EFEITO DO CITRONELOL SOBRE A GERMINAÇÃO E DESENVOLVIMENTO DO AMENDOIM-BRAVO (Euphorbia heterophylla L.) II

ANTONIO BARIONI GUSMAN¹
ROBSON A. PITELLI²
SANDRA MARA DIAS³

RESUMO: Sementes de E. heterophylla L. (amendoim-bravo) tratadas com citronelol (3,7 dimetil-6-octen-1), foram germinadas no solo, e o desenvolvimento acompanhado com condições, de campo. Foram avaliados os seguintes parâmetros: peso da matéria seca, altura das plantas, número das folhas, áreas foliar, assim como taxa de crescimento relativo, razão de área foliar, taxa de assimilação líquida, área foliar específica e taxa de respiração. A nível anatômico e metabólico foram medidos: largura do câmbio vascular, diâmetro de xilema do caule, e teor de amido em cotilédones, respectivamente. Devido ao crescimento inicial e durante todo o ciclo, as plantas oriundas de sementes tratadas sofreram efeitos sintomáticos significativos sobre todos os aspectos biológicos estudados.

PALAVRAS-CHAVE: Planta daninha, efeito de citronelol, crescimento.

1 – INTRODUÇÃO

A possibilidade de se evitar efeitos desta natureza seria a aplicação, pré-semeadura, de compostos voláteis no solo impedindo a infestação das culturas, já à nível de sementes sem prejuízo das plantas econômicas por efeitos residuais.

Em trabalho anterior GUSMAN et al (1990), expondo sementes secas do “amendoim-bravo” à ação de um volátil componente de casca de citrino, o citronelol (C10H200), obtiveram uma redução de 50% (LD50) na germinação. Verificaram também que plantulas, de 72 horas de idade, de sementes sobreviventes à dose LD50 sofreram alterações morfológicas, anatômicas, inibição de crescimento e nível de divisão celular.

Conhecidas estas alterações em plantulas mantidas sob condições laboratoriais, o presente trabalho teve como objetivo em condições de campo, avaliar o possível potencial lesivo do citronelol até o estádio da planta adulta, abrangendo os seguintes aspectos biológicos do desenvolvimento: peso da matéria seca, altura das plantas, área foliar, taxa de crescimento relativo, razão de área foliar, taxa de assimilação líquida, taxa de degradação de amido nos cotilédones, taxa de respiração, e medidas de diâmetro do xilema, além de largura do câmbio vascular.

2 – MATERIAL E MÉTODOS

A obtenção e seleção das sementes de E. heterophylla L., assim como o tratamento aplicado a elas para a dose LD50, seguiram o procedimento de GUSMAN et al (1990), utilizando-se porém 1,500 sementes tratadas e 800 sementes como controle. O solo utilizado foi tipo latossolo roxo, em área experimental do Setor de Botânica do Departamento de Biologia. Sobre o solo, na capacidade de campo, foi dispersa uniformemente uma solução de citronelol na dosagem correspondente a LD50. Não foi aplicado nenhum tratamento prévio de adubação. A seguir e rapidamente as sementes controle, e tratadas foram lançadas aleatoriamente em 2 (dois) canteiros de 2/4 metros, e recobertas por uma camada do mesmo solo, peneirado, na espessura de aproximadamente 1,0cm. A irrigação foi de 10 minutos diariamente.

Durante os diferentes estágios de desenvolvimento, foram utilizadas amostras de 20 plantas emergentes por coleta ao acaso, a partir do 10o. dia. Considerando-se apenas a parte aérea, foram medidas: altura da planta, comprimento e largura das folhas e separadas as partes em cotilédones, folhas, caule, flores e frutos.

1. Departamento de Biologia (Botânica) – FFCL de Ribeirão Preto-SP Campus USP e pesquisador científico do CNPq.
3. Estagiária do Departamento de Biologia (Botânica) FFCL-USP e pós-graduando.
A determinação do peso da matéria seca foi feita após a secagem de cada parte da estufa a 70°C até peso constante.

Através da equação \(y = 0,745(C \times L) \), estabelecida por RIBEIRO et al. (1977) foi estimada a área foliar de E. heterophylla L., onde \(y = \) área foliar real, \(C = \) comprimento da folha ao longo da nervura central, e \(L = \) largura máxima da folha. A somatória das áreas de todas as folhas medias corresponde à área foliar de cada planta.

Os cálculos para taxa de crescimento relativo (TCR) e taxa de assimilação líquida (TAL) foram baseadas nas fórmulas estabelecidas por WILLIAMS (1946).

A área foliar específica (AFE) foi obtida pela razão entre a área foliar e o peso da matéria seca das folhas.

Para a determinação do teor de amido, foram utilizados os cotiledones de 10 plantas e 3 repetições do material, e o método de ALLEN et al. (1974) modificado como a seguir: 0,5g de peso fresco de cotiledones foram macerados em grãos num volume final de 5,0ml de água destilada. O macerado foi aquecido em banho-maria durante 15 minutos, e então resfriado em água corrente com agitação até a temperatura de 35°C. Foram adicionados 5,0ml de HCl 0,060 com agitação por 15 minutos. Após centrifugação do material a 4.000 r.p.m. durante 10 minutos, procedeu-se a filtragem em lâ de vidro, levando-se o volume para 50ml. Este volume foram utilizadas 3 amostras de 5,0ml do extrato, as quais receberam 3 gotas de vermifugo de fenol, gotas de NaOH 5,0% até mudança de cor; gotas de ácido acético 10% até descolorir juntando-se um excesso de 2,5ml do ácido; 0,5ml de KI 5% e 0,1ml de KIO3 0,015 de agitação. Todas as amostras foram levadas ao volume final de 50ml, e medidas em espectrocolorímetro a 595nm com um branco. Os valores de absorvância transformados em mg através de uma curva padrão, sofreram correções para serem expressos em mg/g de matéria seca.

Para a medida da taxa de respiração utilizou-se um analisador de gás infra-vermelho Beckman 864 para determinação de CO2. Durante 24 horas, em duas repetições foram mantidas nas câmaras 100 plântulas de sementes tratadas, e não tratadas a temperatura 28°C.

A nível anatômico foram medidos em microscópio ótico a largura do câmbio vascular e diâmetro do xilema em cortes transversais de caule de plantas com 15 dias de idade, conforme GUSMAN et al. (1990).

3 — RESULTADOS E DISCUSSÃO

Tanto as plântulas oriundas de sementes sobreviventes a dose LD50 (no solo, em relação ao controle, as tratadas sofrem redução de 35%), como as testemunhas, emergiram 2 dias após a semeadura, e aos 5 dias apresentaram os cotiledones expandidos, com epicotilo reduzido e folhas primárias e secundárias em desenvolvimento. Após 35 dias de crescimento vegetativo, a fase reprodutiva teve início, apresentando os primórdios de inflorescência e, progressivamente, até 60 dias em diferentes estádios da fase de frutificação.

Na Tabela 1 são apresentados os dados de altura, número de folhas, e áreas foliares de E. heterophylla de plantas testemunhas e sobreviventes de sementes submetidas ao tratamento com citronelol a dose LD50. Verificase, comparativamente, que no período de 10 a 89 dias, as diferenças naqueles parâmetros se acentuam significativamente.

Nas Figuras 1, 2 e 3 tem-se o peso da matéria seca total, e os pesos das matérias secas das diferentes partes, da parte aérea do amendoim-braço no período de 10 a 89 dias. Em ambos os casos (testemunha e tratamento), o peso seco total e do caule aumentam continuadamente, sendo que o peso da matéria seca foliar entra em declínio dos 60 aos 89 dias, período mais avançado da fase reprodutiva, e de maior translocação de nutrientes da forma mais intensa para os botões florais e frutos em desenvolvimento e maturação.

<table>
<thead>
<tr>
<th>IDADES (dias)</th>
<th>ALTURA (cm)</th>
<th>No. FOLHAS</th>
<th>Área foliar (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>T</td>
<td>C</td>
</tr>
<tr>
<td>10</td>
<td>4,9 ± 0,23a</td>
<td>3,6 ± 0,37b</td>
<td>2,0 ± 0,34a</td>
</tr>
<tr>
<td>18</td>
<td>9,1 ± 0,40a</td>
<td>9,0 ± 0,35a</td>
<td>4,2 ± 0,60a</td>
</tr>
<tr>
<td>35</td>
<td>28,3 ± 1,60a</td>
<td>22,5 ± 1,00b</td>
<td>9,0 ± 0,31a</td>
</tr>
<tr>
<td>60</td>
<td>55,0 ± 3,10a</td>
<td>44,9 ± 3,80b</td>
<td>12,4 ± 0,40a</td>
</tr>
<tr>
<td>79</td>
<td>72,0 ± 2,30a</td>
<td>45,7 ± 3,04a</td>
<td>18,2 ± 3,60a</td>
</tr>
<tr>
<td>89</td>
<td>75,0 ± 1,70a</td>
<td>45,7 ± 1,04b</td>
<td>18,2 ± 4,70a</td>
</tr>
</tbody>
</table>

* Folhas com superfície foliar contraída e reflexo, impossibilitando mais o manejo.

Letras diferentes entre controle e tratamento ou cada parâmetro indicam diferenças estatisticamente significativas a nível de P < 0,05 pelo teste "t".

Semina Cl. Agr., v. 15, n. 1, p. 14-22
FIGURAS: 1 - MATÉRIA SECA/PLANTA E MATÉRIA SECA TOTAL; △ CONTROLE, ◇ TRATAMENTO; 2 - MATÉRIA SECA: FLORES + FRUTOS; ▽ CONTROLE, ● TRATAMENTO; MATÉRIA SECA DE FOLHAS + COTILEDONES: ○ CONTROLE, ▲ TRATAMENTO.

Semina Ci. Agr., v. 15, n. 1, p. 14-22
FIGURA 3 – MATÉRIA SECA DO CAULE: ○ CONTROLE; △ TRATAMENTO.
O parâmetro de crescimento TCR (Taxa de crescimento relativo) que avalia o peso médio da matéria seca total da parte aérea por grama já produzida pela planta por umidade de tempo, é observado na Figura 4. Verifica-se um aumento da biomassa no período dos 18 aos 60 dias, e a partir da fase de florescimento, que se inicia aproximadamente aos 35 dias. Um declínio constante, representando uma redução de crescimento, ocorre dos 60 aos 79 dias, período em que a fase de frutificação é mais intensa (vide também Figura 1). Verifica-se portanto, que a atividade biológica nos parâmetros acima considerados, pelos seus valores, é acentuada mais reduzida nas plantas advindas de sementes sobreviventes à dose LD50, indicando um processo de alterações irreversíveis no hábito de crescimento e desenvolvimento da planta.

Curva descendente com o tempo para as plantas-tratamento apresenta valores significamente menores em relação as plantas-controle.

FIGURA 4 – TAXA DE ASSIMILAÇÃO DE CRESCIMENTO RELATIVO (TCR) ● CONTROLE; □ TRATAMENTO.

Semina Ci. Agr., v. 15, n. 1, p. 14-22
FIGURA 5 – TAXA DE ASSIMILAÇÃO LÍQUIDA (TAL). ○ CONTROLE; □ TRATAMENTO.

FIGURA 6 – ÁREA FOLIAR ESPECÍFICA (AFE). ○ CONTROLE; □ TRATAMENTO.
O mesmo ocorre com a taxa de assimilação líquida (TAL), e taxa de área foliar específica (AFE) representadas pelas Figuras 5 e 6, onde TAL medindo a eficiência do aparato fotossíntese pelo aumento da biomassa mostra um valor máximo aos 60 dias decrescendo a seguir; enquanto AFE que expressa a razão entre a área foliar e o peso das folhas evidencia uma curva descendente contínua.

A nível anatômico verificamos diferenças significativas na largura do câmbio vascular, e diâmetro do xilema em análise de cortes transversais de caule. Os dados apresentados na Tabela 2 permitem inferir que as alterações no desenvolvimento geral da planta verificadas, são reflexos também das alterações nos padrões de desenvolvimento dos tecidos internos, pois implicam em redução de crescimento e capacidade do tecido condutor de nutrientes.

O teor de amido nos cotiledones durante o período que os mesmos perduraram, isto é, do 6º ao 25º. dia após a semeadura, é apresentado na Figura 7. Os dados mostram

<table>
<thead>
<tr>
<th>CONTROLE</th>
<th>130.0 ± 15.0 a</th>
<th>86.3 ± 13.0 a</th>
</tr>
</thead>
<tbody>
<tr>
<td>CITRONELOL</td>
<td>95.0 ± 11.0 b</td>
<td>55.0 ± 10.0 b</td>
</tr>
</tbody>
</table>

TABELA 2 - Médias da largura do câmbio e diâmetro do xilema de cortes transversais de caule do "amendoim-bravo", com 15 dias de idade.

a, b valores acompanhados por letras diferentes em uma mesma coluna representam diferenças significativas a nível de P=0.05 pelo teste "t".

FIGURA 7 - TEOR DE AMIDO DOS COTILEDONES DURANTE DIFERENTES ESTÁGIOS DA PLANTA EM QUE OS MESMOS PERDURARAM. CONTROLE; TRATAMENTO.
A nível fisiológico detectou-se durante oito horas diferença significativa na taxa de respiração a partir da embebição de sementes, e em plântulas após a aplicação do citronelol, conforme mostra a Figura 8; onde também está representado o crescimento do hipocótilo a partir do 2º dia de germinação. Verifica-se que embora as taxas respiratórias, para tratamento e controle, se igualem em valor após 10 horas, sugerindo uma recuperação das plântulas de sementes tratadas a nível fisiológico, o nível morfológico tal não ocorre.

Os resultados deste trabalho mostram o potencial lesivo do citronelol a longo prazo em todo ciclo do amendoim-bravo após sua aplicação nas sementes, levando a alterações durante o processo ontogenético da planta, e indicando pelos efeitos uma provável interação citronelol - genótipo. Colabora nesta suposta ação o trabalho anterior deste autor (GUSMAN et al., 1980) em que o volátil absorvido a nível de sementes quiescentes provoca efeitos de inibição da germinação, ou redução drástica de crescimento logo após a embebição a nível da divisão celular.

É válido inferir, pelos dados obtidos, que se o volátil citronelol for liberado após aplicado ao solo, em período pré-semeadura, pode, como acontece com outros voláteis aleloquimicamente ativos, (NEMEC & STRANAK, 1920; MULLER, 1965; HALLIGAN, 1975; MOREIRA, 1979), inibir, e limitar precocemente a germinação e crescimento de plantas daninhas logo após a hidratação do solo. Pesquisa desta natureza será objetivo de próximos trabalhos.

4 — CONCLUSÕES

A aplicação do citronelol nas sementes do “amendoim-bravo”, ocasionou nas plantas desenvolvidas, em condições de campo, efeitos detrimenais sobre os parâmetros biológicos avaliados: peso da matéria seca, altura da planta, área foliar, taxa de crescimento relativo, razão de área foliar, taxa de assimilação líquida, taxa de degradação de amido nos cotiledones, e taxa de respiração.

Desde o crescimento inicial e durante todo período experimental as plantas não apresentaram recuperação dos efeitos provocados sobre todos os aspectos biológicos estudados ao longo do ciclo.

FIGURA 8 — TAXA DE RESPIRAÇÃO E CRESCEIMIENTO DO HIPOCÓTIL NO EM PLÂNTULAS DE E. heterophylla:

- ○ : CONTROLE;
- □ : TRATAMENTO (CITRONELOL)

Semina Ci. Agr., v. 15, n. 1, p. 14-22

ABSTRACT: Plants of E. heterophylla L. (wild poensettia), from seeds treated with citronelol (3,7 dimetil-6-octen-01) were studied under field conditions. The main parameters evaluated were: dry matter, plant height, number of leaves, leaf area, relative growth rate, leaf area ratio, net assimilation rate, specific leaf area, and respiration rate. At the anatomic and metaboliac level were determined the xylmeter diameter, vascular cambium width, and the starch content on cotyledones. Since early growth and during all development the results showed detrimental effects of citronelol on all the biological aspects studied.

KEY WORDS: weed plant, citronelol effects, growth.

REFERÊNCIAS BIBLIOGRÁFICAS

Recibido para publicación em 27/3/1992