INFLUÊNCIA DE DIFERENTES POPULAÇÕES NO RENDIMENTO DE GRÃOS DE UM MILHO HÍBRIDO

AMIR PISSAIA¹
JOSÉ LUIZ CAMARGO ZAMBON¹
PEDRO RONZELLI Jr.,¹
LAIS ROTH PELIZZARI²
NEWTON AKIRA YORINORI²

RESUMO: No ano agrícola de 1991/1992, no Centro de Estações Experimentais do Setor de Ciências Agrárias/UFPR, em Piraquara-PR, foi conduzido experimento de campo, com objetivo de determinar a influência de diferentes espaçamentos e respectivas populações sobre o rendimento de grãos, alterações morfológicas das plantas e componentes de rendimento. Os resultados obtidos mostraram que houve diferença significativa em relação ao rendimento de grãos favorável ao menor espaçamento (0,60 m), correspondente a uma população final de 83.333 plantas/ha, quando comparado aos espaçamentos de 0,80 e 0,90 m. Este fato comprova a importância da obtenção de uma população adequada a campo, que apesar de elevada em relação à recomendação tradicional, mantém o número médio de espigas por planta inalterado em relação às maiores populações. Há indicação de que também o maior peso de grãos por espiga é importante para aumentar o rendimento das lavouras, porém, quando atua associado a outros componentes de rendimento.

PALAVRAS-CHAVE: componentes de rendimento; população, Zea mays L.; alterações morfológicas.

1 INTRODUÇÃO

Tradicionalmente, o milho é semeado a um espaçamento fixo de 1,00 metro entre linhas (com cerca de 50.000 plantas/ha), mas esta prática vem sendo modificada, com a adoção de distâncias cada vez menores, principalmente em função do desenvolvimento de novos cultivares com características favoráveis a esse adensamento, ou seja, plantas de menor porte, com folhas mais eretas e resistentes ao acamamento (“Staygreen”).

Além disso, o milho exige o controle de plantas daninhas ao menos uma vez durante o ciclo da cultura. A utilização de espaçamentos menores e/ou populações maiores favorecem a cobertura do solo mais precocemente, proporcionando melhor controle das plantas daninhas, em função do rápido sombreamento das entre-linhas.

JOBIM et al. (1976), em um ensaio para indicar as melhores populações (25.000, 41.500, 50.000, 62.500 e 83.500 plantas/ha), concluíram que os maiores rendimentos eram obtidos com as populações entre 41.500 e 62.500 plantas/ha.

¹ Professor do Departamento de Fitotecnia e Fitossanitarismo do Setor de Ciências Agrárias da UFPR, Caixa Postal 2959, CEP 80001-970, Curitiba-PR.
² Engenheiro Agrônomo, estagiário(a) do Departamento de Fitotecnia e Fitossanitarismo do Setor de Ciências Agrárias da UFPR.
BATISTELA et al. (1977) recomendam, para variedades precoces em regiões de alta disponibilidade hídrica, população de 50.000 plantas/ha (espaçamento 1,00 m X 0,20 m) e para regiões de baixa pluviosidade, 40.000 plantas/ha (1,00 m X 0,25 m). Já para cultivares tardios, o ideal seria 40.000 plantas/ha para regiões de alta disponibilidade de água e 30.000 plantas/ha (1,00 m X 0,33 m) para locais com baixo nível de precipitação.

Utilizando três espaçamentos entre-linhas e quatro populações de plantas, MUNDSTOCK (1978) concluiu que o espaçamento de 0,50 m entre-linhas foi superior ao espaçamento de 1,10 m em rendimento de grãos, nas populações de 70.000 e 90.000 plantas/ha, com aumentos de 21,8% e 10,8%, respectivamente, e igualou-se aos demais tratamentos. O maior rendimento foi obtido no tratamento de 0,50 m com 70.000 plantas/ha.

ESPINOSA (1979) testou quatro populações de plantas (20.000, 40.000, 60.000 e 80.000 plantas/ha) e concluiu que não há vantagens no aumento da densidade, pois não ocorreu aumento de rendimento da produção. No entanto, OLIVEIRA (1979) observou que populações em torno de 50.000 plantas/ha (espaçamento 1,00 m X 0,20 m) apresentaram as melhores produções em condições de campo, contrariando os resultados obtidos por PISSAIA et al. (1992/3).

Já XIMENES et al. (1987) afirmaram em seu trabalho, que a medida em que aumentava a população (20.000 - 40.000 - 60.000 - 80.000 plantas/ha), elevava-se o número de plantas acamadas e sem espigas; porém, o número de espigas e a produção por área aumentavam. Constataram também que havia uma variação de até 90% na produção de grãos entre a população de 20.000 e 80.000 plantas/ha, contrariando os resultados obtidos por ZAMBRONI et al. (1987).

Estudos realizados no Sudoeste do Paraná por CARNEIRO; GERAGE (1991), indicaram que espaçamentos de 1,20 m entre fileiras e 0,40 m entre covas, com 2 a 3 plantas por cova, não diferiam significativamente do espaçamento de 1,00 m X 0,20 m e 1 planta por cova, com o uso ou não da adubação. No mesmo trabalho, os autores afirmaram que em solos de baixa fertilidade, sem correção da acidez e sem adubação, a população de 30.000 plantas/ha era a mais conveniente.

PISSAIA et al. (1992/3) encontraram resultados significativos favoráveis a menores espaçamentos (0,60; 0,70 e 0,80 m) em relação ao rendimento de grãos, quando comparados ao espaçamento padrão (1,00 m). Verificaram ainda que havia tendência na manutenção do número de espigas por planta e que este fator, associado às maiores populações, proporcionava resultados favoráveis. No entanto, o menor espaçamento (0,60 m) mostrou redução significativa no diâmetro do colmo, quando comparado aos maiores espaçamentos (0,90 e 1,00 m).

Este trabalho foi realizado a fim de comprovar a existência ou não de diferenças na resposta da cultura do milho quanto ao rendimento de grãos, às alterações morfológicas e aos componentes de rendimento, quando submetida a diferentes populações de plantas, para as condições da Região Metropolitana de Curitiba e de outras, com características edafoclimáticas semelhantes.

2 MATERIAL E MÉTODOS

O experimento foi conduzido na Fazenda Experimental do Setor de Ciências Agrárias da Universidade Federal do Paraná, município de Piraquara, Região Metropolitana de Curitiba, à 930 m de altitude, latitude de 25° 25'S e longitude de 49° 08' O. O clima é o Cfb, segundo a classificação de Köeppen, ou seja, mesotérmico úmido a súper-úmido, sem estação seca, com verões frescos e média de temperatura do mês mais quente inferior a 22 ºC. O solo do local do experimento é classificado como Latossolo Vermelho escuro formação Guabirotuba, álico, com A proeminent e textura argilosa. O relevo é suave ondulado com pequena declividade. Caracteriza-se como solo profundo, bem drenado, poroso, de textura areno-argilosa, fortemente ácido, com saturação de bases baixa e pobre em matéria orgânica (EMBRAPA, 1984).

Essas condições naturais foram alteradas através de manejos sucessivos, resultando na elevação do nível de fertilidade e correção da acidez, criando condições para obtenção de altos rendimentos (Quadro 1).

A semeadura foi efetuada em 20/11/91, a uma profundidade média de 0,04m, com sementes em excesso para desbaste posterior e ajuste da população aos níveis desejados. Aos 37 dias após a emergência, foram eliminadas as plantas excedentes, permanecendo 5 a 7 plantas por metro linear, estabelecendo-se as populações originais em 100.000; 85.000; 75.000; 66.667 e 60.000 plantas/ha, para os respectivos espaçamentos de 0,60; 0,70; 0,80; 0,90 e 1,00 metro entre linhas. Foi utilizado um único cultivar de milho híbrido, o AG-303.

A adubação química consistiu na aplicação de 300 kg/ha de fertilizante formulado 4-30-10 (N,P,K), em sulcos, abaixo e ao lado das sementes. A adubação nitrogenada em cobertura foi realizada no início do pendoamento, manualmente, na base de 60 kg de N/ha e incorporado com enxada, mesmo momento utilizado para a realização da amontoa. O sulfato de amônio foi utilizado como fonte de nitrogênio.

Foi realizada uma aplicação de atrazine + metolachlor, herbicida pré-emergente, na dose de 5 l/ha, logo após a semeadura. Além do controle químico das invasoras, foram realizadas duas capinas manuais, em épocas oportunas.

O delineamento experimental utilizado foi o de blocos ao acaso, com 4 repetições. As parcelas experimentais consistiram de quatro fileiras de 6 metros de comprimento e os tratamentos, pelos diferentes espaçamentos, resultaram em áreas úteis diferenciadas.

A colheita foi efetuada manualmente em 18/05/92, com posterior debulha. Foram colhidas as duas linhas
centrais, desprezando-se as linhas externas, bem como 0,50 m de cada extremidade, como bordurias. Na análise dos dados foi efetuado o ajuste da população (plantas/ha), de acordo com os espaçamentos utilizados. O teor de umidade dos grãos foi padronizado a 13%, pelo uso da fórmula:

\[
PF = \frac{100 - UA}{100 - UD} \times PP, \text{ onde:}
\]

- \(PF \) = Peso final;
- \(UA \) = Umidade na análise;
- \(UD \) = Umidade desejada (13%);
- \(PP \) = Peso da parcela.

No campo foram realizadas as seguintes avaliações: altura da planta (m); altura da inserção da primeira espiga (m) e diâmetro do colmo (cm). Como dados complementares, foram obtidas informações sobre peso médio de grãos por espiga (g) e número médio de espigas por planta.

Foram também efetuadas leituras mensais das temperaturas máxima e mínima e índices de precipitação pluviométrica, durante o período de execução do experimento. Os respectivos dados encontram-se nas Figuras 1 e 2.

3 RESULTADOS E DISCUSSÃO

Na colheita, foi avaliada a população final e constatou-se redução da população original (após o desbaste), indicando que ocorreu mortalidade natural crescente e significativa de plantas durante o desenvolvimento da videira, à medida em que se reduziu o espaçamento (Tabela 1).

De acordo com os resultados obtidos pela análise de variância e teste de Duncan a 5% de probabilidade, observou-se que não houve diferença significativa para número médio de espigas por planta, ponto médio de inserção da primeira espiga, estatura média de planta, peso médio de grãos por espiga e diâmetro do colmo (Tabela 2). Por outro lado, observou-se resultado significativo pelo mesmo teste e nível de significância utilizado, para a rendimento de grãos (Figura 3).

O resultado com diferença significativa em rendimento de grãos foi favorável ao menor espaçamento (0,60 m) comparativamente aos espaçamentos de 0,80 e 0,90 m, com nível diferencial de 21,5% e 22,8%, respectivamente (Tabela 1); isto contraria os resultados obtidos por JOBIM et al. (1976), ESPINOZA (1979) e ZAMBON et al. (1987), que evidenciaram a sensibilidade do milho à competição intra-específica com o aumento da população. No entanto, os resultados deste ensaio assemelham-se àqueles encontrados por MUNDSTOCK (1978), XIMENES et al. (1987) e PISSAIA et al. (1992).

O principal componente a proporcionar acréscimo de rendimento foi o número de plantas por área, associado à manutenção do número de espigas por planta; os maiores valores da variável peso de grãos por espiga, foram obtidos com o espaçamento padrão (1,00m), sem diferir significativamente dos demais tratamentos, apesar de existir uma pequena tendência de aumento do peso de grãos por espiga nos maiores espaçamentos (Tabela 2).

4 CONCLUSÕES

Nas condições edafoclimáticas do local em que foi conduzido o experimento concluiu-se que:

- a população final de 83,300 plantas/ha, a qual estava associada ao menor espaçamento entre linhas (0,60 m), proporcionou acréscimo significativo no rendimento de grãos do milho híbrido AG-303;
- as características morfológicas das plantas não se alteraram com a variação do espaçamento;
- a adoção de espaçamentos menores nas entrelinhas causaram menores reduções na população original; e
- o peso médio de grãos por espiga mostrou uma relação diretamente proporcional ao espaçamento das entrelinhas.

QUADRO 1 – Resultado da análise de solo da área experimental, efetuada no laboratório do Departamento de Solos/SCA/UFPR.

<table>
<thead>
<tr>
<th>Profund. Amostra</th>
<th>pH (CaCl₂)</th>
<th>Al⁺⁺⁺</th>
<th>H+Al</th>
<th>Ca⁺⁺</th>
<th>Mg⁺⁺</th>
<th>K⁺</th>
<th>T</th>
<th>P (ppm)</th>
<th>C%</th>
<th>m%</th>
<th>V%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-20 cm</td>
<td>5,60</td>
<td>0,0</td>
<td>5,0</td>
<td>5,0</td>
<td>5,3</td>
<td>0,16</td>
<td>18,4</td>
<td>6,0</td>
<td>3,7</td>
<td>0</td>
<td>72,8</td>
</tr>
<tr>
<td>20-40 cm</td>
<td>4,70</td>
<td>1,5</td>
<td>8,4</td>
<td>2,5</td>
<td>1,6</td>
<td>0,02</td>
<td>12,5</td>
<td>1,0</td>
<td>2,2</td>
<td>26,7</td>
<td>32,9</td>
</tr>
</tbody>
</table>
TABELA 1 - Populações iniciais e finais, mortalidade de plantas e porcentagem de redução na produção, em cinco espaçamentos.

<table>
<thead>
<tr>
<th>ESPAÇAMENTO ENTRE-LIENHAS (m)</th>
<th>POPULAÇÃO INICIAL (PLANTAS/ha)</th>
<th>POPULAÇÃO FINAL (PLANTAS/ha)</th>
<th>MORTALIDADE DE PLANTAS (%)</th>
<th>REDUÇÃO NA PRODUÇÃO (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,60 m</td>
<td>100.000</td>
<td>83.300</td>
<td>16,7 a</td>
<td>0**</td>
</tr>
<tr>
<td>0,70 m</td>
<td>85,714</td>
<td>71,443</td>
<td>16,7 a</td>
<td>14,3</td>
</tr>
<tr>
<td>0,80 m</td>
<td>75,000</td>
<td>68,775</td>
<td>15,8 b</td>
<td>21,5</td>
</tr>
<tr>
<td>0,90 m</td>
<td>66,667</td>
<td>61,403</td>
<td>15,0 c</td>
<td>22,8</td>
</tr>
<tr>
<td>1,00 m</td>
<td>60,000</td>
<td>57,743</td>
<td>13,0 d</td>
<td>14,4</td>
</tr>
</tbody>
</table>

* Médias seguidas pela mesma letra não diferem entre si pelo teste de Duncan, ao nível de 5% de probabilidade.
** Considerou-se o tratamento de maior produtividade (0,6 m) como índice de perda = 0%.

TABELA 2 - Valores médios de altura das plantas, ponto de inserção da primeira espiga, diâmetro de colmo, peso de grãos por espiga e número de espigas por planta, em cinco espaçamentos.

<table>
<thead>
<tr>
<th>ESPAÇAMENTO ENTRE-LIENHAS (m)</th>
<th>ALTURA PLANTAS (m)</th>
<th>PONTO INSERÇÃO 1ª ESPIGA (m)</th>
<th>DIÂMETRO COLMO (mm)</th>
<th>PESO GRÃOS/ESPIGA (kg)</th>
<th>NÚMERO ESPIGAS/PLANTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,60 m</td>
<td>2,29 a</td>
<td>1,17 a</td>
<td>16,1 a</td>
<td>0,13 a</td>
<td>1,12 a</td>
</tr>
<tr>
<td>0,70 m</td>
<td>2,38 a</td>
<td>1,18 a</td>
<td>14,8 a</td>
<td>0,13 a</td>
<td>1,09 a</td>
</tr>
<tr>
<td>0,80 m</td>
<td>2,38 a</td>
<td>1,14 a</td>
<td>15,3 a</td>
<td>0,15 a</td>
<td>1,05 a</td>
</tr>
<tr>
<td>0,90 m</td>
<td>2,31 a</td>
<td>1,16 a</td>
<td>14,4 a</td>
<td>0,15 a</td>
<td>1,10 a</td>
</tr>
<tr>
<td>1,00 m</td>
<td>2,43 a</td>
<td>1,19 a</td>
<td>17,2 a</td>
<td>0,17 a</td>
<td>1,18 a</td>
</tr>
</tbody>
</table>

* Médias seguidas pela mesma letra, nas colunas, não diferem entre si pelo teste de Duncan, ao nível de 5% de probabilidade.

FIGURA 1 - Precipitação pluviométrica (mm) ocorrida durante o período de desenvolvimento do experimento.

FIGURA 2 - Valores mensais de temperaturas máxima e mínima durante o experimento.

FIGURA 3 - Rendimento de grãos (kg/ha) do milho híbrido AG-303 quando submetido a diferentes populações.

Médias com a mesma letra não diferem entre si pelo teste de Duncan, ao nível de 5% de probabilidade.

ABSTRACT: A field experiment was carried out during 1991/92 at the UFPR Experimental Station, Piraquara, PR, to determine the influence of different populations on the yield result obtained with 0,60 in between rows, the equivalent of 83,333 plants/ha, significantly better than 0,80 and 0,90 m in between rows. It confirmed how important it is to get the right plant population in the field even when it is bigger than the usual, because it had the same average number of ears per plant. It also indicates that the bigger grain weight by ear is important to raise the yield when it is associated with the other yield components.

KEY-WORDS: yield components, population, Zea mays L., morphological alterations.

REFERÊNCIAS BIBLIOGRÁFICAS

