Phosphorus forms and lability of organic matter during anaerobic digestion of swine manure

José de Souza Oliveira Filho, Thales Vinicius de Araújo Viana, Benito Moreira de Azevedo, Geocleber Gomes de Sousa, Marcos Gervasio Pereira


Understanding the dynamics of the organic matter and nutrients in pig manure submitted to anaerobic digestion is important to assist in decision-making regarding the use of anaerobic biofertilizer in agriculture. Accordingly, this study was carried out with the objective of evaluating the changes in organic matter, quantified as the content of carbon in the humic and oxidizable fractions, and in the content of the organic and inorganic forms of phosphorus in the solid fraction of the manure, as a function of digestion time in anaerobic reactors. Evaluations were carried out after 7, 14, 21, 28, 35, 42, and 49 days of digestion, and the results were compared to the raw manure. Changes in organic matter occurred mostly in the labile fractions (fulvic acid and the F1 fraction), the content of which underwent a reduction, favoring the accumulation of more recalcitrant fractions in the final biofertilizer (humic acid and the F2, F3, and F4 fractions). Total P content did not change throughout the digestion process. However, the size of inorganic fraction of water-extractable P decreased by 16.7% after 49 days of digestion, as it was consumed by the decomposing microbiota to form stabilized organic matter, which accumulated along with the more recalcitrant fractions of P in the final biofertilizer. Therefore, the use of swine manure-derived anaerobic biofertilizer has less risk of environmental contamination with excessive P than the direct application of raw manure to the soil.


Organic fertilizer; Bioavailability of nutrients; Biogas.

Full Text:



AMERICAN PUBLIC HEALTH ASSOCIATION - APHA. Standard methods for the examination of water and wastewater. 19th ed. Washington: American Public Health Association/American Water Works Association/Water Environment Federation, 1998.

BENITES, V. M.; MADARI, B.; MACHADO, P. L. O. A. Extração e fracionamento quantitativo de substâncias húmicas do solo: um procedimento simplificado de baixo custo. Rio de Janeiro: EMBRAPA Solos, 2003. 7 p. (Comunicado técnico, 16).

CHAN, K. Y.; BOWMAN, A.; OATES, A. Oxidizible organic carbon fractions and soil quality changes in an oxic paleustalf under different pasture leys. Soil Science, Philadelphia, v. 166, n. 1, p. 61-67, 2001. DOI: 10.1097/00010694-200101000-00009

FIGUEREDO FILHO, D. B.; SILVA JUNIOR, J. A. Visão além do alcance: uma introdução a análise fatorial. Opinião Pública, Campinas, v. 16, n. 1, p. 160-185, 2010. DOI: 10.1590/S0104-62762010000100007

FONGARO, G.; GARCIA-GONZALEZ, M. C.; HERNANDEZ, M.; KUNZ, A.; BARARDI, C. R. M.; RODRIGUEZ-LAZARO, D. Different behavior of enteric bacteria and viruses in clay soils after biofertilization with swine digestate. Frontiers in Microbiology, Lausanne, v. 8, n. 74, p. 1-9, 2017. DOI: 10.3389/fmicb.2017.00074

GARCIA-ALBACETE, M.; MARTIN, A.; CARTAGENA, C. Fractionation of phosphorus biowastes: Characterization and environmental risk. Waste Management, New York, v. 32, n. 6, p. 1061-1068, 2012. DOI: 10.1016/j.wasman.2012.02.003

GUNGOR, K.; KARTHIKEYAN, K. G. Phosphorus forms and extractability in dairy manure: a case study for Wisconsin on-farm anaerobic digesters. Bioresourse Technology, New York, v. 99, n. 2, p. 425-436, 2008. DOI: 10.1016/j.biortech.2006.11.049

HANSEN, K. H.; ALGELIDAKI, I.; AHRING, B. K. Anaerobic digestion of swine manure: inhibition by ammonia, Water Research, London, v. 32, n. 1, p. 5-12, 1998. DOI: 10.1016/S0043-1354(97)00201-7

LI, G.; LI, H.; LEFFELAAR, P. A.; SHEN, J.; ZHANG, F. Characterization of phosphorus in animal manures collected from three (dairy, swine, and broiler) farms in China. Plos One, California, v. 9, n. 7, p. 1-8, 2014. DOI: 10.1371/journal.pone.0102698

MARCATO, C. E.; MOHTAR, R.; REVEL, J. C.; POUECH, P.; HAFIDI, M.; GUIRESSE, M. Impact of anaerobic digestion on organic matter quality in pig slurry. International Biodeterioration and Biodegradation, London, v. 63, n. 7, p. 260-266, 2009. DOI: 10.1016/j.ibiod.2008.10.001

MARCATO, C. E.; PINELLI, E.; POUECH, P.; WINTERTON, P.; GUIRESSE, M. Particle size and metal distributions in anaerobilically digested pig slurry. Bioresourse Technology, New York, v. 99, n. 7, p. 2340-2348, 2008. DOI: 10.1016/j.biortech.2007.05.013

MASSÉ, D. I.; CROTEAU, F.; MASSE, L. The fate of crop nutrients during digestion of swine manure in psychrophilic anaerobic sequencing batch reactors. Bioresource Technology, New York, v. 98, n. 15, p. 2819-2823, 2007. DOI: 10.1016/j.biortech.2006.07.040

MOLLER, K.; MULLER, T. Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Engineering in Life Science, Amsterdam, v. 12, n. 3, p. 242-257, 2012. DOI: 10.1002/elsc.201100085

MURPHY, J.; RILEY, J. P. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, New York, v. 27, n. 1, p. 31-36, 1962. DOI: 10.1016/S0003-2670(00)88444-5

ORRICO JUNIOR, M. A. P.; ORRICO, A. C. A.; LUCAS JUNIOR, J.; SAMPAIO, A. A. M.; FERNANDES, A. R. M.; OLIVEIRA, E. A. Biodigestão anaeróbia dos dejetos da bovinocultura de corte: influência do período, do genótipo e da dieta. Revista Brasileira de Zootecnia, Viçosa, MG, v. 41, n. 6, p. 1533-1538, 2012. DOI: 10.1590/S1516-35982012000600030

PHILIPPE, F. X.; NICKS, B. Review on greenhouse gas emissions from pig houses: production of carbon dioxide, methane and nitrous oxide by animals and manure. Agriculture, Ecosystems and Environment, Amsterdam, v. 199, n. 2, p. 10-25, 2015. DOI: 10.1016/j.agee.2014.08.015

PROVENZANO, M. R.; MALERBA, A. D.; PEZZOLLA, D.; GIGLIOTTI, G. Chemical and spectroscopic characterization of organic matter during the anaerobic digestion and successive composting of pig slurry. Waste Management, New York, v. 34, n. 7, p. 653-660, 2014. DOI: 10.1016/j.wasman.2013.12.001

RAJAGOPAL, R.; MASSE, D. I.; SINGH, G. A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresource Technology, New York, v. 143, n. 1, p. 632-641, 2013. DOI: 10.1016/j.biortech.2013.06.030

RODRIGUEZ-NAVAS, C.; BJORKLUND, E.; HALLING-SORENSEN, B.; HANSEN, M. Biogas final digestive byproduct applied to croplands as fertilizer contains high levels of steroid hormones. Environmental Pollution, London, v. 180, n. 48, p. 368-371, 2013. DOI: 10.1016/j.envpol.2013.05.011

SANCHEZ-MONEDERO, M. A.; ROIG, A.; MARTINEZ-PARDO, C.; CEGARRA, J.; PAREDES, C. A microanalysis method for determining total organic carbon in extracts of humic substances. Relationships between total organic carbon and oxidable carbon. Bioresource Technology, New York, v. 57, n. 3, p. 291-295, 1996. DOI: 10.1016/S0960-8524(96)00078-8

SILVA, F. A. S.; AZEVEDO, C. A. V. Versão do programa computacional Assistat para o sistema operacional Windows. Revista Brasileira de Produtos Agroindustriais, Campina Grande, v. 4, n. 1, p. 71-78, 2002.

SONG, K.; XUE, Y.; ZHENG, X.; LV, W.; QIAO, H.; QIN, Q.; YANG, J. Effects of the continuous use of organic manure and chemical fertilizer on soil inorganic phosphorus fractions in calcareous soil. Scientific Reports, New York, v. 1164, n. 7, p. 1-9, 2017. DOI: 10.1038/s41598-017-01232-2

SZOGI, A. A.; VANOTTI, M. A.; RO, K. S. Methods for treatment of animal manures to reduce nutrient Pollution prior to soil application. Current Pollution Reports, London, v. 1, n. 1, p. 47-56, 2015. DOI: 10.1007/s40726-015-0005-1

TAKAHASHI, S. Phosphorus characterization of manure composts and combined organic fertilizers by a sequential-fractionation method. Journal of Soil Science and Plant Nutrition, Temocu, v. 176, n. 1, p. 494-496, 2013. DOI: 10.1002/jpln.201200169

TAMBONE, F.; ADANI, F.; GIGLIOTTI, G.; VOLPE, D.; FABBRI, C.; PROVENZANO, M. R. Organic matter characterization during the anaerobic digestion of different biomass by means of CPMAS 13C NMR spectroscopy. Biomass and Bioenergy, Virginia, v. 48, n. 13, p. 111-120, 2013. DOI: 10.1016/j.biombioe.2012.11.006

TEDESCO, J. M.; GIANELLO, C.; BISSANI, C. A.; BOHNEN, H.; VOLKWEISS, S. J. Análises de solo, plantas e outros materiais. 2. ed. Porto Alegre: UFRGS, 1995. 174 p. (Boletim técnico, 5).

TIECHER, T.; ZAFAR, M.; MALLMANN, F. J. K.; BORTOLUZZI, E. C.; BENDER, M. A.; CIOTTI, L. H.; SANTOS, D. R. Animal manure phosphorus characterization by sequential chemical fractionation, release kinetics and 31P-NMR analysis. Revista Brasileira de Ciência do Solo, Viçosa, MG, v. 38, n. 5, p. 1506-1514, 2014. DOI: 10.1590/S0100-06832014000500016

TORRI, S. I.; CORREA, R. S.; RENELLA, G. Biosolid application to agricultural land - a contribution to global phosphorus recycle: a review. Pedosphere, Beijing, v. 27, n. 1, p. 1-16, 2017. DOI: 10.1016/S1002-0160(15)60106-0

WALKLEY, A.; BLACK, A. An examination of the degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, New York, v. 37, n. 1, p. 29-38, 1934. DOI: 10.1097/00010694-193401000-00003

YEOMANS, J. C.; BREMNER, J. M. A rapid and precise method for routine determination of organic carbonic in soil. Comunicata Soil Science Plant Analisys, New York, v. 19, n. 13, p. 1476-1476, 1988. DOI: 10.1080/00103628809368027


Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433 / 1679-0359
Este obra está licenciado com uma Licença  Creative Commons Atribuição-NãoComercial 4.0 Internacional