Type and quantity of biochar influenced soil microbial activity and carbon priming effect

José Ilmar Tínel de Carvalho Junior, Maria Isidória Silva Gonzaga, André Quintão de Almeida, Jady Araújo, Lúcia Catherinne Oliveira Santos

Abstract


Biochar has shown much potential to be used as soil amendment and conditioner as well as an effective alternative to waste disposal. However, the effect of biochar on soil organic matter varies according to the type of feedstock. This study aimed to evaluate the influence of different types and rates of application of biochar on soil microbial activity and on soil carbon priming effect. The incubation experiment was set up as a completely randomized design in a 2 x 5 factorial scheme, with two types of biochar (coconut husk and orange bagasse) and five rates of application (0, 5, 10, 15 and 30 t ha-1), with three replications. Soil microbial activity was evaluated through the concentration of CO2 released from the soil during a period of 130 days. Carbon priming effect was determined based on the CO2 respired in the biochar treated soil and in the control soil. Both biochars increased the total oxidizable carbon in the soil when they were applied at 30 t ha-1, however, the orange bagasse biochar was more effective than the coconut biochar. Coconut biochar increased the cumulative soil microbial respiration at all rates of application during the incubation period, therefore, it contributed to a positive carbon priming effect and should be applied with caution to avoid excessive loss of carbon from the soil. Orange bagasse biochar had little influence on the cumulative CO2 emission, except at 15 t ha-1, which increased soil microbial activity.

Keywords


Black carbon; Waste management; Environmental sustainability.

Full Text:

PDF

References


ALEF, K.; NANNIPIERI, P. Methods in applied soil microbiology and biochemistry. London: Academic Press, 1995. 576 p.

BUDAI, A.; RASSE, D. P.; LAGOMARSINO, A.; LERCH, T. Z.; PARUCH, L. Biochar persistence, priming and microbial response to pyrolysis temperature series. Biology and Fertility of Soils, Berlin, v. 52, n. 6, p. 749-761, 2016. DOI: 10.1007/s00374-016-1116-6

CALVELO PEREIRA, R.; KAAL, J.; CAMPS-ARBESTAIN, M.; PARDO LORENZO, R. AITKKENHEAD, W.; HEDLEY, M.; MACIAS, F.; HINDMARSH, J.; MACIÁ-AGULLÓ, J. A. Contribution to characterization of biochar to estimate the labile fraction of carbon. Organic Geochemistry, v. 42, n. 11, p. 1331-1342. DOI:10.1016/j.orggeochem.2011.09.002.

CELY, P.; GASCO, G.; PAZ-FERREIRO, J.; MENDEZ, A. Agronomic properties of bio-chars from different manure wastes. Journal of Analytical and Applied Pyrolysis, Amsterdam, v. 111, n. 1, p. 173-182, 2015. DOI: 10.1016/j.jaap.2014.11.014

FAGERIA, N. K. Role of soil organic matter in maintaining sustainability of cropping systems. Communications in Soil Science and Plant Analysis, New York, v. 43, n. 16, p. 2063-2113, 2012. DOI: 10.1080/00103624.2012.697234

GASKIN, J.; STEINER, C.; HARRIS, K.; DAS, K.; BIBENS, B. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the ASABE, Saint Joseph, v. 51, n. 6, p. 2061-2069, 2008. DOI: 10.13031/2013.25409

GONZAGA, M. I. S.; BISPO, M. V. C.; SILVA, T. L.; SANTOS, W. M.; SANTANA, I. L. Atlantic forest soil as reference in the soil quality evaluation of coconut orchards (Cocos nucífera L) under different management. Semina: Ciências Agrárias, Londrina, v. 37, n. 6, p. 3847-3858, 2016. DOI:10.5433/1679-0359.2016v37n6p3847

GUIMARÃES, D. V.; GONZAGA, M. I. S.; SILVA, T. O.; SILVA, T. L.; DIAS, N. S.; SILVA, M. I.; MATIAS, M. I. Soil organic matter pools and carbon fractions in soil under different land uses. Soil and Tillage Research, Netherlands, v. 126, n. 1, p. 177-182, 2013. DOI:10.1016/j.still.2012.07.010

HERNANDEZ-SORIANO, M. C.; KERRÉ, B.; KOPITTA, P. M.; HOREMANS, B.; SMOLDERS, E. Biochar affects carbon composition and stability in soil: A combined spectroscopy-microscopy study. Scientific Reports, v. 6, n. 25127, 2016. DOI: 10.1038/srep25127

JENKINS, J. R.; VIGER, M.; ARNOLD, Z. M.; HARRIS, M. V. Biochar alters the soil microbiome and soil function: results of next-generation amplicon sequencing across Europe. GCB Bioenergy, Hoboken, v. 9, n. 3, p. 591-612, 2017. DOI:10.1111/gcbb.12371

LANZA, G.; WIRTH, S.; GESSLER, A.; KERN, J. Short-term response of soil respiration to addition of chars: impact of fermentation post-processing and mineral nitrogen. Pedosphere, Beijing, v. 25, n. 5, p. 761-769, 2015. DOI: 10.1016/S1002-0160(15)30057-6

LU, W.; DING, W.; ZHANG, J.; LI, Y.; LUO, J.; BOLAN, N.; XIE, Z. Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil: a negative priming effect. Soil Biology and Biochemistry, Firenze, v. 76, n. 1, p. 12-21, 2014. DOI:10.1016/j.soilbio.2014.04.029

NELSON, D. W.; SOMMERS, L. E. Total carbon, organic carbon and organic matter. In: PAGE, A. L.; MILLER, R. H.; KEENEY, D. R. (Ed.). Methods of soil analysis: chemical and microbiological properties. Part 2. Madison: Soil Science Society of America, 1982. p. 539-579.

NSAMBA, H.; HALE, S.; CORNELISSEN, G.; BACHMANN, R. Designing and Performance Evaluation of Biochar Production in a Top-Lit Updraft Up-scaled Gasifier. Journal of Sustainable Bioenergy Systems, Wuhan, v. 5, n. 2, p. 41-55, 2015. DOI: 0.4236/jsbs.2015.52004

PAZ-FERREIRO, J.; FU, S.; MENDEZ, A.; GASCO, G. Interactive effects of biochar and the earhworm Pontoscolex corethrurus on plant productivity and soil enzymes activities. Journal of Soils and Sediment, New York, v.14, n.3, p. 483-494, 2014. DOI:10.1007/s11368-013-0806-z

PAZ-FERREIRO, J.; LIANG, C.; FU, S.; MENDEZ, A.; GASCO, G. The effect of biochar and its interaction with the earthworm pontoscolex corethrurus on soil microbial community structure in tropical soils. PLoS One, San Francisco, v. 10, n. 4, p. 1-11, 2015. DOI:10.1590/S0100-06832014000400021

SANTOS, R. D. dos; LEMOS, R. C. de; SANTOS, H. G. dos; KER, J. C.; ANJOS, L. H. C. dos; SHIMIZU, S. H. Manual de descrição e coleta de solo no campo. 6. ed. Viçosa: Sociedade Brasileira de Ciência do Solo, 2013. 100 p.

SINGH, B. P.; COWIE, A. L. Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil. Scientific Report, London, v.4, n.3687, p.1-9, 2014. DOI: 10.1038/srep03687

TEAM, R. C. R. A language and environment for statistical computing R Foundation for statistical computing. Vienna, Áustria, 2013.

TRAN, H.; YOU, S. J.; CHAO, H. Effect of pyrolysis temperatures and times on the adsorption of cadmium onto orange peel derived biochar. Waste Management and Research, Thousand Oaks, v. 34, n. 2, p. 129-138, 2016. DOI: 10.1177/0734242X15615698

WANG, J.; XIONG, Z.; KUZYAKOV, Y. Biochar stability in soil: meta-analysis of decomposition and priming effects. GCB Bioenergy, Hoboken, v. 8, n. 3, p. 512-523, 2016. DOI: 10.1111/gcbb.12266

YOUSAF, B.; LIU, G.; WANG, R.; ABBAS, Q.; IMTIAZ, M.; LIU, R. Investigating the biochar effects on Cmineralization and sequestration of carbon in soil compared with conventional amendments using the stable isotope (delta C-13) approach. Global Change Biology Bioenergy, v. 9, n. 1, p. 1085-1099, 2017. DOI: 10.1111/gcbb.12401

YU, L.; TANG, J.; ZHANG, R.; WU, Q.; GONG, M. Effects of biochar application on soil methane emission at different soil moisture levels. Biology and Fertility of Soils, Berlin, v. 49, n. 2, p. 119-128, 2013. DOI: 10.1007/s00374-012-0703-4

ZHENG, H.; WANG, X.; LUO, X.; WANG, Z.; XING, B. Biochar-induced negative carbon mineralization priming effects in a coastal wetland soil: roles of soil aggregation and microbial modulation. Science of the Total Environment, Amsterdam, v. 610-611, n. 1, p. 951-960, 2018. DOI: 10.1016/j.scitotenv.2017.08.166

ZIMMERMAN, A. R. Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environmental Science and Technology, Washington ,v. 44, n. 4, p. 1295-1301, 2010. DOI: 10.1021/es903140c

ZIMMERMAN, A. R.; GAO, B.; AHN, M-Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biology and Biochemistry, Firenze, v. 43, n. 6, p. 1169-1179, 2011. DOI: 10.1016/j.soilbio.2011.02.005




DOI: http://dx.doi.org/10.5433/1679-0359.2019v40n4p1405

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional