Serological diagnosis and molecular characterization of *Leptospira* spp. in the blood and urine of bovine females from refrigerated slaughterhouses

Diagnóstico sorológico e caracterização molecular de *Leptospira* spp. em sangue e urina de fêmeas bovinas de matadouros-frigoríficos

Aliny Fernanda de Oliveira¹*; Roberta Torres Chiderolli²; Luciano Seraphim Gasques³; Arianne Peruzo Pires Gonçalves¹; Érica Dourado Neves⁴; Bruna Paula Martins Ferreira¹; Lucienne Garcia Pretto Giordano⁵; Julio Cesar de Freitas⁵; Ulisses de Pádua Pereira⁵; Daniela Dib Gonçalves⁶

Abstract

Leptospirosis is an important socioeconomic disease in humans, as well as in domestic and wild animals, being caused by *Leptospira* spp. Bovine animals are considered reservoirs of this disease, because they intermittently disseminate the bacteria into the environment through their urine. In this way, the cattle an important source of *Leptospira* infection. The objective of this study was to detect *Leptospira* spp. antibodies and DNA in bovine females from two refrigerated slaughterhouses in the microregion of Umuarama, Paraná, Brazil. In particular, blood and urine samples from 52 crossbred bovine females older than 36 months from the two slaughterhouses were used. The microscopic agglutination test (MAT) was used to detect leptospiral antibodies, and the polymerase chain reaction (PCR) and subsequent sequencing were used to detect *Leptospira* DNA. The MAT yielded 22 (42.3%) serum samples considered reagent, while the nested PCR test resulted in one amplified sample (1.9%) of 289 bp. This single sample was then amplified again using primers for the *SecY* gene (549 bp). Sequencing of this gene characterized the bacteria as *L. borgpetersenii* that were similar to the serovar Hardjo of the genotype Hardjobovis. This is the first molecular confirmation of Hardjobovis-like *L. borgpetersenii* in the urine of crossbred bovine females older than 36 months from slaughterhouses in the microregion of Umuarama. This study’s results show that it is important to combine serological and molecular diagnosis in the detection of *Leptospira* spp. Therefore, both methods were used to improve our understanding of the epidemiology of this disease in bovine animals from the microregion of Umuarama. In addition, the analysis informed the subsequent adoption of preventive measures and educational One Health actions to prevent economic losses related to the herd, as well as social losses related to workers and the environment.

Key words: Bovine. Occupational disease. Refrigerated slaughterhouse. Leptospirosis. One Health.

¹ Médicas Veterinárias, Discentes, Programa de Pós-Graduação em Ciência Animal, Universidade Paranaense, UNIPAR, Umuarama, PR, Brasil. E-mail: alinyfer@hotmail.com; arianneperuzo@hotmail.com; bp_ferreira@hotmail.com

² Médica Veterinária, Discente de Doutorado, Programa de Pós-Graduação em Ciência Animal, Universidade Estadual de Londrina, UEL, Londrina, PR, Brasil. E-mail: robertaa_tc@hotmail.com

³ Biólogo, Discente, Comitê de Ética em Experimentação Animal, UNIPAR, Umuarama, PR, Brasil. E-mail: sgasques@unipar.br

⁴ Médica Veterinária, Discente, UNIPAR, Umuarama, PR, Brasil. E-mail: erika_neves20@hotmail.com

⁵ Médicos Veterinários, Drs., Laboratório de Leptospirose, UEL, Londrina, PR, Brasil. E-mail: luciennegiordano@gmail.com; freitasj@uel.br; upaduapereira@gmail.com

⁶ Médica Veterinária, Profª, Programa de Pós-Graduação em Ciência Animal com Ênfase em Produtos Bioativos, UNIPAR, Umuarama, PR, Brasil. E-mail: danieladib@unipar.br

* Author for correspondence
Resumo

A leptospirose é uma importante doença sócio-econômica acarretada pela *Leptospira* spp. que afeta homens e animais domésticos ou selvagens. Os bovinos são considerados reservatórios desta enfermidade, sendo importante fonte de infecção por eliminar a bactéria pela urina de forma intermitente no meio ambiente. O objetivo deste trabalho foi detectar anticorpos e DNA de *Leptospira* spp. em fêmeas bovinas provenientes de dois matadouros-frigoríficos da microrregião de Umuarama, Paraná, Brasil. Neste trabalho foram utilizadas amostras de sangue e urina de 52 fêmeas bovinas mestiças com idade superior a 36 meses provenientes de dois matadouros-frigoríficos. Para detecção de anticorpos anti-*Leptospira* spp. foi realizada a prova de Soroaglutinação Microscópica (SAM), e para a detecção de DNA foi realizada a reação em cadeia pela polimerase (PCR) e posterior sequenciamento. Na SAM, 22 (42,30%) amostras de soro foram consideradas reagentes e na nested PCR uma (1,92%) amostra amplificou 289 pb, e posteriormente, a mesma amostra amplificada novamente para o gene sec Y com 549 pb. O sequenciamento do gene Sec Y caracterizou o produto obtido como *L. borgpetersenii* semelhante ao sorovar Hardjo genótipo Hardjobovis. Esta é a primeira confirmação molecular semelhante ao genótipo Hardjobovis pertencente à espécie *L. borgpetersenii* em urina de fêmeas bovinas mestiças com idade superior a 36 meses provenientes de matadouros-frigoríficos localizados na microrregião de Umuarama no estado do Paraná. Os resultados deste trabalho evidenciam a importância da associação do diagnóstico sorológico e molecular para a detecção de *Leptospira* spp. Isto é importante para o entendimento da epidemiologia desta enfermidade em bovinos da microrregião de Umuarama e adoção de medidas de prevenção e ações de educação em saúde na esfera da Saúde Única, evitando assim perdas econômicas relacionado ao rebanho e sociais relacionadas a trabalhadores e meio ambiente.

Introduction

Leptospirosis is an important disease in the concept of One Health and it is caused by bacteria of the genus *Leptospira*, which cause economic and social losses involving domestic animals, wild animals, humans, and the environment (GROOMS, 2015; MONTE et al., 2015). Leptospirosis is an infectious disease that is considered occupational, since exposure to infected animals during work can infect slaughterhouse and rural workers, veterinarians, among others (GONÇALVES et al., 2006, 2013; SIMÕES et al., 2016). In the context of occupational disease, workers often lack knowledge about leptospirosis, resulting in failure to use, or misuse of, personal protective equipment (PPE). This makes the workers more susceptible to infection (CORRÊA et al., 2013).

Beef and dairy cattle breeding play a key role in the epidemiology of bovine leptospirosis, since bovine animals intermittently excrete *Leptospira* spp. in their urine, thus contaminating the environment and infecting humans and animals (LOUREIRO et al., 2013; SHAFIGHI et al., 2014). Similarly, leptospirosis persists in bovine herds through reproductive tract infections in both male and female animals. Thus microorganisms can be disseminated into the environment via post-abortion uterine discharge, fetuses, placenta, uterine infections, and infected semen (ELLIS, 1994).

After the 1980s, when antigens to detect the serovar Hardjo were included in the microscopic agglutination tests (MATs) of Brazilian laboratories, researchers were better able to understand the prevalence and subsequent epidemiology of this serovar in Brazilian herds. At this time, the serovar was already known in bovine species in Australia, Europe, North and South America (LILENBAUM, 1996; BOLIN; ALT, 1999; FAINE et al., 1999; CHIDEROLLI, 2016).

Epidemiological investigations of leptospirosis in bovine animals must take into account clinical signs, type of breeding management, and breeding site, among other variables. Nonetheless, serological diagnosis using a MAT to detect antibody, and...
molecular diagnosis to detect *Leptospira* DNA by PCR are also essential (FAINE et al., 1999; WHO, 2003; HAMOND et al., 2014; GROOMS, 2015).

According to the International Life Saving Federation of the World Health Organization (2003), the MAT is considered the gold standard method for the diagnosis of leptospirosis because it has high serovar and serogroup specificity. For this reason, it is the most common method used by researchers worldwide. On the other hand, different molecular techniques have been developed for DNA detection and subsequent identification of *Leptospira* spp. These are often used when it is necessary to work with fast, high-sensitivity, high-specificity methods (MAGAJEVIKSKI, 2002; ANZAI, 2006).

The advantage of these molecular methods is that they require minimal amounts of *Leptospira* DNA for amplification. Thus, different biological samples can be used, such as serum, cerebrospinal fluid, urine, feces, and tissues, and clinicians can obtain an early diagnosis of leptospirosis in both humans and animals. That is, the disease can be confirmed before antibody titers can even be detected, or when they are still low (BAL et al., 1994; ANZAI, 2006).

The northwest region has the largest bovine herd in the state of Paraná, with 2,084,593 animals (IBGE, 2015). Despite this, the data from this region are scarce regarding bovine leptospirosis, its relationship with public health, and its molecular characteristics. Thus, the objective of the present study was to detect *Leptospira* spp. antibodies and DNA in bovine females from two refrigerated slaughterhouses in the microregion of Umuarama, Paraná, Brazil. The study was conducted by the Federal Inspection Service (SIF) and the State Inspection Service of Paraná (SIP).

Sample collection

Blood samples were collected in 5 mL sterile tubes from the carotid artery and jugular vein during the bleeding stage of the slaughter line. Urine samples were collected shortly after the evisceration stage by direct puncture of the urinary vesicle using a sterile 5 mL syringe. After blood and urine collection, the samples were identified and conditioned in a refrigerated isothermal box; they were then immediately sent to the Molecular Biology Laboratory of the Animal Science Postgraduate Program with emphasis on Bioactive Products, Universidade Paranaense (UNIPAR), where they were processed, aliquoted into microtubes, and frozen at -20 °C.

Serological diagnosis

In the Leptospirosis Laboratory of the Department of Preventive Veterinary Medicine at the State University of Londrina (UEL), the sera were submitted to MAT with live antigens (FAINE et al., 1999) to detect leptospiral antibodies. Twenty reference serovars were used: Australis, Bratislava, Autumnalis, Butembo, Castellonis, Bataviae, Canicola, Cynopteri, Grippotyphosa, Hebdomadis, Copenhageni, Icterohaemorrhagiae, Panama, Pomona, Pyrogenes, Hardjo, Wolffii, Shermani, Sentot and Tarassovi. Antigens were maintained at 28 °C for 5 to 10 days in Difco™ Leptospira enrichment medium (DIFCO®, USA) modified by the addition of rabbit serum (GONÇALVES et al., 2006). A dilution of 1:100 was used as a cut-off point (MYERS, 1985).

Sera containing at least 50% agglutinated leptospires were considered reagent. The reagent samples were then geometrically diluted at ratios of 2:1 to determine the maximum positive dilution.
In the analysis of the results, we considered the serovar with the highest titer as the most probable serovar (VASCONCELLOS et al., 1997), and only sera that presented coagglutination at the highest dilution were considered reagent for Leptospira spp. (ALMEIDA et al., 1994).

Molecular diagnosis

The urine samples were subjected to molecular tests to detect Leptospira spp. DNA at the Molecular Biology Laboratory of the Animal Science Postgraduate Program, with emphasis on Bioactive Products, UNIPAR, and at the Laboratory of Leptospirosis, Universidade Estadual de Londrina (UEL).

To detect Leptospira spp. DNA samples were extracted immediately after each urine collection using the PureLink Genomic DNA Mini Kit (Invitrogen, USA). Subsequently, the DNA was subjected to nested PCR (n-PCR) using primers A (5’-GGCGGCCTTCTITAAACATG-3’), B (5’-TTCCCCCAT TGAGCAAGATT-3’), C (5’-CAAGTCAAGCGGAGTAGCAA-3’), and D (5’-CTTAACCTGCTGCCTCCCGTA-3’), as described by Mérien et al. (1992). The Platinum PCR SuperMix Kit (Invitrogen, USA) was used in all PCR reactions. The final product of the n-PCR amplification was subjected to electrophoresis in a 2% agarose gel containing ethidium bromide (0.05 μg/μL) and visualized using ultraviolet light in a transilluminator. The product’s molecular weight was estimated by comparison with a 100 bp molecular marker.

Samples considered positive after n-PCR were subjected to new DNA amplification using primers specific for the SecY gene: F (5’-ATGCCGATCTTTTTGCTTC-3’) and R (5’-CCGTCCCTTAATTTTAGACTTCTTC-3’) to identify and confirm the genetic species (AHMED et al., 2006).

Amplification and sequencing of the SecY gene PCR (AHMED et al., 2006) were performed for samples and the products of gene amplification were purified with a PureLink Genomic DNA extraction kit (Invitrogen Life Technologies, Eugene, OR, USA), quantified by a Qubit™ Fluorometer (Invitrogen Life Technologies, Eugene, OR, USA), and sequenced on a ABI3500 Genetic Analyzer (Applied Biosystems, Foster City, CA, USA) using forward and reverse primers. The contig were obtained by CAP3 and sequence quality was analyzed by visually in BioEdit software v. 7.2.5 (http://www.mbio.ncsu.edu/bioedit/). The nucleotide similarity was compared with all the sequences that were deposited in non-redundant database of GenBank using the BLAST program (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The alignment was created in the BioEdit program using clustalW package and phylogenetic tree built using the MEGA 7.0.18 program (KUMAR et al., 2016).

Results

The MAT yielded 22 (42.3%) serum samples considered reagent, of which 18 (81.8%) samples contained antibodies against a single serovar Wolffi (15 samples; 68.2%), Pomona (two samples; 9.1%), and Pyrogenes (one sample; 4.54%) with titers from 100 to 3,200. In four samples (18.2%), antibodies against two or more serovars were simultaneously detected, with titers from 100 to 400. It was not possible to characterize the most probable serovars in these samples (Table 1).
Table 1. Most probable serovars and titers detected by the MAT in 22 seroreagent bovine female samples from two refrigerated slaughterhouses in the microregion of Umuarama, Paraná, Brazil, 2016.

<table>
<thead>
<tr>
<th>Serological Titers</th>
<th>Most probable serovars</th>
<th>100</th>
<th>200</th>
<th>400</th>
<th>800</th>
<th>1600</th>
<th>3200</th>
<th>Total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wolffi</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>15</td>
<td>68.18%</td>
</tr>
<tr>
<td></td>
<td>Pomona</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>9.09%</td>
</tr>
<tr>
<td></td>
<td>Pyrogenes</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>4.54%</td>
</tr>
<tr>
<td></td>
<td>Reagentes</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>18.18%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>31.81%</td>
<td>31.81%</td>
<td>18.20%</td>
<td>4.54%</td>
<td>9.10%</td>
<td>4.54%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

In the n-PCR, it was possible to amplify a 289 bp product in only one urine sample (1.9%). This single sample was then amplified again using primers for the SecY gene (549 bp). Importantly, this sample was considered negative in the MAT (Figure 1).

Figure 1. Nested PCR for *Leptospira* spp. in bovine female urine samples from two refrigerated slaughterhouses in the microregion of Umuarama, Paraná, Brazil in 2016.

BlastN software was used to compare partial sequences of the SecY gene, and the sample sequences were most similar to the genotype Hardjobovis of the species *L. borgpetersenii*, serovar Hardjo. The partial sequence of the SecY gene of sample 10 is deposited in the GenBank database under access number KY306666. In addition, the sample was grouped in the same phylogenetic cluster as Hardjobovis genotype of the serovar Hardjo and more phylogenetically distant from the genotype Hardjoprajitno (Figure 2).
Discussion

Considering that the state of Paraná holds 9,314,908 bovine animals (IBGE, 2017), it is important that researchers ascertain whether leptospirosis is present in the region, and that they obtain information on circulating serovars and establish animal, human, and environmental health measures.

In the present study, 42.3% of the samples were reagent in the MAT, with titers ranging from 100 to 3,200. This confirms the presence of possible sources of acute and chronic infection in these animals (FAINE et al., 1999).

The disease persists and is disseminated within a population by infected animals or asymptomatic carriers that intermittently excrete the bacteria in their urine for extended periods. Therefore, to inform health prevention efforts and educational measures, it is important that researchers assess the prevalence of the infection in herds from refrigerated slaughterhouses. In this way, any possible occupational infections can be avoided (GONÇALVES et al., 2006; SIMÕES et al., 2016).

In the present study, antibodies against Wolffi (68.2%), Pomona (9.1%), and Pyrogenes (4.5%) were detected. The predominance of the antibody against the Wolffi serovar in this study corroborated the results of the state of São Paulo (SP) (LANGONI et al., 2000) and the state of Goiás (GO) (MARQUES et al., 2010). However, it conflicts with the research of the state of Maranhão (MA) (COELHO et al., 2014), the state of Rio de Janeiro (RJ) (HAMOND et al., 2014), and the USA (GROOMS, 2015), where the antibody against serovar Hardjo was detected with higher frequency. Thus, bovine animals are considered a maintenance host of the Hardjo serovar of Leptospira (FAINE et al., 1999).
There was no amplification of DNA in the urine samples that were considered reagents in the MAT, which suggests possible chronic infections, being only the establishment of the presence of antibody in the respective serum samples. However, in one of the non-reactive sera samples in MAT, it was possible to amplify DNA (549bp for the sec Y gene) in the urine, which characterizes that the respective animal was in the phase of leptospirosis, that is, eliminating live leptospioras by urine and may cause possible environmental contamination and make slaughterhouse workers susceptible to possible leptospirosis infection when not using or misusing personal protective equipment (FAINE et al., 1999; ANZAI, 2006).

Even though the antibody against the Hardjo serovar is less immunogenic in bovine species, DNA amplification showed that the respective animal was in the initial stages of infection. Therefore, the results of the present study show that it is important to combine serological and molecular diagnosis techniques (HASHIMOTO et al., 2017), because they complement one another. Thereby, even when no antibody was detected in the serum sample of one animal, there may be DNA in the urine sample of this animal. Thus, PCR is important in the early diagnosis of diseases, because it is sensitive in the initial stage and allows fast diagnosis, which in turn facilitates infection treatment and prevention (STODDARD, 2013; GALLOWAY; HOFFMASTER, 2015).

The sequencing of the SecY gene (VICTORIA et al., 2008) was one of a number of molecular techniques developed and used to characterize Leptospira isolates and biological samples known to be infected by Leptospira spp. In the present study, the sample was characterized molecularly as genotype Hardjobovis (Figure 2). This genotype belongs to the species L. borgpetersenii, which causes leptospirosis in production animals and is different from the genotype Hardjoprajitno since it has a smaller genome, and several genes related to survival in the environment, transport, and metabolite use have been lost. Consequently, researchers have concluded that these may be the reasons for the bacteria’s strict dependence on the host-host transmission cycle in bovine species (ELLIS, 1994; CHiareLI et al., 2012; KOizUMI; YASUTOMI, 2012).

Chideroli et al. (2016), evaluated 15 urine samples from bovine females with a history of reproductive failures. The animals came from a dairy herd in Paraná and demonstrated the molecular characterization of the strain L. borgpetersenii serovar Hardjo Hardjobovis. Thus, our research corroborated with the previous study and confirmed the presence and circulation of this strain in the north and northwest region of the state of Paraná. We hope that the present study will stimulate new serological and molecular studies in these regions to characterize the epidemiology of this genotype, as well as its possible consequences in affected herds.

This was the first molecular confirmation of Hardjobovis-like L. borgpetersenii species in the urine of crossbred bovine females older than 36 months from slaughterhouses located in the microregion of Umuarama, Paraná. The results of this work show the presence of antibodies and DNA of Leptospira spp. in biological samples of bovine females from slaughterhouses is important to establish preventive measures related to One Health health avoiding economic losses related to herd and social related to workers and the environment.

Acknowledgements

We thank the Coordination for the Improvement of Higher Education Personnel (CAPES) for the PROSUP scholarship and UNIPAR for research funding.

References

AHMED, N.; DEVI, S. M.; VALVERDE, M. L.; VIJAYACHARI, P.; MACHANG’U, R. S.; ELLIS, W. A.; HARTSKEERL, R. A. Multilocus sequence

