Nitrogen as a mitigator of salt stress in yellow passion fruit seedlingss

Marlene Alexandrina Ferreira Bezerra, Walter Esfrain Pereira, Francisco Thiago Coelho Bezerra, Lourival Ferreira Cavalcante, Sherly Aparecida da Silva Medeiros

Abstract


The poor chemical quality of water, especially in arid and semiarid regions, almost always precludes the practice of irrigated agriculture, thus demanding the adoption of techniques that mitigate the deleterious effects of excess salt on soil and plants. The aim of this research was to evaluate the effectiveness of nitrogen fertilization in mitigating the negative effects of excess salt in irrigation water on the growth of yellow passion fruit seedlings grown in a greenhouse in plastic tubes containing 0.65 dm3 of substrate. The treatments were organized in randomized blocks, in accordance with a 5 × 3 factorial scheme – five electrical conductivities of irrigation water (0.3, 1.0, 2.0, 3.0, and 4.0 dS m?1) combined with three levels of nitrogen fertilizer (no nitrogen fertilization and 150 mg dm?3 of N derived from either ammonium sulfate or urea). Evaluations were performed 80 days after sowing and consisted of measuring the seedling height, stem diameter, number of leaves, leaf area, leaf nitrogen content, leaf concentration of chlorophyll a and b and total chlorophyll, specific leaf area, leaf area ratio, and Dickson quality index. An increase in the electrical conductivity of irrigation water hindered the production of yellow passion fruit seedlings. Nitrogen fertilization, with urea or ammonium sulfate, mitigated the effects of irrigation water salinity and favored the growth and quality of yellow passion fruit seedlings. Yellow passion fruit seedlings with a minimum quality standard (DQI) can be produced with irrigation water with salinity of 1.8 dS m?1, which means they can be considered as moderately sensitive. The higher quality provided by nitrogen to the yellow passion fruit seedlings made them more tolerant to salinity, allowing the use of water with salinity of 2.1 and 2.5 dS m?1 under fertilization with ammonium sulfate and urea, respectively.

Keywords


Nitrogen sources; Passiflora edulis Sims; Water salinity.

Full Text:

PDF

References


AREF, I. M.; SHETTA, N. D. Impact of nitrogen sources on growth of Zizyphus spina-christi (L.) Willd. and Acacia tortilis subsp. tortilis (Forssk.) Hayne seedlings grown under salinity stress. Asian Journal of Crop Science, Dubai, v. 5, n. 4, p. 416-425, 2013.

AYERS, R. S.; WESTCOT, D. W. Water quality for agriculture. Rome: Food and Agriculture Organization of the United Nations (FAO, irrigation and drainage paper), 1994. 130 p.

BEZERRA, J. D.; PEREIRA, W. E.; SILVA, J. M. da; RAPOSO, R. W. C. Crescimento de dois genótipos de maracujazeiro-amarelo sob condições de salinidade. Revista Ceres, Viçosa, MG, v. 63, n. 4, p. 502-508, 2016.

BHATT, M. J.; PATEL, A. D.; BHATTI, P. M.; PANDEY, A. N. Effect of soil salinity on growth, water status and nutrient accumulation seedlings of Ziziphus mauritiana (Rhamnaceae). Journal of Fruit and Ornamental Plant Research, Warszawa, v. 16, n. 2, p. 383-401, 2008.

CAVALCANTE, L. F.; SOUSA, G. G.; GONDIM, S. C.; FIGUEIREDO, F. L.; CAVALCANTE, I. H. L.; DINIZ, A. A. Crescimento inicial do maracujazeiro amarelo manejado em dois substratos irrigados com água salina. Irriga, Botucatu, v. 14, n. 4, p. 504-517, 2009.

DEBOUBA, M.; GOUIA, H.; VALADIER, M. H.; GHORBEL, M. H.; SUZUKI, A. Salinity-induced tissue-specific diurnal changes in nitrogen assimilatory enzymes in tomato seedlings grown under high or low nitrate medium. Plant Physiology and Biochemistry, Amsterdam, v. 44, n. 5-6, p. 409-419, 2006.

DICKSON, A.; LEAF, A. L.; HOSNER, J. F. Quality appraisal of white spruce and white pine seedling stock in nurseries. The Forestry Chronicle, Mattawa, v. 36, n. 1, p. 10-13, 1960.

DINIZ NETO, M. A.; SILVA, I. D. F.; CAVALCANTE, L. F.; DINIZ, B. L. M. T.; SILVA, J. C. A.; SILVA, E. C. Mudas de oiticica irrigadas com águas salinas no solo com biofertilizante bovino e potássio. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v. 18, n. 1, p. 10-18, 2014.

FEIJÃO, A. R.; SILVA, J. C. B. da; MARQUES, E. C.; PRISCO, J. T.; GOMES-FILHO, E. Efeito da nutrição de nitrato na tolerância de plantas de sorgo sudão à salinidade. Revista Ciência Agronômica, Fortaleza, v. 42, n. 3, p. 675-683, 2011.

FLORES, P.; CARVAJAL, M.; CERDÁ, A.; MARTÍNEZ, V. Salinity and ammonium/nitrate interactions on tomato plant development, nutrition, and metabolites. Journal of Plant Nutrition, Athens, v. 24, n. 10, p. 1561-1573, 2001.

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS - FAO. Tropical fruits compendium. Yaoundé: Food and Agriculture Organization of the United Nations (FAO), 2011. 32 p.

FREITAS, J. C. D. O.; ALMEIDA, A.-A. F.; LAGO, M. F.; SOUZA, M. M.; SOUZA JÚNIOR, J. O. Características morfofisiológicas de plantas clonais de Passiflora alata crescidas em diferentes doses de nitrogênio e níveis de sombreamento. Revista Brasileira de Fruticultura, Jaboticabal, v. 34, n. 3, p. 859-872, 2012.

HESSINI, K.; HAMED, K. B.; GANDOUR, M.; MEJRI, M.; ABDELLY, C.; CRUZ, C. Ammonium nutrition in the halophyte Spartina alterniflora under salt stress: evidence for a priming effect of ammonium? Plant Soil, Switzerland, v. 370, n. 1-2, p. 163-173, 2013.

HUNT, G. A. Effect of styroblock design and copper treatment on morphology of conifer seedlings. In: ROSE, R.; CAMPBELL, S. J.; LANDIS, T. D. Proceedings, western forest nursery association. Roseburg: National Nursery Proceedings, 1990a. p. 13-17.

HUNT, R. Basic growth analysis: plant growth analysis for beginners. London: Unwin Hyman, 1990b. 112 p.

KAMALULDEEN, J.; YUNUSA, I. A. M.; ZERIHUN, A.; BRUHL, J. J.; KRISTIANSEN, P. Uptake and distribution of ions reveal contrasting tolerance mechanisms for soil and water salinity in okra (Abelmoschus esculentus) and tomato (Solanum esculentum). Agricultural Water Management, Amsterdam, v. 146, n. 1, p. 95-104, 2014.

KANT, S.; KANT, P.; LIPS, H.; BARAK, S. Partial substitution of NO-3 by NH+4 fertilization increases ammonium assimilating enzyme activities and reduces the deleterious effects of salinity on the growth of barley. Journal of Plant Physiology, Amsterdam, v. 164, n. 3, p. 303-311, 2007.

MARSCHNER, P. Mineral nutrition of higher plants. 3th ed. San Diego: Elsevier, 2012. 651 p.

MASCLAUX-DAUBRESSE, C.; DANIEL-VEDELE, F.; DECHORGNAT, J.; CHARDON, F.; GAUFICHON, L.; SUZUKI, A. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Annals of Botany, Oxford, v. 105, n. 7, p. 1141-1157, 2010.

MUNNS, R.; TESTER, M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, Palo Alto, v. 59, n. 1, p. 651-681, 2008.

NASCIMENTO, E. S.; CAVALCANTE, L. F.; GONDIM, S. C.; SOUZA, J. T. A.; BEZERRA, F. T. C.; BEZERRA, M. A. F. Formação de mudas de maracujazeiro amarelo irrigadas com águas salinas e biofertilizantes de esterco bovino. Revista Agropecuária Técnica, Areia, v. 38, n. 1, p. 1-8, 2017.

NOVAIS, R. F. de; NEVES, J. C. L; BARROS, N. F. Ensaio em ambiente controlado. In: OLIVEIRA, A. J. de; GARRIDO, W. E.; ARAUJO, J. D. de; LOURENÇO, S. Métodos de pesquisa em fertilidade do solo. Brasília: EMBRAPA-SEA, 1991. p. 189-253.

OLIVEIRA, F. I. F. de; SOUTO, A. G. de L.; CAVALCANTE, L. F.; MEDEIROS, W. J. F. de; BEZERRA, F. T. C.; BEZERRA, M. A. F. Quality of jackfruit seedlings under saline water stress and nitrogen fertilization. Semina: Ciências Agrárias, Londrina, v. 38, n. 4, p. 2337-2350, 2017. Supplement 1.

POMMER, C. V.; BARBOSA, W. The impact of breeding on fruit production in warm climates of Brazil. Revista Brasileira de Fruticultura, Jaboticabal, v. 31, n. 2, p. 612-635, 2009.

PRISCO, J. T.; GOMES FILHO, E. G.; MIRANDA, R. de S. Physiology and biochemistry of plants growing under salt stress. In: GHEYI, H. R.; DIAS, N. da S.; LACERDA, C. F. de; GOMES FILHO, E. Manejo da salinidade na agricultura: estudos básicos e aplicados. Fortaleza: INCTSal, 2016. p. 163-180.

QADOS, A. M. S. A. Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). Journal of the Saudi Society of Agricultural Sciences, Riyadh, v. 10, n. 1, p. 7-15, 2011.

TAIZ, L.; ZEIGER, E.; MØLLER, I. M.; MURPHY, A. Fisiologia e desenvolvimento vegetal. 6th ed. Porto Alegre: Artmed, 2017. 858 p.

TEIXEIRA, P. C.; DONAGEMA, G. K.; FONTANA, A.; TEIXEIRA, W. G. Manual de métodos de análise de solo. 3th ed. Brasília: EMBRAPA, 2017. 573 p.

VERBRUGGEN, N.; HERMANS, C. Proline accumulation in plants: a review. Amino Acids, Netherlands, v. 35, n. 4, p. 753-759, 2008.




DOI: http://dx.doi.org/10.5433/1679-0359.2019v40n2p611

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional