Characteristics of the root system in two Brazilian upland rice varieties which exhibit contrasting behavior towards drought tolerance

Leandro Martins Ferreira, Cristiana Maia de Oliveira, Leilson Novaes Arruda, Renan Pinto Braga, Orlando Carlos Huertas Tavares, Sonia Regina de Souza, Manlio Silvestre Fernandes, Leandro Azevedo Santos

Abstract


Root system architecture plays a fundamental role in the adaptation of rice to environments subjected to abiotic stresses. This study aimed to characterize the root architecture and morphology of two Brazilian upland rice varieties which display contrasting behavior towards drought tolerance: the tolerant Catetão and susceptible Mira varieties. Two experiments were carried out under greenhouse and growth chamber conditions. The experimental design was completely randomized in a 2 × 2 factorial scheme (varieties × drought stress conditions) with four replicates. Rice varieties were subjected to control and drought conditions for 14 days. Drought stress was applied either by withholding water until the desirable soil tension was achieved or by addition of 20% polyethylene glycol 6000 (PEG) to the nutritive solution. After harvest, the dry weight, root architecture, as well as physiological and root features were assessed. Under drought stress, a higher root biomass was recorded in Catetão compared to Mira. A higher ratio of deep rooting (RDR) was observed for Catetão, while Mira remained stable in response to drought stress. The evaluated physiological features showed that the Catetão variety is less likely to compromise membrane integrity and lipid peroxidation during drought stress. Moreover, analyzed root features exhibited a significant increase in lateral root emission and root density for Catetão in response to drought treatment, which may be considered an important feature when selecting for superior genotypes.

Keywords


Drought escape; Lateral roots; Root plasticity; Ratio of deep rooting.

Full Text:

PDF

References


Ali, M. L., Luetchens, J., Nascimento, J., Shaver, T. M., Kruger, G. R., & Lorenz, A. J. (2015). Genetic variation in seminal and nodal root angle and their association with grain yield of maize under water-stressed field conditions. Plant and Soil, 397(1-2), 213-225. doi: 10.1007/s11104-015-2554-x

Bajji, M., Kinet, J. M., & Lutts, S. (2002). The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regulation, 36(1), 61-70. doi: 10.1023/A:1014732714549

Basu, S., Roychoudhury, A., Saha, P. P., & Sengupta, D. N. (2010). Differential antioxidative responses of indica rice cultivars to drought stress. Plant Growth Regulation, 60(1), 51. doi: 10.1007/s10725-009-9418-4

Biscarini, F., Cozzi, P., Casella, L., Riccardi, P., Vattari, A., Orasen, G., ... & Cattivelli, L. (2016). Genome-wide association study for traits related to plant and grain morphology, and root architecture in temperate rice accessions. PLoS One, 11(5), e0155425. doi: 10.1371/journal.pone.0155425

Bishwajit, G., Sarker, S., Kpoghomou, M. A., Gao, H., Jun, L., Yin, D., & Ghosh, S. (2013). Self-sufficiency in rice and food security: a South Asian perspective. Agriculture & Food Security, 2(1), 10. doi: 10.1186/2048-7010-2-10

Bouman, B. A. M., Peng, S., Castaneda, A. R., & Visperas, R. M. (2005). Yield and water use of irrigated tropical aerobic rice systems. Agricultural Water Management, 74(2), 87-105. doi: 10.1016/j.agwat.2004.11.007

Cai, J., Zeng, Z., Connor, J. N., Huang, C. Y., Melino, V., Kumar, P., & Miklavcic, S. J. (2015). RootGraph: a graphic optimization tool for automated image analysis of plant roots. Journal of Experimental Botany, 66(21), 6551-6562. doi: 10.1093/jxb/erv359

Comas, L., Becker, S., Cruz, V. M. V., Byrne, P. F., & Dierig, D. A. (2013). Root traits contributing to plant productivity under drought. Frontiers in Plant Science, 4(442), 1-16. doi: 10.3389/fpls.2013.00442

Cramer, G. R., Urano, K., Delrot, S., Pezzotti, M., & Shinozaki, K. (2011). Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biology, 11(1), 163-177. doi: 10.1186/1471-2229-11-163

Ferreira, L. M. (2017). Características morfológicas, fisiológicas e transcriptoma em variedades de arroz (Oryza sativa L.) contrastantes quanto a tolerância ao estresse hídrico. Tese de doutorado, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil.

Gao, Y., Xie, Y., Jiang, H., Wu, B., & Niu, J. (2014). Soil water status and root distribution across the rooting zone in maize with plastic film mulching. Field Crops Research, 156(1), 40-47. doi: 10.1016/j.fcr.2013.10.016

Goodarzian Ghahfarokhi, M., Mansurifar, S., Taghizadeh-Mehrjardi, R., Saeidi, M., Jamshidi, A. M., & Ghasemi, E. (2015). Effects of drought stress and rewatering on antioxidant systems and relative water content in different growth stages of maize (Zea mays L.) hybrids. Archives of Agronomy and Soil Science, 61(4), 493-506. doi: 10.1080/03650340.2014.943198

Gowda, V. R., Henry, A., Yamauchi, A., Shashidhar, H. E., & Serraj, R. (2011). Root biology and genetic improvement for drought avoidance in rice. Field Crops Research, 122(1), 1-13. doi: 10.1016/j.fcr.2011.03.001

Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189-198. doi: 10.1016/0003-9861(68)90654-1

Henry, A. (2013). IRRI’s drought stress research in rice with emphasis on roots: accomplishments over the last 50 years. Plant Root, 7(1), 92-106. doi: 10.3117/plantroot.7.92

Henry, A., Cal, A. J., Batoto, T. C., Torres, R. O., & Serraj, R. (2012). Root attributes affecting water uptake of rice (Oryza sativa) under drought. Journal of Experimental Botany, 63(13), 4751-4763 doi: 10.1093/jxb/ers150

Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular. (2nd ed.). Berkeley: California Agricultural Experiment Station

Kano, M., Inukai, Y., Kitano, H., & Yamauchi, A. (2011). Root plasticity as the key root trait for adaptation to various intensities of drought stress in rice. Plant and Soil, 342(1-2), 117-128. doi: 10.1007/s11104-010-0675-9

Kato, Y., Abe, J., Kamoshita, A., & Yamagishi, J. (2006). Genotypic variation in root growth angle in rice (Oryza sativa L.) and its association with deep root development in upland fields with different water regimes. Plant and Soil, 287(1-2), 117-129. doi: 10.1007/s11104-006-9008-4

Kell, D. B. (2011). Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration. Annals of Botany, 108(3), 407-418. doi: 10.1093/aob/mcr175

Lawlor, D. W., & Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell & Environment, 25(2), 275-294. doi: 10.1046/j.0016-8025.2001.00814.x

Li, H. W., Zang, B. S., Deng, X. W., & Wang, X. P. (2011). Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta, 234(5), 1007-1018. doi: 10.1007/s00425-011-1458-0

Lian, H. L., Yu, X., Ye, Q., Ding, X. S., Kitagawa, Y., Kwak, S. S.,... & Tang, Z. C. (2004). The role of aquaporin RWC3 in drought avoidance in rice. Plant and Cell Physiology, 45(4), 481-489. doi: 10.1093/pcp/pch058

Manschadi, A. M., Christopher, J., deVoil, P., & Hammer, G. L. (2006). The role of root architectural traits in adaptation of wheat to water-limited environments. Functional Plant Biology, 33(9), 823-837. doi: 10.1071/FP06055

Mirzaee, M., Moeini, A., & Ghanati, F. (2013). Effects of drought stress on the lipid peroxidation and antioxidant enzyme activities in two canola (Brassica napus L.) cultivars. Journal of Agricultural Science and Technology, 15(3), 593-602

Nakandalage, N., Nicolas, M., Norton, R. M., Hirotsu, N., Milham, P. J., & Seneweera, S. (2016). Improving rice zinc biofortification success rates through genetic and crop management approaches in a changing environment. Frontiers in Plant Science, 7(1), 764. doi: 10.3389/fpls.2016.00764

Ortiz, T. A., Urbano, M. R., & Takahashi, L. S. A. (2019). Effects of water deficit and pH on seed germination and seedling development in Cereus jamacaru. Semina: Ciências Agrárias, 40(4), 1379-1392. doi: 10.5433/1679-0359.2019v40n4p1379

O'Toole, J. C., & Chang, T. T. (1979). Drought resistance in cereals-rice: a case study. In H. Mussell & R. C. Staples (Eds.), Stress physiology in crop plants (pp. 373-405). New York, NY: Wiley Interscience.

Paez-Garcia, A., Motes, C. M., Scheible, W. R., Chen, R., Blancaflor, E. B., & Monteros, M. J. (2015). Root traits and phenotyping strategies for plant improvement. Plants, 4(2), 334-355. doi: 10.3390/plants4020334

Passioura, J. B. (1997). Drought and drought tolerance. In Drought tolerance in higher plants. Genetical, physiological and molecular biological analysis (pp. 1-5). Dordrecht, Dordr: Kluwer Academic Publisher.

Redillas, M. C., Jeong, J. S., Kim, Y. S., Jung, H., Bang, S. W., Choi, Y. D.,... & Kim, J. K. (2012). The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnology Journal, 10(7), 792-805. doi: 10.1111/j.1467-7652.2012.00697.x

Rich, S. M., & Watt, M. (2013). Soil conditions and cereal root system architecture: review and considerations for linking Darwin and Weaver. Journal of Experimental Botany, 64(5), 1193-1208. doi: 10.1093/jxb/ert043

Rogers, E. D., Monaenkova, D., Mijar, M., Nori, A., Goldman, D. I., & Benfey, P. N. (2016). X-ray computed tomography reveals the response of root system architecture to soil texture. Plant Physiology, 171(3), 2028-2040. doi: 10.1104/pp.16.00397

Seck, P. A., Diagne, A., Mohanty, S., & Wopereis, M. C. (2012). Crops that feed the world 7: Rice. Food Security, 4(1), 7-24. doi: 10.1007/s12571-012-0168-1

Serraj, R., McNally, K. L., Slamet-Loedin, I., Kohli, A., Haefele, S. M., Atlin, G., & Kumar, A. (2011). Drought resistance improvement in rice: an integrated genetic and resource management strategy. Plant Production Science, 14(1), 1-14. doi: 10.1626/pps.14.1

Suralta, R. R., Kano-Nakata, M., Niones, J. M., Inukai, Y., Kameoka, E., Tran, T. T., & Yamauchi, A. (2018). Root plasticity for maintenance of productivity under abiotic stressed soil environments in rice: Progress and prospects. Field Crops Research, 220(1), 57-66. doi: 10.1016/j.fcr.2016.06.023

Tardieu, F., Draye, X., & Javaux, M. (2017). Root water uptake and ideotypes of the root system: whole-plant controls matter. Vadose Zone Journal, 16(9), 1-10. doi: 10.2136/vzj2017.05.0107

Terra, T. G. R., Leal, T. C. A. B., Borém, A., & Rangel, P. H. N. (2013). Tolerância de linhagens de arroz de terras altas à seca. Pesquisa Agropecuária Tropical, 43(2), 201-208. doi: 10.1590/S1983-40632013000200013

Tonello, L. P., Oliveira Tavares, T. C. de, Oliveira Rocha, R. de, Santos, G. R. dos, Sousa, S. A. de, & Fidelis, R. R. (2016). Agronomic performance of upland rice cultivars in the southern region of the state of Tocantins. Semina: Ciências Agrárias, 37(4), 1699-1708. doi: 10.5433/1679-0359.2016v37n4p1699

Uga, Y. (2012). Quantitative measurement of root growth angle by using the basket method. Methodologies for root drought studies in rice. The Philippines: International Rice Research Institute.

Uga, Y., Kitomi, Y., Ishikawa, S., & Yano, M. (2015). Genetic improvement for root growth angle to enhance crop production. Breeding Science, 65(2), 111-119. doi: 10.1270/jsbbs.65.111

Uga, Y., Okuno, K., & Yano, M. (2011). Dro1, a major QTL involved in deep rooting of rice under upland field conditions. Journal of Experimental Botany, 62(8), 2485-2494. doi: 10.1093/jxb/erq429

Weatherley, P. (1950). Studies in the water relations of the cotton plant: I. The field measurement of water deficits in leaves. New Phytologist, 49(1), 81-97. doi: 10.1111/j.1469-8137.1950.tb05146.x

Werner, T., Nehnevajova, E., Köllmer, I., Novák, O., Strnad, M., Krämer, U., & Schmülling, T. (2010). Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. The Plant Cell, 22(12), 3905-3920. doi: 10.1105/tpc.109.072694

Wu, W., & Cheng, S. (2014). Root genetic research, an opportunity and challenge to rice improvement. Field Crops Research, 165(1), 111-124. doi: 10.1016/j.fcr.2014.04.013

Xiong, J., Zhang, L., Fu, G., Yang, Y., Zhu, C., & Tao, L. (2012). Drought-induced proline accumulation is uninvolved with increased nitric oxide, which alleviates drought stress by decreasing transpiration in rice. Journal of Plant Research, 125(1), 155-164. doi: 10.1007/s10265-011-0417-y




DOI: http://dx.doi.org/10.5433/1679-0359.2020v41n2p421

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional