Butter fatty acid composition as a function of soybean oil supplementation and time of milking, and performance of Holstein x Gyr cows fed with chopped elephant grass-based diets

Fernando César Ferraz Lopes, Carlos Gustavo Santos Ribeiro, Norberto Mario Rodriguez, Marco Antônio Sundfeld da Gama, Mirton José Frota Morenz, Rosemar Antoniassi, Humberto Ribeiro Bizzo

Abstract


The aim of this study was to evaluate the performance of cows fed with a total mixed ration composed of elephant grass and a concentrate containing 0.0% (control), 1.5%, 3.0% or 4.5% soybean oil on a dry matter basis. The effect of milking time (morning versus afternoon) on butter fatty acid composition was also evaluated. Twelve multiparous Holstein x Gyr cows with an average milk production of 18.0±4.6 kg day-1 and 90±25 days in milk were used in a triplicated 4 x 4 Latin square experimental design with 15-day periods. Data were analyzed using mixed models. There was no effect of soybean oil supplementation on dry matter or neutral detergent fiber intake (P > 0.05). The fat-corrected milk yield linearly decreased (P=0.0109) and the milk protein yield linearly increased (P=0.0023) in response to soybean oil supplementation. The butterfat trans-9 C18:1, cis-9 C18:1, trans-10 C18:1, trans-11 C18:1, cis-9, trans-11 CLA and trans-10, cis-12 CLA content linearly increased (P < 0.05), whereas the C12:0, C14:0 and C16:0 content linearly decreased (P < 0.001) as the level of soybean oil in the diet increased. The butter produced from afternoon milk had a lower content of C16:0 and a higher content of cis-9 C18:1 (P < 0.05). The supplementation of elephant grass-based-diets with soybean oil and, to a small extent, the selective segregation of milk obtained from afternoon milking sessions are strategies that can be used to improve the fatty acid composition of butterfat.

Keywords


Conjugated linoleic acid; Milk composition; Pennisetum purpureum.

Full Text:

PDF

References


ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTIS - AOAC. Official Methods of Analysis. 18. ed. Washington D.C.: AOAC International, 2005. Chapter 41, p. 20-25.

BERNARD, L.; BONNET, M.; DELAVAUD, C.; DELOSIÈRE, M.; FERLAY, A.; FOUGÈRE, H.; GRAULET, B. Milk fat globule in ruminant: major and minor compounds, nutritional regulation and differences among species. European Journal of Lipid Science and Technology, Weinheim, v. 120, n. 5, 1700039, 2018. DOI: 10.1002/ejlt.201700039.

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Gabinete do Ministro. Instrução Normativa n. 62, de 30 de dezembro de 2011. Diário Oficial [da] União, Brasília, 30 de dezembro de 2011. Seção 1. p. 6-11.

COUVREUR, S.; HURTAUD, C.; LOPEZ, C.; DELABY, L.; PEYRAUD, J. L. The linear relationship between the proportion of fresh grass in the cow diet, milk fatty acid composition, and butter properties. Journal of Dairy Science, Champaign, v. 89, n. 6, p. 1956-1969, 2006. DOI: 10.3168/jds.S0022-0302(06)72263-9

DETMANN, E.; VALADARES FILHO, S. C.; BERCHIELLI, T. T.; CABRAL, L. S.; LADEIRA, M. M.; SOUZA, M. A.; QUEIROZ, A. C.; SALIBA, E. O. S.; PINA, D. P.; AZEVEDO, J. A. G. Métodos para análise de alimentos. Visconde do Rio Branco: Suprema, 2012. 214 p.

ELGERSMA, A. Grazing increases the unsaturated fatty acid concentration of milk from grass-fed cows: A review of the contributing factors, challenges and future perspectives. European Journal of Lipid Science and Technology, Weinheim, v. 117, n. 9, p. 1345-1369, 2015. DOI: 10.1002/ejlt.201400469

FERLAY, A.; MARTIN, B.; LERCH, S.; GOBERT, M.; PRADEL, P.; CHILLIARD, Y. Effects of supplementation of maize silage diets with extruded linseed, vitamin E and plant extracts rich in polyphenols, and morning v. evening milking on milk fatty acid profiles in Holstein and Montbeliárde cows. Animal, Cambridge, v. 4, n. 4, p. 627-640, 2010. DOI: 10.1017/S1751731109991224

GAMA, M. A. S.; GARNSWORTHY, P. C.; GRIINARI, J. M.; LEME, P. R.; RODRIGUES, P. H. M.; SOUZA, L. W. O.; LANNA, D. P. D. Diet-induced milk fat depression: association with changes in milk fatty acid composition and fluidity of milk fat. Livestock Science, Amsterdan, v. 115, n. 2-3, p. 319-331, 2008. DOI: 10.1016/j.livsci.2007.08.006

GONZALEZ, S.; DUNCAN, S. E.; O’KEEFE, S. F.; SUMNER, S. S.; HERBEIN, J. H. Oxidation and textural characteristics of butter and ice cream with modified fatty acid profiles. Journal of Dairy Science, Champaign, v. 86, n. 1, p. 70-77, 2003. DOI: 10.3168/jds.S0022-0302(03)73585-1

HARTMAN, L.; LAGO, R. C. A. Rapid preparation of fatty acid methyl esters from lipids. Laboratory Practice, London, v. 22, n. 6, p. 475-476, 494, 1973. Available at: . Accessed at: 11 apr. 2019.

JENKINS, T. C. Lipid metabolism in the rumen. Journal of Dairy Science, Champaign, v. 76, n. 12, p. 3851-3863, 1993. DOI: 10.3168/jds.S0022-0302(93)77727-9

JENKINS, T. C.; HARVATINE, K. J. Lipids feeding and milk fat depression. Veterinary Clinics: Food Animal Practice, Amsterdan, v. 30, n. 3, p. 623-642, 2014. DOI: 10.1016/j.cvfa.2014.07.006

KADEGOWDA, A. K. G.; BIONAZ, M.; PIPEROVA, L. S.; ERDMAN, R. A.; LOOR, J. J. Peroxisome proliferator-activated receptor-? activation and long-chain fatty acids alter lipogenic gene networks in bovine mammary epithelial cells to various extents. Journal of Dairy Science, Champaign, v. 92, n. 9, p. 4276-4289, 2009. DOI: 10.3168/jds.2008-1932

KLIEM, K. E.; SHINGFIELD, K. J. Manipulation of milk fatty acid composition in lactating cows: Opportunities and challenges. European Journal of Lipid Science and Technology, Weinheim, v. 118, n. 11, p. 1661-1683, 2016. DOI: 10.1002/ejlt.201400543

LESKINEN, H.; VIITALA, S.; MUTIKAINEN, M.; KAIRENIUS, P.; TAPIO, I.; TAPONEN, J.; BERNARD, L.; VILKKI, J.; SHINGFIELD, K. J. Ruminal infusions of Cobalt EDTA modify milk fatty acid composition via decreases in fatty acid desaturation and altered gene expression in the mammary gland of lactating cows. The Journal of Nutrition, Oxford, v. 146, n. 5, p. 976-985, 2016. DOI: 10.3945/jn.115.226100

LIN, M. P.; SIMS, C. A.; STAPLED, C. R.; O’KEEFE, S. F. Flavor quality and texture of modified fatty acid high monoene, low saturate butter. Food Research International, Amsterdan, v. 29, n. 3-4, p. 367-371, 1996. DOI: 10.1016/0963-9969(96)00017-8

LOPES, F. C. F.; SILVA, B. C. M.; ALMEIDA, M. M.; GAMA, M. A. S. da. Lácteos naturalmente enriquecidos com ácidos graxos benéficos à saúde. In: MARTINS, P. C.; PICCININI, G. A.; KRUG, E. E. B.; MARTINS, C. E.; LOPES, F. C. F. Sustentabilidade ambiental, social e econômica da cadeia produtiva do leite: desafios e perspectivas. Brasília: Embrapa, 2015. p. 237-309. Available at: https://ainfo.cnptia. embrapa.br/digital/bitstream/item/128155/1/Cap-13-Lv-2015-Sustentabilidade-Lacteos.pdf. Accessed at: 16 aug. 2018.

MAIA, M. R. G.; CHAUDHARY, L. C.; BESTWICK, C. S.; RICHARDSON, A. J.; MCKAIN, N.; LARSON, T. R.; GRAHAM, I. A.; WALLACE, R. J. Toxicity of unsaturated fatty acids to the biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvens. BMC Microbiology, London, v. 10, n. 52, p x-x, 2010. DOI: 10.1186/1471-2180-10-52.

MANNAI, H.; CHARBONNEAU, É.; FADUL-PACHECO, L.; PELLERIN, D.; CHOUINARD, P. Y. An appraisal of the concept of Rumen Unsaturated Fatty Acid Load and its relation to milk fat concentration using data from commercial dairy farms. The Professional Animal Scientist, Amsterdan, v. 32, n. 5, p. 665-671, 2016. DOI: 10.15232/pas.2016-01526

MÄNTYSAARI, P.; KHALILI, H.; SARIOLA, J. Effect of feeding frequency of a total mixed ration on the performance of high-yielding dairy cows. Journal of Dairy Science, Champaign, v. 89, n. 11, p. 4312-4320, 2006. DOI: 10.3168/jds.S0022-0302(06)72478-X

MARTIN, B.; VERDIER-METZ, I.; BUCHIN, S.; HURTAUD, C.; COULON, J. B. How do the nature of forages and pasture diversity influence the sensory quality of dairy livestock products? Animal Science, Cambridge, v. 81, n. 2, p. 205-212, 2005. DOI: 10.1079/ASC50800205

McKAIN, N.; SHINGFIELD, K. J.; WALLACE, R. J. Metabolism of conjugated linoleic acids and 18:1 fatty acids by ruminal bacteria: products and mechanisms. Microbiology, London, v. 156, n. 2, p. 579-588, 2010. DOI: 10.1099/mic.0.036442-0

NATIONAL RESEARCH COUNCIL - NRC. Nutrients requirements of dairy cattle. 7. ed. Washington D.C.: National Academy Press, 2001. 381p.

PEREIRA, A. V.; MORENZ, M. J. F.; LEDO, F. J. S.; FERREIRA, R. P. Capim elefante: versatilidades de usos na pecuária de leite. In: VILELA, D.; FERREIRA, R. P.; FERNANDES, E. N.; JUNTOLLI, F. V. (Ed.). Pecuária de leite no Brasil: cenários e avanços tecnológicos. Brasília: Embrapa, 2016, p. 187-211.

PITTA, D. W.; INDUGU, N.; VECCHIARELLI, B.; RICO, D. E.; HARVATINE, K. J. Alterations in ruminal bacterial populations at induction and recovery from diet-induced milk fat depression in dairy cows. Journal of Dairy Science, Champaign, v. 101, n. 1, p. 295-309, 2018. DOI: 10.3168/jds.2016-12514

RABIEE, A. R.; BREINHILD, K.; SCOTT, W.; GOLDER, H. M.; BLOCK, E.; LEAN, I. J. Effect of fat additions to diets of dairy cattle on milk production and components: A meta-analysis and meta-regression. Journal of Dairy Science, Champaign, v. 95, n. 6, p. 3225-3247, 2012. DOI: 10.3168/jds.2011-4895

RIBEIRO, C. G. S.; LOPES, F. C. F.; GAMA, M. A. S.; MORENZ, M. J. F.; RODRIGUEZ, N. M. Desempenho produtivo e perfil de ácidos graxos do leite de vacas que receberam níveis crescentes de óleo de girassol em dietas à base de capim-elefante. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, Belo Horizonte, v. 66, n. 5, p. 1513-1521, 2014. DOI: 10.1590/1678-6886

RIBEIRO, C. G. S.; LOPES, F. C. F.; GAMA, M. A. S.; RODRIGUEZ, N. M.; MORENZ, M. J. F. Ruminal fermentation and degradation, kinetic flow of the digesta and milk fatty acid composition of cows fed chopped elephantgrass supplemented with soybean oil. Semina: Ciências Agrárias, Londrina, v. 39, n. 4, p. 1775-1794, 2018. DOI: 10.5433/1679-0359.2018v39n4p1775

RICO, D. E.; MARSHALL, E. R.; CHOI, J.; KAYLEGIAN, K. E.; DECHOW, C. D.; HARVATINE, K. J. Within-milking variation in milk composition and fatty acid profile of Holstein dairy cows. Journal of Dairy Science, Champaign, v. 97, n. 7, p. 4259-4268, 2014. DOI: 10.3168/jds.2013-7731

RICO, D. E.; PRESTON, S. H.; RISSER, J. M.; HARVATINE, K. J. Rapid changes in key ruminal microbial populations during the induction of and recovery from diet-induced milk fat depression in dairy cows. British Journal of Nutrition, Cambridge, v. 114, n. 3, p. 358-367, 2015. DOI: 10.1017/S0007114515001865

RODNEY, R. M.; CELI, P.; SCOTT, W.; BREINHILD, K.; LEAN, I. J. Effects of dietary fat on fertility of dairy cattle: A meta-analysis and meta-regression. Journal of Dairy Science, Champaign, v. 98, n. 8, p. 5601-5620, 2015. DOI: 10.3168/jds.2015-9528

RODRIGUES, J. P. P.; PAULA, R. M.; RENNÓ, L. N.; FONTES, M. M. S.; MACHAD, A. F.; VALADARES FILHO, S. C.; HUHTANEN, P.; MARCONDES, M. I. Short-term effects of soybean oil supplementation on performance, digestion, and metabolism in dairy cows fed sugarcane-based diets. Journal of Dairy Science, Champaign, v. 100, n. 6, p. 4435-4447, 2017. DOI: 10.3168/jds.2016-11725

SAS INSTITUTE INC. SAS/STAT® 9.1 User’s Guide. Cary, NC, USA: SAS Institute Inc., 2004. 5121 p.

SCHWENDEL, B. H.; MOREL, P. C. H.; WESTER, T. J.; TAVENDALE, M. H.; DEADMAN, C.; FONG, B.; SHADBOLT, N. M.; THATCHER, A.; OTTER, D. E. Fatty acid profile differs between organic and conventionally produced cow milk independent of season or milking time. Journal of Dairy Science, Champaign, v. 98, n. 3, p. 1411-1425, 2015. DOI: 10.3168/jds.2014-8322

SHÄFFER, B.; SZAKÁLY S.; LÕRINCZY, D.; SCHÄFFER, B. Melting properties of butter fat and the consistency of butter. Effect of modification of cream ripening and fatty acid composition. Journal of Thermal Analysis and Calorimetry, Budapest, v. 64, n. 2, p. 659-669, 2001. DOI: 10.1023/A:1011579924951

SHINGFIELD, K. J.; AROLA, A.; AHVENJARVI, S.; VANHATALO, A.; TOIVONEN, V.; GRIINARI, J. M.; HUHTANEN, P. Ruminal infusions of Cobalt-EDTA reduce mammary ?9-desaturase index and alter milk fatty acid composition in lactating cows. The Journal of Nutrition, Oxford, v. 138, n. 4, p. 710-717, 2008. DOI: 10.1093/jn/138.4.710

SHINGFIELD, K. J.; BERNARD, L.; LEROUX, C.; CHILLIARD, Y. Role of trans fatty acids in the nutritional regulation of mammary lipogenesis in ruminants. Animal, Cambridge, v. 4, n. 7, p. 1140-1166, 2010. DOI: 10.1017/S1751731110000510

SHINGFIELD, K. J.; BONNET, M.; SCOLLAN, N. D. Recent developments in altering the fatty acid composition of ruminant-derived foods. Animal, Cambridge, v. 7, n. s1, p. 132-162, 2013. DOI: 10.1017/S1751731112001681

VAHMANI, P.; MEADUS, W. J.; DUFF, P.; ROLLAND, D. C.; DUGAN, M. E. R. Comparing the lipogenic and cholesterolgenic effects of individual trans-18:1 isomers in liver cells. European Journal of Lipid Science and Technology, Weinheim, v. 119, n. 3, 1600162, 2017. DOI: 10.1002/ejlt.201600162.

VIBART, R. E.; TAVENDALE, M.; OTTER, D.; SCHWENDEL, B. H.; LOWE, K.; GREGORINI, P.; PACHECO, D. Milk production and composition, nitrogen utilization, and grazing behavior of late-lactation dairy cows as affected by time of allocation of a fresh strip of pasture. Journal of Dairy Science, Champaign, v. 100, n. 7, p. 5305-5318, 2017. DOI: 10.3168/jds.2016-12413

WRIGHT, A. J.; SCANLON, M. G.; HARTEL, R. W.; MARANGONI, A. G. Rheological properties of milkfat and butter. Journal of Food Science, Chicago, v. 66, n. 8, p. 1056-1071, 2001. DOI: 10.1111/j.1365-2621.2001.tb16082.x|

YANG, B.; CHEN, H.; STANTON, C.; ROSS, R. P.; ZHANG, H.; CHEN, Y. Q.; CHEN, W. Review of the roles of conjugated linoleic acid in health and disease. Journal of Functional Foods, Amsterdan, v. 15, may, p. 314-325, 2015. DOI: 10.1016/j.jff.2015.03.050




DOI: http://dx.doi.org/10.5433/1679-0359.2019v40n5p2025

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional