from poultry, poultry products and poultry-source environment from the state of Maranhão - Brazil. The isolates of Salmonella spp. assessed showed genotypical and phenotypical characteristics of MDR. The results show that 72.72% (08/11) of the strains presented the phenotypic profile for ESBL production. The isolates showed positivity to at least 13.64% (03/22) of the genes studied and the highest frequencies were observed in genes sul1 (73%), dfrA12 (55%), blaCTX-M (55%), tetA, tetB and tetC, with 45%. In conclusion, the strains of Salmonella spp. isolates present genotypic and phenotypic characteristics for MDR and ESBL production, demonstrating the dissemination risk of these microorganisms through the food chain.


Zoonosis; Broiler Chicken; Antimicrobials; Resistance Genes.

Full Text:



ABD-ELGHANY, S. M.; SALLAM, K. I.; ABD-ELKHALEK, A.; TAMURA, T. Occurrence, genetic characterization and antimicrobial resistance of Salmonella isolated from chicken meat and giblets. Epidemiology Infection, Cambridge, v. 143, n. 5, p. 997-1003, 2015. DOI: 10.1017/S0950268814001708

BAUER, A. W.; KIRBY, W. M. M.; SHERRIS, J. C.; TURCK, M. Antibiotic susceptibility testing by standardized single by a standardized single disk method. American Journal of Clinical Pathology, Oxford, v. 45, n. 4, p. 493-496, 1966.

CARATTOLI, A. Plasmids and the spread of resistance. International Journal of Medical Microbiology, Jena, v. 303, p. 298-304, 2013. DOI: 10.1016/j.ijmm.2013.02.001

CLINICAL AND LABORATORY STANDARDS INSTITUTE - CLSI. M100 - performance standards for antimicrobial susceptibility testing. 27th ed. Wayne: Clinical and Laboratory Standards Institute, 2017. 240 p.

CHEN, S.; ZHAO, S.; WHITE, D. G.; SCHROEDER, C. M.; LU, R.; YANG, H.; MCDERMOTT, P. F.; AYERS, S.; MENG, J. Characterization of multiple-antimicrobial-resistant Salmonella serovars isolated from retail meats. Applied and Environmental Microbiology, Washington, v. 70, n. 1, p. 1-7, 2004. DOI: 10.1128/AEM.70.1.1-7.2004

DEWEY-MATTIA, D.; MANIKONDA, K.; HALL, A. J.; WISE, M. E.; CROWE, S. J. CDC - Center Diseases Control and prevention, surveillance for foodborne disease outbreaks - United States, 2009-2015. Surveillance Summaries, Atlanta, v. 67, n. 10, p. 1-11, 2018. Available at: volumes/67/ss/ss6710a1.htm. Access at: 18 mar. 2019. DOI: 10.15585/mmwr.ss6710a1

FISCHER, J.; RODRÍGUEZ, I.; SCHMOGER, S.; FRIESE, A.; ROESLER, U.; HELMUTH, R.; GUERRA, B. Salmonella enterica subsp. enterica producing VIM-1 carbapenemase isolated from livestock farms. Journal of Antimicrobial Chemotherapy, London, v. 68, n. 2, p. 478-480, 2013. DOI: 10.1093/jac/dks393

GALLARDO, F.; RUIZ, J.; MARCO, F.; TOWNER, K. J.; VILA, J. Increase of incidence of resistance to ampicillin, chloramphenicol and trimethoprim in clinical isolates of Salmonella serotype Typhimurium with investigation of molecular epidemiology and mechanisms of resistance. Journal of Medical Microbiology, London, v. 48, n. 4, p. 367-374, 1999. DOI: 10.1099/00222615-48-4-367

JINDAL, B. A. K.; PANDYA, M. K.; KHAN, M. I. D. Antimicrobial resistance: a public health challenge. Medical Journal Armed Forces India, New Delhi, v. 71, n. 2, p. 178-181, 2015. DOI: 10.1016/j.mjafi.2014.04.011

KOGA, V. L.; SCANDORIEIRO, S.; VESPERO, E. C.; OBA, A.; BRITO, B. G. de; BRITO, K. C. de; NAKAZATO, G.; KOBAYASHI, R. K. Comparison of antibiotic resistance and virulence factors among Escherichia coli isolated from conventional and free-range poultry. BioMed Research International, New York, v. 2015, p. 1-8, 2015. DOI: /10.1155/2015/618752

LAHEY CLINIC. ß-Lactamase classification and amino acid sequences for TEM, SHV and OXA extended-spectrum and inhibitor resistant enzymes. Burlington, 2017. Available at: studies. Access at: 12 sept. 2017.

LEVERSTEIN-VAN HALL, M. A.; DIERIKX, C. M.; COHEN STUART, J.; VOETS, G. M.; VAN DEN MUNCKHOF, M. P.; VAN ESSEN-ZANDBERGEN, A.; PLATTEEL, T.; FLUIT, A. C.; VAN DE SANDE-BRUINSMA, N.; SCHARINGA, J.; BONTEN, M. J. M.; MEVIUS, D. J. Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clinical Microbiology and Infection, London, v. 17, n. 6, p. 873-880, 2011. DOI: 10.1111/j.1469-0691.2011.03497.x

MA, M.; WANG, H.; YU, Y.; ZHANG, D.; LIU, S. Detection of antimicrobial resistance genes of pathogenic Salmonella from swine with DNA microarray. Journal of Veterinary Diagnostic Investigation, Thousand Oaks, v. 19, n. 2, p. 161-167, 2007. DOI: 10.1177/104063870701900204

MAGIORAKOS, A. P.; SRINIVASAN, A.; CAREY, R. B.; CARMELI, Y.; FALAGAS, M. E.; GISKE, C. G.; HARBARTH, S.; HINDLER, J. F.; KAHLMETER, G.; OLSSON-LILJEQUIST, B.; PATERSON, D. L.; RICE, L. B.; STELLING, J.; STRUELENS, M. J; VATOPOULOS, A.; WEBER, J. T.; MONNET, D. L. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, London, v. 18, n. 3, p. 268-281, 2012. DOI: 10.1111/j.1469-0691.2011.03570.x

MINISTÉRIO DA AGRICULTURA PECUÁRIA E ABASTECIMENTO - MAPA. Instrução Normativa, nº. 8, 23 de janeiro de 1995. Método analítico de carcaça de aves e pesquisa de Salmonella. Brasília, 1995. Disponível em:,376.html. Acesso em: 24 mar. 2019.

MINISTÉRIO DA AGRICULTURA PECUÁRIA E ABASTECIMENTO - MAPA. Instrução Normativa, nº. 9, 27 de junho de 2003. Proíbe a fabricação, a manipulação, o fracionamento, a comercialização, a importação e o uso dos princípios ativos cloranfenicol nitrofuranos e os produtos que contenham estes princípios ativos, para uso veterinário e suscetível de emprego na alimentação de todos os animais e insetos. Brasília, 2003. Disponível em: do?method=visualizarAtoPortalMapa&chave=2112258128. Acesso em: 15 set. 2017.

MINISTÉRIO DA AGRICULTURA PECUÁRIA E ABASTECIMENTO - MAPA. Instrução Normativa, nº. 26, 09 de julho de 2009 (Portaria nº193/1998). Regulamento técnico para a fabricação, o controle de qualidade, a comercialização e o emprego de produtos Antimicrobianos de uso veterinário. Brasília, 2009. Disponível em: Acesso em: 19 mar. 2019.

MELENDEZ, S. N.; HANNING, I.; HAN, J.; NAYAK, R.; CLEMENT, A. R.; WOOMING, A.; HERERRA, P.; JONES, F. T.; FOLEY, S. L.; RICKE, S. C. Salmonella enterica isolates from pasture-raised poultry exhibit antimicrobial resistance and class I integrons. Journal of Applied Microbiology, Oxford, v. 109, n. 6, p. 1957-1966, 2010. DOI: 10.1111/j.1365-2672.2010.04825.x

MILLAN, A. S. Evolution of plasmid-mediated antibiotic resistance in the clinical context. Trends in Microbiology, Cambridge, v. 26, n. 12, p. 978-985, 2018. DOI: 10.1016/j.tim.2018.06.007

NAVIA, M. M.; RUIZ, J.; SANCHEZ-CESPEDES, J.; VILA, J. Detection of dihydrofolate reductase genes by PCR and RFLP. Diagnostic Microbiology and Infectious Disease, New York, v. 46, n. 4, p. 295-298, 2003. DOI: 10.1016/S0732-8893(03)00062-2

ORGANIZATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT/FOOD AND AGRICULTURE ORGANIZATION - OECD/FAO. OECD-FAO Agricultural Outlook, OECD Agriculture statistics (database). Paris, Rome, 2017. Available at: 888933522586. Access at: 14 sept. 2017.

PITOUT, J. D. D.; NORDMANN, P.; LAUPLAND, K. B.; POIREL, L. Emergence of Enterobacteriaceae producing extended-spectrum b-lactamases (ESBLs) in the community. Journal of Antimicrobial Chemotherapy, London, v. 56, n. 1, p. 52-59, 2005. DOI: 10.1093/jac/dki166

POOLE, T. L.; CALLAWAY, T. R.; NORMAN, K. N.; SCOTT, H. M.; LONERAGAN, G. H.; ISON, S. A.; BEIER, R. C.; HARHAY, D. M.; NORBYF, B.; NISBET, D. J. Transferability of antimicrobial resistance from multidrug-resistant Escherichia coli isolated from cattle in the USA to E. coli and Salmonella Newport recipientes. Journal of Global Antimicrobial Resistance, Amsterdam, v. 11, p. 123-132, 2017. DOI: 10.1016/j.jgar.2017.08.001

RAWAT, D.; NAIR, D. Extended-spectrum ?-lactamases in Gram Negative bacteria. Journal of Global Infectious Diseases, Mumbai, v. 2, n. 3, p. 263-274, 2010. DOI: 10.4103/0974-777X.68531

SALIU, E. M.; VAHJEN, W.; ZENTEK, J. Types and prevalence of extended-spectrum beta-lactamase producing Enterobacteriaceae in poultry. Animal Health Research Reviews, Wallingford, v. 18, n. 1, p. 46-57, 2017. DOI: 10.1017/S1466252317000020

SCHILL, F.; ABDULMAWJOOD, A.; KLEIN, G.; REICH, F. Prevalence and characterization of extended-spectrum ?-lactamase (ESBL) and AmpC ?-lactamase producing Enterobacteriaceae in fresh pork meat at processing level in Germany. International Journal of Food Microbiology, Amsterdam, v. 257, p. 58-66, 2017. DOI: 10.1016/j.ijfoodmicro.2017.06.010

SILVA, K. C. Monitoramento dos mecanismos de resistência em Salmonella e Escherichia coli isoladas de animais de produção agropecuária e alimentos derivados. 2011. Dissertação (Mestrado em Microbiologia) - Universidade de São Paulo Instituto de Ciências Biomédicas, São Paulo.

TENOVER, F. C. Mechanisms of antimicrobial resistance in bacteria. The American Journal of Medicine, New York, v. 119, n. 6, p. S3-S10, 2006. DOI: 10.1016/j.amjmed.2006.03.011

WANG, H.; YE, K.; WEI, X.; CAO, J.; XU, X.; ZHOU, G. Occurrence, antimicrobial resistance and biofilm formation of Salmonella isolates from a chicken slaughter plant in China. Food Control, Kidlington, v. 33, n. 2, p. 378-384, 2013. DOI: 10.1016/j.foodcont.2013.03.030

WORLD HEALTH ORGANIZATION - WHO. Antimicrobial resistance: global report on surveillance. Geneva: WHO Press., 2014. Available at: surveillancereport. Access at: 14 sept. 2017.

WORLD HEALTH ORGANIZATION - WHO. Media Centre/Campylobacter. Geneva, 2017. Available at: Access at: 5 out. 2017.

YAICI, L.; HAENNI, M.; MÉTAYER, V.; SARAS, E.; ZEKAR, F. M.; TOUATI, A.; MADEC, J. Spread of ESBL/AmpC-producing Escherichia coli and Klebsiella pneumoniae in the community through ready-to-eat sandwiches in Algeria. International Journal of Food Microbiology, Amsterdam, v. 245, p. 66-72, 2017. DOI: 10.1016/j.ijfoodmicro.2017.01.011

ZIECH, R. E.; LAMPUGNANI, C.; PERIN, A. P.; SERENO, M. J.; SFACIOTTE, R. A. P.; VIANA, C.; SOARES, V. M.; PINTO, J. P. A. N.; BERSOT, L. S. Multidrug resistance and ESBL-producing Salmonella spp. isolated from broiler processing plants. Brazilian Journal of Microbiology, Rio de Janeiro, v. 47, n. 1, p. 191-195, 2016. DOI: 10.1016/j.bjm.2015.11.021

ZISHIRI, O. T.; MKHIZE, N.; MUKARATIRWA, S. Prevalence of virulence and antimicrobial resistance genes in Salmonella spp. isolated from commercial chickens and human clinical isolates from South Africa and Brazil. Onderstepoort Journal of Veterinary Research, Pretoria, v. 83, n. 1, p. 1-11, 2016. DOI: 10.4102/ojvr.v83i1.1067


Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional