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Highlights:
Phosphorus doses did not mitigate the effects of salt stress on gas exchange and growth.
The CO2 assimilation rate was limited by factors of non-stomatal and stomatal origin.
Mini-watermelon production is drastically reduced by water salinity.

Abstract

In the semi-arid region of Northeastern Brazil, due to the occurrence of excess salts, both in the water 
and soil, plants are constantly exposed to various conditions of abiotic stress. Thus, it is extremely 
important to identify methods capable of minimizing the effects of salt stress on plants as a way to 
ensure the expansion of irrigated areas. In this context, the objective of this study was to evaluate the gas 
exchange, growth, and production of mini-watermelon irrigated with saline waters and fertilized with 
phosphorus. The experiment was conducted in pots under greenhouse conditions in Pombal, PB, Brazil, 
using a randomized block design in a 5 x 4 factorial scheme, corresponding to five levels of electrical 
conductivity of irrigation water—ECw (0.3, 1.3, 2.3, 3.3, and 4.3 dS m-1), four phosphorus doses—
PD (60, 80, 100, and 120% of the recommendation), and with three replicates. Watermelon plants cv. 
Sugar Baby were sensitive to water salinity greater than 0.3 dS m-1, with more pronounced inhibition 
of gas exchange, growth, and production. Reduction in the CO2 assimilation rate of watermelon plants 
cv. Sugar Baby was associated with factors of stomatal and non-stomatal origin. Phosphorous doses 
corresponding to 73 and 88% of the recommended values promoted an increase in the intercellular CO2 
concentration and stem diameter of mini-watermelon plants. P2O5 doses ranging from 60 to 120% of 
the recommendation did not mitigate the effects of salt stress on the cultivation of watermelon cv. Sugar 
Baby.
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Resumo

No semiárido do Nordeste brasileiro devido à ocorrência do excesso de sais, tanto na água como no 
solo, as plantas estão constantemente expostas às diversas condições de estresses abióticos. Assim, é 
de extrema importância a identificação de alternativas capazes de minimizar os efeitos decorrentes do 
estresse salino sobre as plantas como forma de garantir a expansão das áreas irrigadas. Neste contexto, 
objetivou-se com este trabalho avaliar as trocas gasosas, o crescimento e a produção de mini-melancieira 
irrigada com águas salinas e adubadas com fósforo. A pesquisa foi desenvolvida em vasos sob condições 
de casa-de-vegetação em Pombal, PB, utilizando-se o delineamento de blocos casualizados em esquema 
fatorial 5 x 4, correspondendo a cinco níveis de condutividade elétrica da água de irrigação - CEa (0,3; 
1,3; 2,3; 3,3 e 4,3 dS m-1), quatro doses de fósforo - DP (60; 80; 100 e 120% da recomendação), com 
três repetições. As plantas de melancieira cv. Sugar Baby foram sensíveis a salinidade da água a partir 
de 0,3 dS m-1, destacando-se inibição nas trocas gasosas, no crescimento e na produção. A redução 
na taxa de assimilação de CO2 nas plantas de melancieira cv. Sugar Baby está associado a fatores de 
origem estomáticos e não estomáticos. Doses de fosforo correspondente a 73 e 88% da recomendação 
promoveram aumento na concentração intercelular de CO2 e no diâmetro de caule das plantas de mini-
melancia. Doses de P2O5 variando de 60 a 120% da recomendação não amenizou os efeitos do estresse 
salino no cultivo da melancieira cv. Sugar Baby.
Palavras-chave: Citrullus lanatus. Estresse salino. Semiárido.

Introduction

Belonging to the Cucurbitaceae family, 
watermelon (Citrullus lanatus) is considered one 
of the most important vegetables produced and 
commercialized in Brazil. Its fruits are appreciated 
for the sweet taste and high water content, and 
it is considered a medicinal plant with diuretic 
properties, low caloric value, and is high in vitamins 
A, C, B1, and B2 (Saraiva et al., 2013). Among 
the varieties of watermelon, mini-watermelon has 
stood out in the market because of its potential for 
export and mainly attracts consumers who make 
up small families, due to its practicality in terms of 
transport, its reduced size, and ease of packaging in 
refrigerators (N. C. Silva et al., 2008).

In the 2018 season, the five largest Brazilian 
producers in terms of harvested area were the states 
of Rio Grande do Norte (15,862 ha), Bahia (14,349 
ha), Rio Grande do Sul (14,212 ha), São Paulo 
(10,173 ha) and Tocantins (6,369 ha), corresponding 
to average yields of 24.68, 11.66, 19.95, 27.68 and 
28.13 t ha-1, respectively (Instituto Brasileiro de 
Geografia e Estatística [IBGE], 2018). Although 
some states in Northeastern Brazil stand out as the 
largest producers, the cultivation of this vegetable 

in areas of the Brazilian semi-arid region is at risk 
due to the variation in rainfall, resulting from the 
low intensity of precipitation and high rates of 
evapotranspiration during most of the year (Araújo 
et al., 2016). 

Due to the scarcity of water in semi-arid areas 
of Northeastern Brazil, it is essential to adopt the 
practice of irrigation with saline waters to ensure 
crop production and expansion of irrigated areas 
(Alvarenga et al., 2019). Normally, the water sources 
available for irrigation in this region are small and 
medium-sized reservoirs and shallow wells, with 
electrical conductivity ranging from 1.97 to 2.98 
dS m-1 (Medeiros, Lisboa, Oliveira, Silva, & Alves, 
2003).

High concentrations of salts in water and/or 
soil can cause changes in various physiological 
and metabolic processes in plants (Gupta & 
Huang, 2014). This is due to the reduction in water 
availability for plants caused by the osmotic effect 
of the soil solution; this toxic effect occurs mainly 
due to the increased concentration of Na+ and Cl- 
ions and resulting nutritional imbalance, leading to 
deficiencies in Ca2+, Mg2+, K+, and NO3

- (Machado 
& Serralheiro, 2017). In addition, it manifests as an 
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oxidative stress at the subcellular level, mediated by 
reactive oxygen species (Hernández, 2019).

In this case, the use of these waters is conditional 
on the tolerance of crops to salinity, and the 
management practices such as irrigation and 
fertilization (Freitas, Figueirêdo, Porto, Costa, & 
Cunha, 2014). Thus, fertilization with phosphorus 
is extremely important in plants grown under salt 
stress conditions. This is related to the functions 
that phosphorus performs in plant metabolism, 
especially in terms of its capacity to store energy 
(F. R. A. Oliveira, Oliveira, Medeiros, Sousa, & 
Freire, 2010), being essential in a number of cellular 
processes, including the maintenance of membrane 
structures, synthesis of biomolecules, and 
formation of high-energy molecules. It also helps 
in cell division, enzyme activation/inactivation, and 
carbohydrate metabolism (Razaq, Zhang, Shen, & 
Salahuddin, 2017).

Considering the socioeconomic importance 
of watermelon, especially mini-watermelon, it 
is important to conduct studies investigating 
phosphate fertilization as a way to mitigate 
the effects of salt stress on this crop, under the 
conditions of the Brazilian semi-arid region. In this 
context, the objective of this study was to evaluate 
the gas exchange, growth, and production of mini-
watermelon cv. Sugar Baby cultivated with saline 
water and phosphorus fertilization.

Materials and Methods

The experiment was carried out in a protected 
environment (greenhouse) at the Center for Sciences 
and Agri-Food Technology (CCTA) of the Federal 
University of Campina Grande (UFCG), located 
in the municipality of Pombal, PB, Brazil, at the 
geographic coordinates of 6º47’20” S latitude and 
37º48’01” W longitude, and an altitude of 194 m.

Five levels of irrigation water electrical 
conductivity—ECw (0.3, 1.3, 2.3, 3.3, and 4.3 dS 
m-1) and four doses of phosphorus (60, 80, 100, and 

120% of the recommended levels of Novais, Neves 
e Barros (1991) for experiments in pots) were 
evaluated in a randomized block design, arranged 
in a 5x4 factorial scheme with three replicates, with 
each plot consisting of one plant. The dose relative 
to 100% corresponded to 300 mg of P2O5 kg-1 of 
soil. 

Watermelon (Citrullus lanatus), cultivar Sugar 
Baby, was used in the experiment. This cultivar 
stands out for its early cycle, and the fruits are ready 
for harvesting 75 days after planting. It is a versatile 
plant with vigorous foliage and is tolerant to high 
temperatures. It produces round fruits with a dark 
green rind, weighing around 2 to 4 kg. It has a soft 
pulp with high sugar content and an intense red 
color (S. S. da Silva et al., 2019). 

Plants were cultivated in 20-L plastic pots 
adapted as lysimeters. Two holes were made at 
the base of the pots and connected to transparent 
4-mm-diameter drains. The end of the drain 
inside the lysimeter was connected to a nonwoven 
geotextile (Bidim OP 30) to prevent clogging by 
soil material. A container was placed below each 
drain to collect the drained water and estimate 
water consumption by plants. The pots were filled 
with a 0.5-kg layer of crushed stone, followed by 
23.5 kg of a Neossolo Regolítico (Psamment) with 
a sandy clay loam texture, from the rural area of the 
municipality of São Domingos, PB, whose chemical 
and physical characteristics (Table 1) were obtained 
according to the methodology proposed by Teixeira, 
Donagemma, Fontana e Teixeira (2017).

Four seeds of the watermelon cv. Sugar Baby 
were equidistantly distributed in each lysimeter, 
at 2 cm depth. After the emergence of seedlings, 
thinning was performed in two stages, when 
the plants had two and three pairs of true leaves, 
respectively, leaving one plant per container in the 
last thinning operation.
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Table 1
Chemical and physical characteristics of the soil used in the experiment, before the application of the treatments

Chemical characteristics
pH H2O) OM P K+ Na+ Ca2+ Mg2+ Al3+ H+

(1:2,5)  g kg-1 (mg kg-1) ...............................................cmolc kg-1 .......................................
5.58 2.93 39.2 0.23 1.64 9.07 2.78 0.00 8.61

.......... Chemical characteristics............ ........................... Physical characteristics...........................
ECse CEC SAR ESP Size fraction (g kg-1) Water content (dag kg-1)

(dS m-1) cmolc kg-1 (mmol L-1)0.5 % Sand Silt Clay 33.42 kPa1 1519.5 kPa2 
2.15 22.33 0.67 7.34 572.70 100.70 326.60 25.91 12.96

pH – Hydrogen potential, OM – Organic matter: Walkley-Black Wet Digestion; Ca2+ and Mg2+ extracted with 1 M KCl at pH 
7.0; Na+ and K+ extracted with 1 M NH4OAc at pH 7.0; Al3++H+ extracted with 0.5 M CaOAc at pH 7.0; ECse – Electrical 
conductivity of the saturation extract; CEC – Cation exchange capacity; SAR – Sodium adsorption ratio of the saturation extract; 
ESP – Exchangeable sodium percentage; 1, 2 referring to the limits of field capacity and permanent wilting point, respectively.

The waters were prepared in such a way as to have 
an equivalent proportion of 7:2:1 of Na+:Ca2+:Mg2+, 
respectively, with the salts NaCl, CaCl2.2H2O, 
and MgCl2.6H2O. This is the predominant ratio in 
sources of water used for irrigation in small farms 
in the Northeast region, considering the relationship 
between ECw and concentration of salts, according 
to Richards (1954), Eq. 1:

Where:

Q = Quantity of salts to be applied (mmolc L
-1);

ECw = Electrical conductivity of water (dS m-1)

Irrigation was performed daily at 17:00 h, 
applying in each container the volume corresponding 
to that obtained by the water balance, determined by 
Eq. 2:

Where: VI = Volume of water to be applied (mL); 
Va = volume applied in the previous irrigation 
event (mL); Vd = volume drained (mL), and LF = 
leaching fraction of 0.2.

Fertilization with nitrogen and potassium was 
performed as recommended for pot experiments 
(Novais et al., 1991), applying via fertigation, at 15-
day intervals distributed throughout the crop cycle, 
100 and 150 mg kg-1 soil of N and K2O, respectively. 
Urea (45% N) and potassium chloride (60% K2O) 
were used as sources of nitrogen and potassium, 
respectively. 

P supply was performed according to pre-
established treatments, using monoammonium 
phosphate (48% P2O5), applying one third of the 
recommended dose as a basal level and the other 
two thirds in three equal applications, at 10-day 
intervals, with the first application at 15 days 
after sowing. Fertilization with micronutrients 
was performed weekly, and was applied through 
the foliar application using 1.0 g L-1 of Ubyfol 
[(N (15%), P2O5 (15%), K2O (15%), Ca (1%), Mg 
(1.4%), S (2.7%), Zn (0.5%), B (0.05%), Fe (0.5%), 
Mn (0.05%), Cu (0.5%), Mo (0.02%)].

The effects of treatments on the crop were 
determined at 60 days after transplanting, through 
measuring gas exchange (CO2 assimilation rate 
(A), transpiration (E), stomatal conductance (gs) 
and intercellular CO2 concentration (Ci)) on the 
third leaf counted from the apex. Based on these 
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data, the intrinsic water use efficiency (WUEi) 
(A/gs) [(μmol m-2 s-1) (mol H2O m-2 s-1)-1] and the 
instantaneous carboxylation efficiency (A/Ci) 
[(μmol m-2 s-1) (μmol mol-1]-1 were quantified using 
the portable photosynthesis meter “LCPro+” from 
ADC BioScientific Ltd.

Growth was evaluated based on main stem length 
(MSL), stem diameter (SD), and number of leaves 
(NL). Production components were measured at 
70 days after sowing (DAS) by determining fruit 
equatorial diameter (FED), fruit polar diameter 
(FPD), and fresh fruit weight (FFW). MSL was 
measured as the distance between the plant collar 
and the insertion of the apical meristem, while SD 
was measured at 5 cm from the plant collar, while 
NL was counted considering leaves that were fully 
expanded, with a minimum length of 3 cm and with 
at least 50% of their area photosynthetically active. 
Fruit fresh weight was analyzed using a digital 
scale, and the results were expressed in g per plant.

The collected data were subjected to an analysis 
of variance by F test at a probability level of 
0.05 and, when significant, linear and quadratic 
polynomial regression analysis was performed for 
the factors salinity level and phosphorus dose, using 
the statistical program SISVAR ESAL (Ferreira, 
2019).

Results and Discussion

According to the summary of the analysis of 
variance (Table 2), there was a significant effect 
of the interaction between factors (SL x PD) on 
the CO2 assimilation rate (A) and instantaneous 
carboxylation efficiency (CEi) of mini-watermelon 
plants. Except for CEi, the water salinity levels 
significantly influenced all the variables evaluated. 
Phosphorus doses had a significant effect only 
on intercellular CO2 concentration (Ci) and the 
instantaneous carboxylation efficiency of mini-
watermelon plants, at 70 days after sowing. 

Table 2
Summary of the analysis of variance for stomatal conductance (gs), intercellular CO2 concentration (Ci), 
transpiration (E), CO2 assimilation rate (A), intrinsic water use efficiency (WUEi) and instantaneous 
carboxylation efficiency (CEi) of mini-watermelon plants cv. Sugar Baby cultivated with saline water and 
phosphorus doses, at 60 days after sowing

Source of variation DF
Mean squares

gs Ci E A WUEi CEi
Saline levels (SL) 4 0.010** 769.67* 1.795* 68.81** 1339.16** 0.0003ns

Linear regression 1 0.032** 2731.30* 6.491** 272.37** 5068.57** 0.0015ns

Quadratic regression 1 0.003ns 57.75ns 0.563ns 1.20ns 270.68ns 0.00001ns

Phosphorus doses (PD) 3 0.001ns 4742.41* 0.511ns 15.64ns 40.22ns 0.0019**

Linear regression 1 0.001ns 8780.43** 0.109ns 6.10ns 11.57ns 0.001*

Quadratic regression 1 0.0008ns 2444.81* 0.526ns 13.18ns 48.02ns 0.001*

Interaction (SL x PD) 12 0.002ns 2054.53ns 0.249ns 24.81* 98.76ns 0.0008*

Blocks 2 0.0006ns 2330.51* 0.283ns 1.77ns 24.00ns 0.0011ns

Residual 38 0.001 604.99 0.238 6.88 75.85 0.0001
CV(%) 17.54 11.44 14.26 16.84 12.41 19.01

DF - degrees of freedom; CV (%) - coefficient of variation; *significant at 0.05 probability level; ** significant at 0.01 probability 
level; ns not significant.
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The stomatal conductance of watermelon 
plants decreased linearly with the increase in water 
salinity levels. Based on the regression equation 
(Figure 1A), there was a decrease in gs of 6.76% 
per unit increase in ECw. Comparatively, plants 
irrigated using water with an ECw of 4.3 dS m-1 
had a reduction in gs of 27.60% (0.065 mol H2O 
m-2 s-1) in comparison to those irrigated with the 
lowest level of water salinity (0.3 dS m-1). The 
reduction in stomatal conductance may be related 
to the decrease in the turgor pressure of guard cells, 
due to the decrease in water absorption caused by 
the reduction in the osmotic potential of the soil 
solution. Stomatal closure is a protective strategy 
against salt stress, making it possible for the plant 
to save water and improve efficiency in its use. 
However, the lower gs leads to a reduction in CO2 
diffusion through the leaf mesophyll. In addition, 
the supply of CO2 to RuBisCO (ribulose-1,5-
bisphosphate carboxylase oxygenase) is hampered, 
which predisposes the photosynthetic apparatus to 
increased energy dissipation and negative regulation 
of photosynthesis when plants are subjected to high 
light and temperature (Chaves, Flexas, & Pinheiro, 
2009). A decrease in stomatal conductance was also 
observed by Sá et al. (2016) in a study with bell 
pepper cv. All Big subjected to water salinity (ECw 
of 0.6 and 3.0 dS m-1). 

In mini-watermelon plants, leaf transpiration 
also reduced linearly with an increase in water 
salinity levels and, according to the regression 
equation (Figure 1B), there was a reduction of 
5.87% per unit increase in ECw. When subjected to 
water salinity from 4.3 dS m-1, the reduction in E 
was 23.93% (0.930 mmol H2O m-2 s-1) compared to 
those grown under ECw of 0.3 dS m-1. Reduction in 
the transpiration of mini-watermelon plants resulted 
from a decrease in stomatal conductance (Figure 
1A) imposed by salt stress. It is likely that the 
reduction in leaf transpiration may, at least in part, 
be associated with the closure of stomata and with 
non-stomatal causes related to the osmotic and toxic 
effects of excess salts (Lúcio et al., 2013). However, 
stomatal closure contributes to a decrease in the flow 

of toxic ions (Na+ and Cl-) within the transpiration 
flow in plants (Acosta-Motos et al., 2017). Furtado, 
Pereira, Andrade, Pereira e Silva (2012), in a study 
evaluating the effects of salt stress (ECw of 0.3 and 
5.0 dS m-1) on the gas exchange of the watermelon 
cv. Crimson Sweet, concluded that the highest rate 
of leaf transpiration was observed in plants irrigated 
with 0.3 dS m-1 water.

Regarding the intrinsic water use efficiency 
of mini-watermelon plants (Figure 1C), it was 
verified that, as water salinity increased, there was 
a reduction in WUEi of 7.63% per unit increase in 
ECw. In plants grown under the highest level of ECw 
(4.3 dS m-1), WUEi was reduced by 31.25% (25.99 
µmol CO2 mol H2O

 -1) compared to those subjected 
to water salinity of 0.3 dS m-1. As the intrinsic water 
use efficiency is obtained through the relationship 
between the CO2 assimilation rate and stomatal 
conductance, in which the observed values relate to 
the amount of carbon fixed by the plant for a given 
stomatal conductance, it is likely that the plants that 
have the capacity to maintain reduced water use 
efficiency under saline conditions are those that are 
sensitive to salt stress (Flowers & Flowers, 2005). 

Water salinity also promoted a linear reduction 
in the intercellular CO2 concentration of mini-
watermelon plants (Figure 2A), equal to 2.21% 
per unit increase in ECw. There was a reduction 
of 20.00 µmol H2O m-2 s-1 (8.90%) between plants 
irrigated using water with ECw of 4.3 dS m-1 as 
compared to those subjected to the lowest salinity 
level (0.3 dS m-1). It is likely that the reduction 
in Ci is related to the lower CO2 diffusion in the 
intercellular space of the leaf mesophyll, due to 
the stomatal closure caused by salt stress (W. J. D. 
Oliveira, Souza, Cunha, Silva, & Veloso, 2017). 
With the closure of the stomata, initially there is 
a reduction in the intercellular CO2 concentration 
in the substomatal chamber and then, when the 
stress becomes severe, there is an increase in Ci 
(Romero, Alarcón, Valbuena, & Galeano, 2017). 
Corroborating the results obtained in this study, S. 
S. da Silva et al. (2019) evaluated the gas exchange 
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of watermelon cv. Sugar Baby under strategies of 
irrigation with saline waters (ECw of 0.8 and 3.2 
dS m-1 applied at different phenological stages) and 

found that irrigation using water with ECw of 3.2 
dS m-1 during the fruit maturation stage resulted in 
a reduction in the intercellular CO2 concentration.

Figure 1. Stomatal conductance – gs (A), transpiration – E (B) and intrinsic water use efficiency – WUEi (C) of mini-
watermelon plants cv. Sugar Baby as a function of water salinity – ECw, at 60 days after sowing.
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Regarding the effects of phosphorus doses on the intercellular CO2 concentration of mini-

watermelon plants (Figure 2B), the equation shows that a maximum estimated value of 227.35 µmol H2O m-2 

s-1 was obtained when plants were fertilized with an estimated dose of 73% of the P2O5 recommendation. 

There was a reduction of 32.91 µmol H2O m-2 s-1 in Ci between plants grown at a dose of 120% and those 

fertilized with 60% of the P2O5 recommendation. Being a structural component of macromolecules, 

Regarding the effects of phosphorus doses on the 
intercellular CO2 concentration of mini-watermelon 
plants (Figure 2B), the equation shows that a 
maximum estimated value of 227.35 µmol H2O m-2 
s-1 was obtained when plants were fertilized with an 
estimated dose of 73% of the P2O5 recommendation. 
There was a reduction of 32.91 µmol H2O m-2 
s-1 in Ci between plants grown at a dose of 
120% and those fertilized with 60% of the P2O5 
recommendation. Being a structural component of 
macromolecules, phosphorus plays a fundamental 
role in plant metabolism. It participates in energy-

rich compounds, such as adenosine triphosphate 
(ATP), responsible for storing energy and donating 
electrons to maintain the biochemical phase of 
photosynthesis. It is also required for esterification 
reactions with sugars and other compounds involved 
in photosynthesis and respiration (Ceconi, Poletto, 
Lovato, & Muniz, 2007), being a key element 
in various metabolic pathways and biochemical 
reactions, such as numerous stages of the C3 and C4 
photosynthetic pathways and glycolysis (Kuwahara 
& Souza, 2009).
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Figure 2. Intercellular CO2 concentration – Ci of mini-watermelon plants cv. Sugar Baby as a function of water 
salinity - ECw (A) and phosphorus doses (B) at 60 days after sowing.

phosphorus plays a fundamental role in plant metabolism. It participates in energy-rich compounds, such as 

adenosine triphosphate (ATP), responsible for storing energy and donating electrons to maintain the 

biochemical phase of photosynthesis. It is also required for esterification reactions with sugars and other 

compounds involved in photosynthesis and respiration (Ceconi, Poletto, Lovato, & Muniz, 2007), being a 

key element in various metabolic pathways and biochemical reactions, such as numerous stages of the C3 and 

C4 photosynthetic pathways and glycolysis (Kuwahara & Souza, 2009). 
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depends on the dose of P2O5. The observed decrease in CO2 assimilation rate (Figure 3A) may be related to 

stomatal closure, as evidenced by stomatal conductance (Figure 1A) and by the reduction in the intercellular 

CO2 concentration (Figure 2A). The high concentration of ions such as Na+ and Cl- in the leaves can also be 

considered as a factor that contributes to the reduction of A, due to damage to enzymes and structures of the 

membrane (Coelho, Simões, Salviano, Mesquita, & Alberto, 2018), indicating that the decrease in CO2 

assimilation rate is related to factors of stomatal and non-stomatal origin. 

With regard to the instantaneous carboxylation efficiency (CEi) of watermelon (Figure 3B), it can 

be noted that, for plants fertilized with P2O5 doses of 60, 80, and 100% of the recommendation, the results 

were best described by a quadratic model, with maximum estimated value of 0.089 µmol m-2 s-1/μmol m-2 s-1 

when plants were subjected to water salinity of 2.6, 2.0, and 2.5 dS m-1. However, under dose equivalent to 

120% of the P2O5 recommendation, there was a linear and decreasing effect with a reduction of 14.89% per 

unit increase in ECw. When comparing the CEi of plants fertilized with the highest P2O5 dose (120%) and 

subjected to ECw of 4.3 dS m-1, it was possible to observe a reduction of 62.36% (0.0628 µmol m-2 s-1/μmol 

The interaction between factors (SL x PD) 
significantly influenced the CO2 assimilation 
rate of mini-watermelon plants. According to the 
regression equations (Figure 3A), there were linear 
reductions in the A of plants fertilized with 60, 
80, 100, and 120% of the P2O5 recommendation, 
which were respectively equal to 9.56, 8.13, 8.50, 
and 7.75% per unit increase in ECw. Thus, plants 
irrigated with water from 4.3 dS m-1 reduced A by 
8.80, 6.62, 6.34, and 4.83 μmol m-2 s-1 compared to 
those under the lowest salinity level (0.3 dS m-1). 
Therefore, it becomes evident that the decrease in 
CO2 assimilation rate in mini-watermelon depends 
on the dose of P2O5. The observed decrease in 
CO2 assimilation rate (Figure 3A) may be related 
to stomatal closure, as evidenced by stomatal 
conductance (Figure 1A) and by the reduction in 
the intercellular CO2 concentration (Figure 2A). The 
high concentration of ions such as Na+ and Cl- in 
the leaves can also be considered as a factor that 
contributes to the reduction of A, due to damage to 
enzymes and structures of the membrane (Coelho, 
Simões, Salviano, Mesquita, & Alberto, 2018), 
indicating that the decrease in CO2 assimilation rate 
is related to factors of stomatal and non-stomatal 
origin.

With regard to the instantaneous carboxylation 
efficiency (CEi) of watermelon (Figure 3B), it can 
be noted that, for plants fertilized with P2O5 doses 
of 60, 80, and 100% of the recommendation, the 
results were best described by a quadratic model, 
with maximum estimated value of 0.089 µmol 
m-2 s-1/μmol m-2 s-1 when plants were subjected 
to water salinity of 2.6, 2.0, and 2.5 dS m-1. 
However, under dose equivalent to 120% of the 
P2O5 recommendation, there was a linear and 
decreasing effect with a reduction of 14.89% per 
unit increase in ECw. When comparing the CEi of 
plants fertilized with the highest P2O5 dose (120%) 
and subjected to ECw of 4.3 dS m-1, it was possible 
to observe a reduction of 62.36% (0.0628 µmol m-2 
s-1/μmol m-2 s-1) in comparison to those that were 
irrigated using water of the lowest salinity level (0.3 
dS m-1). The reduction in CEi is an indication that 
factors of non-stomatal origin also influenced the 
photosynthetic activity of the plants, such as low 
activity of the enzyme Ribulose-1,5-bisphosphate 
carboxylase/oxygenase (RuBisCO), probably due 
to low substrate availability (ATP and NADPH) for 
enzyme activation and regeneration (Hussain, Luro, 
Costantino, Ollitrault, & Morillon, 2012).
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Figure 3. CO2 assimilation rate - A (A) and instantaneous carboxylation efficiency – CEi (B) of mini-watermelon 
plants cv. Sugar Baby as a function of the interaction between water salinity levels – ECw and phosphorus doses at 
60 days after sowing.
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activity of the plants, such as low activity of the enzyme Ribulose-1,5-bisphosphate carboxylase/oxygenase 

(RuBisCO), probably due to low substrate availability (ATP and NADPH) for enzyme activation and 

regeneration (Hussain, Luro, Costantino, Ollitrault, & Morillon, 2012). 
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The summary of the analysis of variance (Table 3) shows a significant effect of the interaction 

between factors (SL x PD) on the main stem length of mini-watermelon plants. Water salinity levels 

significantly influenced all variables analyzed (MSL, SD, NL, FFW, FED, and FPD). Phosphate fertilization 

promoted a significant effect only on MSL and SD at 70 DAS. 

 

Table 3 
Summary of the analysis of variance for main stem length (MSL), stem diameter (SD), number of 
leaves (NL), fresh fruit weight (FFW), fruit equatorial diameter (FED) and fruit polar diameter (FPD) 
of mini-watermelon fruits cv. Sugar Baby cultivated with saline waters and phosphorus doses at 70 
days after sowing 

Source of variation DF 
Mean squares 

MSL SD NL FFW FED FPD 

Saline levels (SL) 4 6331.53** 7.19** 1088.01** 251046.98** 19.08** 17.53** 

Linear regression 1 24196.80** 28.37** 3996.30** 940976.57** 71.54** 65.71** 

Quadratic regression 1 1080.21* 0.008ns 175.07ns 34935.91* 1.50ns 0.58ns 

Phosphorus doses (PD) 3 1740.95** 1.93* 75.24ns 9977.34ns 2.22ns 0.68ns 

Linear regression 1 2610.75** 0.04ns 14.74ns 69.88ns 2.85ns 0.41ns 

Quadratic regression 1 1.35ns 3.16* 97.53ns 10984.46ns 3.10ns 0.61ns 

Interaction (SL x PD) 12 956.38** 0.30ns 60.28ns 10442.59ns 1.00ns 1.30ns 

Blocks 2 561.80ns 0.001ns 11.57ns 9985.94ns 2.57ns 1.11ns 

Residual 38 116.01 0.27 54.12 8269.16 0.86 0.76 

CV(%)  10.81 7.48 17.92 24.69 9.64 9.06 

The summary of the analysis of variance (Table 
3) shows a significant effect of the interaction 
between factors (SL x PD) on the main stem length 
of mini-watermelon plants. Water salinity levels 

significantly influenced all variables analyzed 
(MSL, SD, NL, FFW, FED, and FPD). Phosphate 
fertilization promoted a significant effect only on 
MSL and SD at 70 DAS.

Table 3
Summary of the analysis of variance for main stem length (MSL), stem diameter (SD), number of leaves (NL), 
fresh fruit weight (FFW), fruit equatorial diameter (FED) and fruit polar diameter (FPD) of mini-watermelon 
fruits cv. Sugar Baby cultivated with saline waters and phosphorus doses at 70 days after sowing

Source of variation DF
Mean squares

MSL SD NL FFW FED FPD
Saline levels (SL) 4 6331.53** 7.19** 1088.01** 251046.98** 19.08** 17.53**

Linear regression 1 24196.80** 28.37** 3996.30** 940976.57** 71.54** 65.71**

Quadratic regression 1 1080.21* 0.008ns 175.07ns 34935.91* 1.50ns 0.58ns

Phosphorus doses (PD) 3 1740.95** 1.93* 75.24ns 9977.34ns 2.22ns 0.68ns

Linear regression 1 2610.75** 0.04ns 14.74ns 69.88ns 2.85ns 0.41ns

Quadratic regression 1 1.35ns 3.16* 97.53ns 10984.46ns 3.10ns 0.61ns

Interaction (SL x PD) 12 956.38** 0.30ns 60.28ns 10442.59ns 1.00ns 1.30ns

Blocks 2 561.80ns 0.001ns 11.57ns 9985.94ns 2.57ns 1.11ns

Residual 38 116.01 0.27 54.12 8269.16 0.86 0.76
CV(%) 10.81 7.48 17.92 24.69 9.64 9.06

DF - degrees of freedom; CV (%) - coefficient of variation; *significant at 0.05 probability level; ** significant at 0.01 probability 
level; ns not significant.



3048
Semina: Ciências Agrárias, Londrina, v. 41, n. 6, suplemento 2, p. 3039-3052, 2020

Lima, G. S. et al.

The main stem length of mini-watermelon 
plants was significantly affected by the interaction 
between factors (SL x PD). From the regression 
equations (Figure 4A), it is verified that the MSL 
data of plants fertilized with 60 and 80% of the P2O5 
recommendation were described by a quadratic 
model, with maximum estimated values of 103.96 
and 113.30 cm under ECw of 1.9 and 0.3 dS m-1, 
respectively. For plants that received 100 and 120% 
of P2O5, linear decreases were observed as the ECw 
levels increased, corresponding to 10.64 and 13.60% 
per unit increase in ECw, i.e. equivalent reductions 
of 44.0 and 56.7% in the MSL of plants irrigated 
with ECw of 4.3 dS m-1 compared to those under 

water salinity of 0.3 dS m-1. The reduction in growth 
in plants under salinity can be attributed to osmotic 
stress caused by the reduction in the external water 
potential and to the ionic effect caused by the 
accumulation of ions in plant tissues (Lima, Nobre, 
Gheyi, Soares, & Silva, 2014). Another factor that 
possibly contributed to the reduction in MSL was 
the competitive mechanism: Na+ occuping the 
sites of absorption of K+ and Mg2+, and the ion Cl- 
acting on N and P absorption sites, inhibiting their 
absorption (Lucena, Siqueira, Martinez, & Cecon, 
2012) and, thereby, contributing to the reduction in 
plant growth.

Figure 4. Main stem length – MSL of mini-watermelon plants cv. Sugar Baby as a function of the interaction between 
water salinity levels – ECw and phosphorus doses (A) and number of leaves as a function of ECw levels, 70 days after 
sowing.

DF - degrees of freedom; CV (%) - coefficient of variation; *significant at 0.05 probability level; ** significant at 0.01 
probability level; ns not significant. 
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The number of leaves of mini-watermelon plants decreased significantly with the increase in 

irrigation water salinity (Figure 4B), with a 10.62% reduction per unit increase in ECw. By comparing the 

NL of plants subjected to ECw of 4.3 dS m-1 to that of plants under irrigation with the lowest salinity level 

(0.3 dS m-1), it was possible to note a reduction of 23.08 (43.88%) leaves. The lower formation of leaves in 

plants grown under stress which occurred in the present study can be considered a morphological or 

anatomical alteration to maintain the absorption of water and nutrients under saline conditions and reduce 

transpiration and maintain a higher water content (Bezerra et al., 2018). Ribeiro, Sales, Eloi, Moreira e Sales 

(2012), in a study conducted to evaluate the effects of irrigation water salinity (ECw ranging from 0.17 to 5.5 

dS m-1) on the initial growth of watermelon, also found a reduction in the number of leaves, equal to 9.87% 

The number of leaves of mini-watermelon 
plants decreased significantly with the increase 
in irrigation water salinity (Figure 4B), with a 
10.62% reduction per unit increase in ECw. By 
comparing the NL of plants subjected to ECw of 
4.3 dS m-1 to that of plants under irrigation with the 
lowest salinity level (0.3 dS m-1), it was possible 
to note a reduction of 23.08 (43.88%) leaves. The 
lower formation of leaves in plants grown under 
stress which occurred in the present study can be 
considered a morphological or anatomical alteration 
to maintain the absorption of water and nutrients 

under saline conditions and reduce transpiration 
and maintain a higher water content (Bezerra et al., 
2018). Ribeiro, Sales, Eloi, Moreira e Sales (2012), 
in a study conducted to evaluate the effects of 
irrigation water salinity (ECw ranging from 0.17 to 
5.5 dS m-1) on the initial growth of watermelon, also 
found a reduction in the number of leaves, equal to 
9.87% per unit increase in ECw.

Water salinity also inhibited the stem diameter 
growth of mini-watermelon plants. According to the 
regression equation (Figure 5A), the SD decreased 
by 5.98% per unit increase in ECw. When plants 
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were subjected to a salinity of 4.3 dS m-1, their SD 
decreased by 24.36% (1.94 mm) compared to those 
cultivated under the lowest salinity level (0.3 dS 
m-1). The decrease in the growth in stem diameter 
observed in plants under salt stress is possibly 
associated with energy expenditure due to various 
metabolic alterations such as lipid peroxidation, 
a reduction in chlorophyll content, an increased 

synthesis of reactive oxygen species, and enzymatic 
antioxidant activity (Queiroz, Sodek, & Haddad, 
2012). A reduction in the stem diameter of plants 
cultivated under salt stress has also been observed 
by Ribeiro et al. (2012) in watermelon cv. Crimson 
Sweet, by Araújo et al. (2016) in melon, and by 
Bezerra et al. (2018) in guava plants cv. Paluma.

Figure 5. Stem diameter of mini-watermelon plants cv. Sugar Baby as a function of water salinity – ECw (A) and 
phosphorus doses (B) at 70 days after sowing.

Phosphorus doses significantly influenced the 
stem diameter of mini-watermelon plants. The 
regression equation (Figure 5B) shows that the 
maximum estimated value of SD (7.09 mm) was 
obtained in plants fertilized with 88% of the P2O5 
recommendation and, from this dose, there was a 
downward trend. By comparing plants fertilized 
with 120% of P2O5 with those that received 60% 
of the recommendation, it was possible to observe 
a decrease of 0.36 mm in SD. Under salt stress 
conditions, the reduction in plant growth occurs 
due to the restriction in nutrient absorption caused 
by osmotic and ionic stresses, resulting from the 
high concentration of salts in the soil solution, in 
particular, the ions Na+ and Cl-, the disorganization 
of the membrane system, and the production of 
reactive oxygen species (Lucena et al., 2012). 

Regarding the fresh weight of mini-watermelon 
fruits (Figure 6A), the values decreased quadratically 

with increases in ECw levels, and the maximum 
estimated value (574.22 g per plant) was obtained 
in plants grown under the lowest water salinity level 
(0.3 dS m-1), decreasing sharply from that ECw level 
and reaching a minimum value (222.00 g per plant) 
at the highest ECw level (4.3 dS m-1). By comparing 
the FFW of plants irrigated with an ECw of 4.3 dS 
m-1 with that of plants subjected to water salinity 
of 0.3 dS m-1, it was possible to note a reduction 
of 354.22 (61.68%) g per plant. The reduction in 
FFW may be related to difficulties in the absorption 
of water and nutrients by plants, arising due to the 
decrease in the osmotic potential of the soil solution 
caused by the excess of salts. This situation resulted 
in stomatal closure, observed in this study through 
the reduction in stomatal conductance (Figure 1A) 
and, consequently, had a negative effect on the 
CO2 assimilation rate (Figure 3A) resulting in the 
production of fruits with reduced weight. Costa et 
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al. (2013), in an experiment conducted to evaluate 
the production and quality of three watermelon 
cultivars subjected to different levels of irrigation 

water salinity (ranging from 0.57 to 4.91 dS m-1), 
found that the number of fruits, yield, and weight 
reduced linearly with increasing water salinity.

Figure 6. Fresh fruit weight - FFW (A), fruit equatorial diameter (B) and fruit polar diameter (C) of mini-watermelon 
plants cv. Sugar Baby as a function of water salinity - ECw, 70 days after sowing.

the osmotic potential of the soil solution caused by the excess of salts. This situation resulted in stomatal 

closure, observed in this study through the reduction in stomatal conductance (Figure 1A) and, consequently, 

had a negative effect on the CO2 assimilation rate (Figure 3A) resulting in the production of fruits with 

reduced weight. Costa et al. (2013), in an experiment conducted to evaluate the production and quality of 

three watermelon cultivars subjected to different levels of irrigation water salinity (ranging from 0.57 to 4.91 

dS m-1), found that the number of fruits, yield, and weight reduced linearly with increasing water salinity. 
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The equatorial (Figure 6B) and polar (Figure 
6C) diameters of mini-watermelon fruits decreased 
linearly as the ECw levels increased, by 6.77 and 
6.50% per unit increase in ECw, respectively. In 
plants grown under ECw of 4.3 dS m-1, FED and 
FPD were reduced by 3.08 and 2.96 cm compared to 
those irrigated with 0.3 dS m-1 water. The production 
of fruits with a smaller diameter under salt stress 
conditions is also related to the diversion of energy 
for the maintenance of metabolic activities, as 
previously explained by Queiroz et al. (2012). S. S. 
da Silva et al. (2019) also observed the formation 

of fruits with a smaller diameter in plants irrigated 
using water with ECw of 3.2 dS m-1 in the vegetative 
and vegetative/flowering stages. According to these 
authors, this decrease in fruit size is a consequence 
of the reduction in water potential caused by excess 
salts in the soil.

Conclusions

Watermelon plants cv. Sugar Baby are sensitive 
to water salinity from 0.3 dS m-1, showing reductions 
in gas exchange, growth, and production.
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Gas exchange, growth, and production of mini-watermelon under saline water irrigation and phosphate fertilization

The reduction in the CO2 assimilation rate in 
watermelon plants cv. Sugar Baby is associated 
with factors of stomatal and non-stomatal origin.

Phosphorous doses equivalent to 73 and 88% 
of the recommendation promote an increase in the 
intercellular CO2 concentration and stem diameter, 
respectively, in mini-watermelon plants.

Fertilization with P2O5 doses ranging from 60 to 
120% of the recommendation does not mitigate the 
effects of salt stress on the cultivation of watermelon 
cv. Sugar Baby.
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