Postharvest quality and brown rot incidence in plums treated with Ascophyllum nodosum extract

Thayna Viencz, Ires Cristina Ribeiro Oliari, Ricardo Antonio Ayub, Cacilda Márcia Duarte Rios Faria, Renato Vasconcelos Botelho


The use of extracts of algae in agriculture has been growing because of their benefits to plant development and production. The objective of this study was to evaluate the effects of Ascophyllum nodosum extract on the postharvest quality of ‘Irati’ and ‘Reubennel’ plums and on the incidence of brown rot. The treatments consisted of concentrations of 0, 0.1, 0.2, 0.3 and 0.4 mL L-1 of a commercial product containing algae extract (Algamare®) that were applied to the fruits by immersion. The fruits were then stored for 15 (cv. Irati) or 30 days (cv. Reubennel) at 2.5 °C and 90% RH and for two additional days at ambient conditions for further physicochemical analysis. A batch of ‘Reubennel’ plums was inoculated with Monilinia fructicola and kept for seven days in a cold room and an additional nine days at room temperature to evaluate the occurrence of brown rot. The postharvest application of the extract at a concentration of 0.4 mL L-1 altered some of the physicochemical characteristics of the fruit after storage; an increase in the total phenolic compound content and PG activity were observed in ‘Irati’ plums. Reubennel fruits had higher titratable acidity, a lower TSS/TA ratio, lower pulp firmness and higher PME activity. The most significant effect was observed with the application of A. nodosum extract at 0.4 mL L-1, which significantly reduced the incidence and severity of brown rot in the inoculated fruits and had a similar control effect as the application of the fungicide iprodione.


Enzymatic activity; Monilinia fructicola; Postharvest diseases; Prunus salicina.

Full Text:



Alfenas, A. C., & Mafia, R. G. (2007). Métodos em fitopatologia. Viçosa, MG: Editora UFV.

Arioli, T., Mattner, S. W., & Winberg, P. C. (2015). Applications of seaweed extracts in Australian agriculture: Past, present and future. Journal of Applied Phycology, 27(5), 2007-2015. doi: 10.1007/s10811-015-0574-9

Bosshard, E., Hilber-Bodmer, M., Schärer, H. J., Bünter, M., & Duffy, B. (2006). First report of the quarantine brown rot pathogen Monilinia fructicola on imported stone fruits in Switzerland. Plant Disease, 90(12), 1554-1563. doi: 10.1094/PD-90-1554C

Bucic-Kojic, A., Planinic, M., Thomas, S., Bilic, M., & Velic, D. (2007). Study of solid-liquid extraction kinetics of total polyphenols from grape seeds. Journal of Food Engineering, 81(1), 236-247. doi: 10.1016/j.jfoodeng.2006.10.027

Campbell, C. L., & Madden, L. V. (1990). Monitoring epidemics: diseases. In C. L. Campbell, L. V. Madden (Eds.), Introduction to plant disease epidemiology (pp. 107-128). New York: John Wiley & Sons.

Carvalho, V. L. de, Cunha, R. L. da, Chalfun, N. N. J., & Moura, P. H. A. (2009). Alternatives for postharvest control of brown rot and soft rot in peach fruits. Revista Brasileira de Fruticultura, 31(1), 78-83. doi: 10.1590/S0100-29452009000100012

Chitarra, M. I. F., & Chitarra, A. B. (2005). Pós-colheita de frutas e hortaliças: fisiologia e manuseio. (2a ed.). Lavras: Editora UFLA.

Cirulli, M., & Alexander, L. J. A. (1966). A comparison of pathogenic isolates of Fusarium oxysporum f. sp. lycopersici and different sources of resistance in tomato. Phytopathology, 56, 1301-1304.

Craigie, J. S. (2011). Seaweed extract stimuli in plant science and agriculture. Journal of Applied Phycology, 23(3), 371-393. doi: 10.1007/s10811-010-9560-4

Crisosto, C. H., & Mitchell, F. G. (2011). Postharvest handling systems: stone fruits. In A. A. Kader (Ed.), Postharvest technology of horticultural crops (pp. 345-351). Richmond: University of California.

De Cal, A., Gell, I., Usall, J., Viñas, I., & Melgarejo, P. (2009). First report of brown rot caused by Monilinia fructicola in peach orchards in Ebro Valley, Spain. Plant Disease Journal, 93(7), 763-763. doi: 10.1094/PDIS-93-7-0763A

Decreto n. 4.954, de 14 de janeiro de 2004. Altera o Anexo ao Decreto n. 4.954, de 14 de janeiro de 2004, que aprova o Regulamento da Lei n. 6.894, de 16 de dezembro de 1980, que dispõe sobre a inspeção e fiscalização da produção e do comércio de fertilizantes, corretivos, inoculantes, ou biofertilizantes, remineralizadores e substratos para plantas destinados à agricultura. Recuperado de

Durand, N., Briand, X., & Meyer, C. (2003). The effect of marine bioactive substances (N PRO) and exogenous cytokinins on nitrate reductase activity in Arabidopsis thaliana. Physiologia Plantarum, 119(4), 489-493. doi: 10.1046/j.1399-3054.2003.00207.x

Ferreira, D. F. (2011). Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 35(6), 1039-1042. doi: 10.1590/S1413-70542011000600001

Ferri, V. C., Rinaldi, M. M., Silva, J. A., Lucheta, L., Marini, L., & Rombaldi, C. V. (2004). Ácido giberélico no retardamento da maturação de caquis (Diospyrus kaki L.) cultivar Fuyu. Ciência e Tecnologia dos Alimentos, 24(1), 1-5. doi: 10.1590/S0101-20612004000100001

Food Machinery Company, FMC Agrícola (2018). Produtos: Rovral. Relatório do produto. Recuperado de

Food and Agriculture Organization (2014). Yearbook of fisheries and aquaculture statistics. Retrieved from

Gupta, S., & Abu-Ghannam, N. (2011). Recent developments in the application of seaweeds or seaweed extracts as a means for enhancing the safety and quality attributes of foods. Innovative Food Science & Emerging Technologies, 12(4), 600-609. doi: 10.1016/j.ifset.2011.07.004

Hou, D., Yan, C., Liu, H., Ge, X., Xu, W., & Tian, P. (2010). Berberine as a natural compound inhibits the development of brown rot fungus Monilinia fructicola. Crop Protection, 29(9), 979-984. doi: 10.1016/j.cropro.2010.05.015

Jayaraj, J., Wan, A., Rahman, M., & Punja, Z. K. (2008). Seaweed extract reduces foliar fungal diseases on carrot. Crop Protection, 27(10), 1360-1366. doi: 10.1016/j.cropro.2008.05.005

Jayaraman, J., Norrie, J., & Punja, Z. K. (2011). Commercial extract from the brown seaweed Ascophyllum nodosum reduces fungal diseases in greenhouse cucumber. Journal of Applied Phycology, 23(3), 353-361. doi: 10.1007/s10811-010-9547-1

Jen, J. J., & Robinson, M. L. (1984). Pectolytic enzymes in sweet bell peppers (Capsicum annuum L.). Journal of Food Science, 49(4), 1045-1087. doi: 10.1111/j.1365-2621.1984.tb10398.x

Kader, A. A. (2011). Postharvest biology and technology: an overview. In A. A. Kader (Ed.), Postharvest technology of horticultural crops (pp. 39-48). Richmond: University of California.

Kader, A. A., & Mitchell, F. G. (1989a). Postharvest physiology. In J. H. LaRue, & R. S. Johnson (Eds.), Peaches, plums and nectarines: growing and handling for fresh Market (pp. 158-164). Davis: University of California.

Kader, A. A., & Mitchell, F. G. (1989b). Factors affecting deterioration rate. In J. H. LaRue, & R. S. Johnson (Eds.), Peaches, plums and nectarines: growing and handling for fresh Market (pp. 165-178). Davis: University of California.

Khan, W., Rayirath, U. P., Subramanian, S., Jithesh, M. N., Rayorath, P., Hodges, D. M.,… Prithiviraj, B. (2009). Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation, 28(4), 386–399. doi: 10.1007/s00344-009-9103-x

Kohatsu, D. S. (2007). Efeitos de reguladores vegetais na qualidade de frutos de melão Rendilhado. Dissertação de mestrado, Universidade Estadual Paulista, Botucatu, SP, Brasil.

Luo, Z., Chen, C., & Xie, J. (2011). Effect of salicylic acid treatment on alleviating postharvest chilling injury of ‘Qingnai’ plum fruit. Postharvest Biology and Technology, 62(2), 115-120. doi: 10.1016/j.postharvbio.2011.05.012

MacKinnon, A. S., Hiltz, D., Ugarte, R., & Craft, C. A. (2010). Improved methods of analysis for betaines in Ascophyllum nodosum and its commercial seaweed extracts. Journal of Applied Phycology, 22(4), 489-494. doi: 10.1007/s10811-009-9483-0

May de Mio, L. L., Garrido, L., & Ueno, B. (2004). Doenças de fruteiras de caroço. In L. B. Monteiro, L. L. May de Mio, B. M. Serrat, A. C. Motta, & F. L. Cuquel (Eds.), Fruteiras de caroço: uma visão ecológica (pp. 169-221). Curitiba: Universidade Federal do Paraná.

May de Mio, L. L., Luo, Y., & Michailides, T. J. (2011). Sensitivity of Monilinia fructicola from Brazil to tebuconazole, azoxystrobin, and thiophanate-methyl and implications for disease management. Plant Disease, 95(7), 821-827. doi: 10.1094/PDIS-07-10-0511

McKinney, H. H. (1923). Influence of soil, temperature and moisture on infection of wheat seedlings by Helminthosporium sativum. Journal of Agricultural Research, 26(3), 195-217.

Microquímica (2018). Produtos: Algamare. Descrição do produto. Recuperado de http://www.microquimica. com/site/prod_algamare.htm

Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426-428. doi: 10.1021/ac60147a030

Ministério da Agricultura, Pecuária e Abastecimento. (2018). Sistema de agrotóxicos fitossanitários. Recuperado de

Naczk, M., & Shahidi, F. (2004). Extraction and analysis of phenolics in food. Journal of Chromatography, 1054(1–2), 95–111. doi: 10.1016/S0021-9673(04)01409-8

Oliveira, M. D. M., Varanda, C. M. R., & Félix, M. R. F. (2016). Induced resistance during the interaction pathogen x plant and the use of resistance inducers. Phytochemistry Letters, 15(1), 152-158. doi: 10.1016/j.phytol.2015.12.011

Pech, J. C. (2002). Unravelling the mechanisms of fruit ripening and development of sensory quality thought the manipulation of ethylene biosynthesis in melon. Proceedings Nato Advanced Research Workshop on Biotechnology of the Plant Hormone Ethylene, Murcia, Spain.

Pressey, R., & Avants, J. K. (1982). Solubilization of cell walls by tomato polygalacturonases: effects of pectinesterases. Journal of Food Biochemistry, 6(1), 57-74. doi: 10.1111/j.1745-4514.1982.tb00296.x

Rees, D., Farrell, G., & Orchard, J. (2012). Crop post-harvest: science and technology. New Jersey: John Wiley & Sons.

Rioux, L. E., Turgeon, S. L., & Beaulieu, M. (2007). Characterization of polysaccharides extracted from brown seaweeds. Carbohydrate Polymers, 69(3), 530-537. doi: 10.1016/j.carbpol.2007.01.009

Rouse, A. H., & Atkins, C. D. (1955). Pectinesterase and pectin in commercial citrus juices as determined by methods used at the Citrus Experiment Station. Gainesville: University of Florida Agricultural Experiment Station.

Santos, H. G. dos, Jacomine, P. K. T., Anjos, L. H. C. dos, Oliveira, V. A. de, Coelho, M. R., Lumbreras, J. F., & Cunha, T. J. F. (2006). Sistema brasileiro de classificação de solos. Rio de Janeiro: EMBRAPA.

Sharma, S. H. S., Lyons, G., McRoberts, C., McCall, D., Carmichael, E., Andrews, F.,… Mellon, R. (2012). Biostimulant activity of brown seaweed species from Strangford Lough: Compositional analyses of polysaccharides and bioassay of extracts using mung bean (Vigno mungo L.) and pak choi (Brassica rapachinensis L.). Journal of Applied Phycology, 24(5), 1081-1091. doi: 10.1007/s10811-011-9737-5

Steffens, C. A., Amarante, C. V. T., Chechi, R., Zanardi, O. Z., Espindola, B. P., & Meneghini, A. L. (2011). O tratamento pré-colheita com aminoetoxivinilglicina ou ácido giberélico preserva a qualidade pós-colheita de ameixas 'Laetitia'. Bragantia, 70(1), 222-227. doi: 10.1590/S0006-87052011000100029

Tarakhovskaya, E. R., Maslov, Y. I., & Shishova, M. F. (2007). Phytohormones in algae. Russian Journal of Plant Physiology, 54(2), 163-170. doi: 10.1134/S1021443707020021

Zhang, X., & Ervin, E. H. (2004). Cytokinin-containing seaweed and humic acid extracts associated with creeping bentgrass leaf cytokinins and drought resistance. Crop Science, 44(5), 1-10. doi: 10.2135/cropsci2004.1737

Zhang, X., & Ervin, E. H. (2008). Impact of seaweed extract-based cytokinins and zeatin riboside on creeping bentgrass heat tolerance. Crop Science, 48(1), 364-370. doi: 10.2135/cropsci2007.05.0262


Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional