Structural plasticity and isolation of umbilical cord progenitor cells of agouti (Dasyprocta prymnolopha) raised in captivity

Maria Acelina Martins de Carvalho, Napoleão Martins Argôlo-Neto, Elís Rosélia Dutra de Freitas Siqueira Silva, Yulla Klinger de Carvalho Leite, Gerson Tavares Pessoa, Dayseanny de Oliveira Bezerra, Maíra Soares Ferraz, Airton Mendes Conde Júnior, Andressa Rêgo da Rocha

Abstract


The agouti has been used as an experimental model in several studies focused on reproductive biology. The umbilical cord, an embryonic attachment that connects the foetus to the placenta, has been reported as an important anatomical site for obtaining stem cells. The objective of this study was to describe macro- and microscopically the umbilical cord of agoutis at different stages of gestation, to expand and cultivate in vitro the progenitor cells and to report their morphological characteristics. Seven cutias were submitted to caesarean section to collect the umbilical cords: five were destined for studies of cord structure in different stages of gestation (30, 35, 50, 75 and 100 days postcoital), and two were collected in the third stage of gestation for isolation and cell culture. The umbilical cord of cutias assumes a spiral arrangement, with veins and arteries on it starting 50 days after coitus. The arteries present an outer layer of smooth muscle fibres in a longitudinal and circular arrangement and a medium layer of smooth muscle fibres with only longitudinal and intimate orientation and coated by the endothelium. The veins consist of longitudinal smooth muscle fibres with an extract of smooth muscle cells, and the endothelium, in all analysed gestational phases, is a structure bounded by simple pavement epithelial tissue originating from the amnion, adhered to Wharton's Jelly and forming the umbilical vessels and allantoid duct. The proposed protocol allowed the collection of a high cellular concentration of umbilical cord progenitor cells from viable cutias.

Keywords


Cell culture. Gestational stages. Umbilical cord. Morphology. Agouti.

Full Text:

PDF

References


ALMEIDA, M. M.; CARVALHO, M. A. M.; CAVALCANTE FILHO, M. F.; MIGLINO, M. A.; MENEZES, D. J. A. Estudo morfológico e morfométrico do ovário de cutias (Dasyprocta aguti Linnaeus, 1766). Brazilian Journal of Veterinary Research and Animal Science, São Paulo, v. 40, n. 1, p. 55-62, 2003.

BIEBACK, K.; BRINKMANN, I. Mesenchymal stromal cells from human perinatal tissues: from biology to cell therapy. World Journal Stem Cells, Pleasanton, v. 26, n. 4, p. 81-92, 2010.

BYDLOWSKI, S. P.; DEBES, A. A.; MASELLI, L. M. F.; JANZ, F. L. Biological characteristics of mesenchymal stem cells. Revista Brasileira de Hematologia e Hemoterapia, São Paulo, v. 31, n. 1, p. 25-35, 2009.

CABRAL, R. M.; FERRAZ, M. S.; RIZZO, M. S.; SOUSA, F. C. A.; RODRIGUES, N. M.; IBIAPINA, P. B.; AMBRÓSIO, C. E.; CARVALHO, M. A. M. Kidney injury and cell therapy: preclinical study. Microscopy Research and Technique, New York, v. 75, n. 5, p. 566-570, 2012.

CARVALHO, Y. K. P.; ARGÔLO-NETO, N. M.; AMBRÓSIO, C. E.; OLIVEIRA, L. D. J. D.; ROCHA, A. R. D.; SILVA, J. B. D.; CARVALHO, M. A. M.; ALVES, F. R Isolation, expansion and differentiation of cellular progenitors obtained from dental pulp of agouti (Dasyprocta prymnolopha Wagler, 1831). Pesquisa Veterinária Brasileira, Seropédica, v. 35, n. 6, p. 590-598, 2015.

COOPER, K.; SHAH, V.; SAPRE, N.; SHARMA, E.; MISTRY, C.; VISWANATHAN, C. Defining permissible time lapse between umbilical cord tissue collection and commencement of cell isolation. International Journal of Hematology-Oncology and Stem Cell Research, Tehran, v. 7, n. 4, p. 15-23, 2013.

COOPER, K.; VISWANATHAN, C. Establishment of a mesenchymal stem cell bank. Stem Cells International, New York, v. 2011, n.1, p. 1-8, 2011.

DOMINICI, M. L. B. K.; LE BLANC, K.; MUELLER, I.; SLAPER-CORTENBACH, I.; MARINI, F. C.; KRAUSE, D. S.; DEANS, R. J.; KEATING, A.; PROCKOP, D. J.; HORWITZ, E. M. Minimal criteria for defining multipotente mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy, Philadelphia, v. 8, n. 4, p. 315-317, 2006.

EITELVEN, T.; MENIN, R. P.; FUSIGER, K. C.; BENVENUTTI, V.; ZANINI, J.; CAUMO, C. R.; BALESTRIN, R. C. Aplicações biológicas de células-tronco: benefícios e restrições. Revista Interdisciplinar de Ciência Aplicada, Caxias do Sul, v. 2, n. 3, p. 16-25, 2017.

FERGUSON, V. L.; DODSON, R. B. Bioengineering aspects of the umbilical cord. European Journal of Obstetrics and Gynecology and Reproductive Biology, Amsterdam, v. 144, p. S108-S113, 2009. Supplement 1.

FERRAZ, M. S.? MORAES JUNIOR, F. J.? FEITOSA, M. L. T.? BEZERRA, D. O.? PESSOA, G. T.? CARVALHO, M. A. M.? ALBUQUERQUE, D. M. N. Técnica de fatiamento do ovário para obtenção de oócitos em cutias (Dasyprocta prymnolopha). Pesquisa Veterinária Brasileira, Seropédica, v. 36, n. 6, p. 204-208, 2016.

FERREIRA, G. J.; BRANCO, É.; CABRAL, R.; GREGORES, G. B.; FIORETTO, E. T.; LIMA, A. R. D.; SARMENTO, C. A.; MIGLINO, M. A.; CARVALHO, A. F. Morphological aspects of buffaloes (Bubalus bubalis) umbilical cord. Pesquisa Veterinária Brasileira, Seropédica, v. 29, n. 10, p. 788-792, 2009.

FORTES, E. A. M.; FERRAZ, M. S.; BEZERRA, D. O.; CONDE JÚNIOR, A. M. C.; CABRAL, R. M.; SOUSA, F. D. C. A.; AMPAIO, I. B. M. Prenatal development of the agouti (Dasyprocta prymnolopha Wagler, 1831): external features and growth curves. Animal Reproduction Science, Manchester, v. 140, n. 3, p. 195-205, 2013.

GUIMARÃES, D. A.; OHASHI, O. M.; SINGH, M.; VALE, W. Profile of plasmatic progesterone on pregnancy, and the postpartum estrus of Dasyprocta prymnolopha (Rodentia: Dasyproctidae). Revista de Biología Tropical, San José, v. 64, n. 4, p. 1519-1526, 2016.

GUO, Q.; WANG, J. Effect of combination of vitamin E and umbilical cord-derived mesenchymal stem cells on inflammation in mice with acute kidney injury. Immunopharmacology and Immunotoxicology, v. 40, n. 2, p. 168-172, 2018.

HILLEMANN, H.; GAYNOR, Alta I. The definitive architecture of the placentae of nutria, Myocastor coypus (Molina). American Journal of Anatomy, Philadelphia, v. 109, n. 3, p. 299-317, 1961.

KADNER, A.; ZUND, G.; MAURUS, C.; BREYMANN, C.; YAKARISIK, S.; KADNER, G.; TURINA, M.; HOERSTRUP, S. P. Human umbilical cord cells for cardiovascular tissue engineering: a comparative study. European Journal of Cardio-Thoracic Surgery, Freiburg, v. 25, n. 4, p. 635-641, 2004.

KANNAIYAN, J.; PAULRAJ, B. Clinical prospects of scale-up foetal Whartons jelly derived multipotent stromal cells to fulfil the therapeutic demands. International Journal of Pharma and Bio Sciences, Tamilnadu, v. 6, n. 4, p. 882-894, 2015.

LI, J.; LI, D.; LIU, X.; TANG, S.; WEI, F. Human umbilical cord mesenchymal stem cells reduce systemic inflammation and attenuate LPS-induced acute lung injury in rats. Journal of Inflammation, Londres, v. 9, n. 1, p. 33-43, 2012.

MARTINEZ, A. C.; OLIVEIRA, F. S.; ABREU, C. O.; MARTINS, L. L.; PAULONI, A. P.; MOREIRA, N. Colheita de sêmen por eletroejaculação em cutia-parda (Dasyprocta azarae). Pesquisa Veterinária Brasileira, Seropédica, v. 33, n. 1, p. 86-88, 2013.

MARTINS, G. R.; TEIXEIRA, M. F. S.; BESERRA JUNIOR, R. Q.; DIAS, R. P.; AGUIAR, T. D. F.; MARINHO, R. C.; PINHEIRO, A. R. A. Células-tronco mesenquimais: características, cultivo e uso na Medicina Veterinária. Revista Brasileira de Higiene e Sanidade Animal, Fortaleza, v. 8, n. 2, p. 181-202, 2014.

MIGLINO, M. A.; CARTER, A. M.; AMBROSIO, C. E.; BONATELLI, M.; OLIVEIRA, M. F.; FERRAZ, R. D. S.; RODRIGUES, R. F.; SANTOS, T. C. Vascular organization of the hystricomorph placenta: a comparative study in the agouti, capybara, guinea pig, paca and rock cavy. Placenta, New York, v. 25, n. 5, p. 438-448, 2004.

NARDI, N. B.; MEIRELLES, L. S. Mesenchymal stem cells: isolation, in vitro expansion and characterization. Handbook of Experimental Pharmacology, Berlim, v. 174, n. 1, p. 249-282, 2006.

PATIL, N. S.; KULKARNI, S. R.; LOHITASHWA, R. Umbilical cord coiling index and perinatal outcome. Journal of Clinical and Diagnostic Research: JCDR, Delhi, v. 7, n. 8, p. 1675-1677, 2013.

PAWITAN, J. A.; LIEM, I. K.; BUDIYANTI, E.; FASHA, I.; FERONIASANTI, L.; JAMAAN, T.; SUMAPRADJA, K. Umbilical cord derived stem cell culture: multiple-harvest explant method. International Journal of PharmTech Research, Mumbai, v. 6, n. 4, p. 1202-1208, 2014.

PROCTOR, L. K.; FITZGERALD, B.; WHITTLE, W. L.; MOKHTARI, N.; LEE, E.; MACHIN, G.; KINGDOM, J. C.; KEATING, S. J. Umbilical cord diameter percentile curves and their correlation to birth weight and placental pathology. Placenta, , New York, v. 34, n. 1, p. 62-66, 2013.

REINERS JÚNIOR, J. J.; MATHIEU, P.; OKAFOR, C.; PUTT, D. A.; LASH, L. H. Depletion of cellular glutathione by conditions used for the passaging of adherent cultured cells. Toxicology Letters, Amsterdam, v. 115, n. 2, p. 153-163, 2000.

ROCHA, A. R. Roedor silvestre como fonte de células-tronco: caracterização e multipotencialidade de células mesenquimais estromais e adiposas de cutia (Dasyprocta prymonolopha). 2015. Tese (Doutorado em Ciência Animal) - Universidade Federal do Piauí, Teresina.

ROCHA, A. R.; ALVES, F. R.; ARGÔLO-NETO, N. M.; SANTOS, L. F.; ALMEIDA, H. M.; CARVALHO, Y. K. P.; BEZERRA, D. D. O.; FERRAZ, M. S.; PESSOA, G. T.; CARVALHO, M. A. M. Hematopoietic progenitor constituents and adherent cell progenitor morphology isolated from black?rumped agouti (Dasyprocta prymnolopha, Wagler 1831) bone marrow. Microscopy Research and Technique, New York, v. 75, n. 10, p. 1376-1382, 2012.

RODRIGUES, M. N.; OLIVEIRA, G. B.; PAULA, V. V.; RODRIGUES SILVA, A.; ASSIS NETO, C.; CHAVES, A.; OLIVEIRA, M. F. Microscopy of the umbilical cord of rock cavies Kerodon rupestris Wied, 1820 (Rodenta, Caviidae). Microscopy Research and Technique, New York, v. 76, n. 4, p. 419-422, 2013.

RODRIGUES, R. F.; CARTER, A. M.; AMBROSIO, C. E.; SANTOS, T. C.; MIGLINO, M. A. The subplacenta of the red-rumped agouti (Dasyprocta leporina L). Reproductive Biology and Endocrinology, Londres, v. 4, n. 1, p. 31-38, 2006.

RODRIGUES, R. F.; MIGLINO, M. A.; FERRAZ, R. H. S.; MORAIS-PINTO, L. Placentação em cutias (Dasyprocta aguti, Carleton M. D.): aspectos morfológicos. Brazilian Journal of Veterinary Research Animal Science, São Paulo, v. 2, n. 40, p. 133-137, 2003.

SHI, L. L.; LIU, F. P.; WANG, D. W. Transplantation of human umbilical cord blood mesenchymal stem cells improves survival rates in a rat model of acute hepatic necrosis. The American Journal of the Medical Sciences, New York, v. 342, n. 3, p. 212-217, 2011.

SILVA, A. B. S.; SANTOS, T. M. V.; CARVALHO, M. A. M.; GUERRA, P. S. L.; RIZZO, M. S.; ARAÚJO, W. R.; TORRES, C. B. B.; CONDE JUNIOR, A. M. Morfologia da laringe de cutia (Dasyprocta sp.). Pesquisa Veterinária Brasileira, Seropédica, v. 34, n. 6, p. 593-598, 2014.

SILVA, F. C.; ODONGO, C. A.; DULLEY, F. L. Células-troncos hematopoiéticas: utilidades e perspectivas. Revista Brasileira de Hematologia e Hemoterapia, São Paulo, v. 31, p. 53-58, 2009. Suplemento 1.

SILVA, W. N. Aspecto morfológico da placenta e anexos fetais da paca (Agouti paca). 2001. Dissertação (Mestrado em Anatomia dos Animais Domésticos) - Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo.

SOUSA, F. C. A.? FORTES, E. A. M.? FERRAZ, M. S.? MACHADO JÚNIOR, A. A. N.? MENEZES, D. J. A.? CARVALHO, M. A. M. Pregnancy in hytricomorpha: gestacional age and embrryonicfetal development of agouti (Dasyprocta prymnolopha, Wagler 1831) estimatede by ultrasonograpy. Theriogenology, Philadelphia, v. 78, n. 6, p. 1278-1285, 2012.

STANDRING, S. Gray´s anatomia. 4. ed. Rio de Janeiro: Elsevier, 2010. 1565 p.

TIBBITTS, F. D.; HILLEMANN, H. H. The development and histology of the chinchilla placentae. Journal of Morphology, New York, v. 105, n. 2, p. 317-365, 1959.

WATSON, N.; DIVERS, R.; KEDAR, R.; MEHINDRU, A.; MEHINDRU, A.; BORLONGAN, M. C.; BORLONGAN, C. V. Discarded Wharton jelly of the human umbilical cord: a viable source for mesenchymal stromal cells. Cytotherapy, Philadelphia, v. 17, n. 1, p. 18-24, 2015.

YANG, X.; ZHANG, M.; ZHANG, Y.; LI, W.; YANG, B. Mesenchymal stem cells derived from Wharton jelly of the human umbilical cord ameliorate damage to human endometrial stromal cells. Fertility and Sterility, Birmingham, v. 96, n. 4, p. 1029-1036, 2011.

ZHU, X.; HOU, L.; ZHANG, J.; YAO, C.; LIU, Y.; ZHANG, C.; XU, Y;. CAO, J. The structural and functional effects of fine particulate matter from cooking oil fumes on rat umbilical cord blood vessels. Environmental Science and Pollution Research, Berlim, v. 23, n. 16, p. 1029-1036, 2016.




DOI: http://dx.doi.org/10.5433/1679-0359.2019v40n1p225

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional