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Resumo

As redes de comunicacao sem-fio enfrentam um aumento exponencial da demanda dos
usuarios, além de um rapido crescimento no ntimero de dispositivos conectados, impulsio-
nado principalmente pela revolucao da Internet das coisas. Visando atender a segunda
necessidade, as redes sem-fio da quinta geragao (5G) implementardo o servigo masssive
machine-type communications (mMTC), projetado para fornecer conectividade massiva
para dispositivos que possuem atividade esporadica, sao equipados com hardware sim-
ples, e sao alimentados por baterias de baixa capacidade. Por outro lado, as crescentes
demandas por maior capacidade e taxa de dados serao assistidas por estagoes radio-base
equipadas com transceptores de multiplas antenas. Atender a estes cenarios é uma tarefa
desafiadora devido a escassez de recursos de radio combinada com as dificuldades técnicas
enumeradas a seguir. Os esquemas de acesso a rede convencionais sao extremamente
ineficientes ao lidar com grandes niimeros de tentativas de conexdao. Ao mesmo tempo,
estacoes radio-base equipadas com grandes ntimeros de antenas apresentam gargalos de
implementacao decorrentes da alta largura de banda de interconexao e da complexidade
computacional. Considerando os desafios mencionados, nesta Dissertacao de Mestrado nés
investigamos protocolos de acesso aleatorio e o transceptor extra-large scale massive MIMO
(XL-MIMO) para viabilizar, respectivamente, a conectividade massiva no servigo mMTC
e a implementacao de transceptores de multiplas antenas. Adicionalmente, examinamos
técnicas de inteligéncia artificial para projetar protocolos de acesso aleatério livres de
concessao e algoritmos de alocacao de recursos. Nossas contribui¢oes sao enumeradas a
seguir. Propomos protocolos de acesso livres de concessao baseados nas redes neurais
convolucionais que atingem alta performance com baixa complexidade computational na
deteccao de dispositivos ativos. Ao mesmo tempo, elaboramos uma analise compreensiva
dos protocolos de acesso livres de concessao disponiveis na literatura. Em se tratando do
transceptor XL-MIMO, propomos procedimentos distribuidos e centralizados baseando-se
nos algoritmos genéticos para, conjuntamente, selecionar as antenas ativas e alocar poténcia
visando maximizar a eficiéncia espectral do sistema. Os procedimentos propostos sao ade-
quados para implementagdes com nimero limitado de transceptores de radio-frequéncia,
atingindo largura de banda de interconexao e complexidade computacional reduzidas,

quando comparados com os métodos de referéncia.

Palavras-chave: Inteligéncia artificial, massive multiple-input multiple-output (MIMO),

machine-type communications, deep learning.



Abstract

The wireless communication networks face an exponential increase in users’ demand, as
well as a rapid growth in the number of connected devices, driven principally by the
revolution of the Internet of things (IoT). Motivated by the second need, the wireless
networks of the fifth generation (5G) will implement the massive machine-type communica-
tions (mMTC) service, designed to provide massive connectivity for devices with sporadic
activity, with simple hardware, and powered by low-capacity batteries. On the other hand,
the increasing demands for higher capacity and data rates will be fulfilled by multi-antenna
base-station (BS) transceivers. Serving these scenarios is challenging due to the scarcity of
radio resources along with the technical difficulties in the following. The conventional net-
work access schemes are extremely inefficient for handling massive numbers of connection
attempts. In addition, BSs equipped with a massive number of antennas present the bottle-
necks of high interconnection bandwidth and computational complexity. Considering the
mentioned challenges, in this Master’s Dissertation we investigate random access protocols
and the extra-large scale massive MIMO (XL-MIMO) transceiver to enable, respectively,
massive connectivity on the mMTC service and the deployment of massive multi-antenna
transceivers. We examine artificial intelligence techniques to design grant-free random
access protocols and resource allocation algorithms. Our contributions are as follows. We
propose grant-free access protocols based on the convolutional neural network with high
performance and low complexity in detecting the set of active devices. At the same time,
we conceive a comprehensive analysis of the grant-free access protocols in the literature.
On the matter of the XL-MIMO transceiver, we propose distributed and centralized
procedures based on the genetic algorithms for joint antenna selection and power allocation
to maximize the spectral efficiency of the system. The proposed procedures are suitable for
array implementations with limited number of radio-frequency transceivers, while attaining

low interconnection bandwidth and complexity, when compared with the reference methods.

Keywords: Artificial intelligence, massive multiple-input multiple-output (MIMO), machine-

type communications, deep learning.
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1 Introduction

The wireless networks face an exponential increase in users’ demand, as well as the
emergency of applications with high potential of social impact in healthcare, education,
security, transportation, and industry. The Internet of things (IoT) promise to transform
our everyday life with more efficiency, comfort, and safety connecting processes, tools,
wearable devices, and sensors to the Internet [1]. Following this trend, the machine-
to-machine (M2M) connections will be one of the primary contributors for the mobile
traffic growth. In 2018, the M2M connections represented 13% of the 5.1 billion global
mobile connections. Such number is predicted to grow rapidly, representing 34% of the
5.7 billions mobile connections by 2023 [2]. The challenges carried by these demands
are supporting thousand of devices in a single cell with scalable and flexible network
architectures, achieving high energy efficiency to save battery lifetime, providing joint low-
latency and extreme-high reliability, and providing high data rates with high availability.
The wireless networks of the next generation must implement technologies, network designs,
and algorithms in order to meet the requirements of the emerging applications, as well as
the increased users’ demand, ensuring affordable financial costs and low environmental
impacts.

The recent episode of the coronavirus disease 2019 (COVID-19) pandemic
have been exposed the paramount need of robust communication networks, as it have
resulted in a drastic increase on the Internet traffic. The strict social distancing measures
imposed by many countries have produced growths on the remote working, education,
e-commerce, and entertainment, such as online gaming and video streaming. After the
COVID-19 pandemic started, a global provider of web and Internet security services
has registered, just in one month, an unprecedented growth of about 30% in global
Internet traffic [3]. As a response to the increasing demands, mobile-access regulators
across the world have granted temporary spectrum licenses, released temporary bands,
and implemented more flexible directives to use the licensed spectrum [4]. At the same
time, major streaming providers have adjusted the quality levels of the distributed media
aiming to optimize the bandwidth consumption. The COVID-19 pandemic has been
resulted in possibly permanent changes in the Internet usage pattern, and also has been
forced or accelerated the digital transformation of many enterprises. The wireless network
infrastructure must follow this critical changes by delivering scalable, flexible, and resilient
architectures.

Considering the rapid growth of the wireless mobile networks usage, it is necessary
to examine the emerging application cases, and identify their requirements and bottlenecks
in order to propose suitable techniques to fulfill the technical limitations. In this Master’s

Dissertation, we investigate the typical use case of the massive machine-type com-
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munications (mMTC) service, analyzing deeply different types of grant-free random
access protocols to handle large groups of machine-type devices. On this matter, we
propose grant-free random access protocols based on machine learning. Also, we investi-
gate the extra-large scale massive MIMO (XL-MIMO) transceiver, which is a strong
candidate to handle crowded communication scenarios. We study the resource allocation
(RA) problem of joint antenna selection (AS) and power allocation (PA) in XL-MIMO
arrays, proposing distributed and centralized solutions based on the genetic algorithms
(GAs). One common point of these studies is the presence of artificial intelligence (Al)
techniques, such as machine learning and GAs. These techniques have been considered
heavily in works on wireless communications in order to solve intricate problems in an
efficient way. Especially, machine learning techniques are known to address scenarios with
cumbersome mathematical models [5]. Our contributions are presented by means of three
scientific publications (listed in Section 1.6) addressing the listed issues. In the following,
we provide an overview of the fundamentals applied during the development of these

works.

1.1 5G Wireless Communications

The fifth generation (5G) wireless networks are the evolution of the broadband
cellular networks designed as a response to the emerging applications and the increased
users’ demand. The evolution to 5G is based on providing massive connectivity, improving
energy efficiency, capacity and data rate, as well as reducing the cost and end-to-end (E2E)

latency. The main technical objectives pursued in designing these networks are [6]:
(a) Increase data volume in 1000 times;
(b) Increase user data rate in 10 to 100 times;
(c) Increase the number of connected devices in 10 to 100 times;
(d) Extend the battery lifetime in 10 times;
(e) Reduce the E2E latency in 5 times.

The 5G wireless networks are the necessary evolution to fulfill the increasing demands of
a connected world. However, these disruptive demands result in fundamental technical
difficulties which need intensive effort to be met.

The 5G networks will assist heterogeneous services assigned to different applications
with specific requirements. The main three operation modes of 5G are the enhanced mobile
broadband (eMBB), ultra-reliable low-latency communications (URLLC) and mMTC. The
eMBB service provides high-speed connectivity with increased user data rate and spectral

efficiency (SE). Typical uses of eMBB are wireless broadband access and streaming
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applications. On the other hand, the URLLC supports mission-critical applications,
delivering simultaneously extremely-high reliability, on the order of 1 — 107, and low-
latency of 1 ms or less. The associated applications include tactile internet and vehicle-
to-vehicle communication to enable autonomous driving. Lastly, the mMTC addresses
general IoT applications, which require massive connectivity and high energy efficiency,
as most of the machine-type devices are powered by low-capacity batteries [7]. In the
following, we explore more deeply the characteristics, requirements, technical limitations,

and enabler technologies associated with the mMTC service.

1.1.1 Massive Machine-Type Communications

mMTC is a use case of the 5G wireless networks to provide communications for a
massive number of devices non-controlled directly by humans. This service is designed to
support the increasing demand of connecting seamlessly huge populations of machine-
type devices, mostly related to loT applications. These devices are associated to different
fields, such as health care, home automation, manufacturing automation, and smart
transportation. The main goals of mMTC is to provide communication with low-power,
massive connectivity, and broad coverage. However, the traffic pattern and extremely-low
complexity of the numerous machine-type devices, and the scarce radio resources result in
design challenges for massive connectivity. The mMTC service aims to provide reliable and
ubiquitous communication for [oT devices in the existing cellular infrastructure; however,
the associated deployment issues cannot be addressed with traditional approaches.

The typical application scenario of mMTC comprises a huge population of low-cost
IoT devices distributed inside a communication cell. These devices produce sporadic
and unpredictable traffic, as they are designed to sleep most of the time to conserve
battery lifetime, and activate when they have data to transmit. The machine-type devices
transmit small payloads, are powered by low-capacity batteries, and have simple
hardware. Despite these common characteristics, they have heterogeneous quality-of-
service (QoS) requirements due to the different application fields for which they are
intended.

The main challenges to provide mMTC are associated with the sporadic and
unpredictable traffic, and the massive number of served devices. Using the conventional
access strategies in this scenario with limited radio resources and the massive population
implies increased scheduling delay and signaling overhead, as well as radio access network
congestion. When the devices share the same pool of resources, collisions may occur as
multiple users can pick the same set of resources for their access attempt. At the same time,
orthogonal multiple access leads to resource underutilization due to the traffic randomness,
and the inefficiency of centralized coordination and resource pre-allocation. Also, the
coverage is compromised by the ubiquitous distribution of devices and their extremely

low-power transmissions. It is worth mentioning that most of the results on information
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theory consider small numbers of devices and asymptotically infinite-length packets, in
spite of massive number of devices and short-packets, which is the operation regime of
mMTC. For these reasons, the mMTC service requires dedicated theoretical foundations,
resource management strategies, and physical layer technologies to achieve its goals.

The key technologies to enable mMTC implementations are associated to multiple
access schemes. Grant-free access protocols deal with the shortage of radio resources
reducing the signaling overhead. The basic strategy is to detect the set of active devices at
each contention period, then decode their data. At the same time, non-orthogonal multiple
access is a promising technology to increase the number of supported devices with limited
radio resources. However, the high co-channel interference observed in the massive access
scenario requires sophisticated interference management techniques [8]. When it comes
to transceiver design, the large array gain and spatial multiplexing capability of massive
MIMO can improve the coverage and increase the number of simultaneous connections.
Other enablers of the mMTC service are the machine learning-assisted solutions, which
have low design complexity while achieving high performance. The machine learning

algorithms are applied to transceiver design, RA, channel estimation, and signal processing
[3].

1.2 Extra-Large Scale Massive MIMO

The XL-MIMO is an operation regime of the massive MIMO when the physical
dimensions of the array in the base-station (BS) are pushed to the extreme. This im-
plementation integrates massive multi-antenna systems to large structures of airports,
shopping malls, stadiums, and so forth to support crowded scenario locations. As the
conventional massive MIMO, the XL-MIMO array provides the benefits of large array
gain, inter-channel orthogonality, channel hardening, and low constraints related
to the power amplifiers [9]. At the same time, the large array aperture provides high beam-
forming resolution [10], while the high number of antennas can enhance the cell coverage,
improving the QoS of the border-cell users. The XL-MIMO array enables improving the
QoS in crowded scenario locations, but the associated propagation channel and the high
number of antenna elements imposes major implementation challenges.

The propagation channel in XL-MIMO arrays is characterized by the presence
of spatial non-stationarities. Such non-stationarities are produced by two properties
unobserved in the conventional spatial stationary massive MIMO. The first property is
the operation under the near-field propagation regime due to the distance between the
BS and the users being less than the Rayleigh distance [11]. In this case, the spherical
wavefront model is suitable to represent the received signal instead of the conventional
plane model. Second, each cluster of scatterers in the environment sees only a portion of

the array. For this reason, the transmitted signal by each user reaches a small group of
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antennas which comprises the visibility region of this user [12]. At the same time, the
different propagation paths experienced along the array result in variations on the average
received power. Results demonstrate that the non-stationarities in XL-MIMO can improve
the SE if appropriated signal processing is applied, even in correlated channels [13, 14].
However, neglecting these non-stationarities can compromise seriously the performance of
the system.

The implementation challenges of the XL-MIMO array are mostly associated to
the high amount of data generated by the many antenna elements. The baseband data
generated in the BS demands a high interconnection bandwidth into the data links
that connect all its components. In XL-MIMO, this becomes a serious implementation
bottleneck, since the required bandwidth to transmit the data from the antennas to the BS
processing unit can not be handled by the current radio interfaces [15, 16]. Additionally,
handling the complexity of signal processing techniques is a relevant issue, since the
number of executed operations in linear detectors, such as zero-forcing (ZF) and minimum
mean-squared error MMSE, scales with the number of antennas [17]. At the same time,
as the conventional massive MIMO, the performance of the system is limited by the
estimation of hundreds of channel links [18], a number that increases with the antennas.
On the subject of hardware constraints, the fully digital implementation of XL-MIMO
arrays, which require one radio frequency (RF) transceiver per antenna element [19],
has high cost and power consumption. We also mention that there is a lack of realistic
channel models for the XL-MIMO arrays that are supported by measurement campaigns.

Many transceiver architectures, algorithms, and design aspects are candidates to
tackle the limitations faced by the implementation of XL-MIMO arrays. Implementing
the array with limited number of RF transceivers reduces substantially the hardware cost
concerns, while keeping the benefits of the high number of antennas by adopting techniques
such as AS [20, 21] and hybrid precoding. The BS interconnection bandwidth problem
is tackled by distributed signal processing and RA techniques. Adding multiple local
units to pre-process the data generated by small groups of antennas reduces significantly the
amount of exchanged information in the regime of asymptotic number of antennas [15, 16].
However, choosing the right signal processing techniques and coordinating adequately such
local processing units is crucial to achieve this goal. At the same time, distributed signal
processing is applied to perform data detection with low computational complexity by
exploiting the visibility regions of the XL-MIMO arrays [22]. The literature on XL-MIMO
comprises works intended to describe the XL-MIMO regime, to model the associated
propagation channel, and to propose and characterize the XL-MIMO transceiver design.

Also, there are works that deal with the RA problem considering AS and user scheduling.
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1.3 Random Access Protocols

Differently from point-to-point networks, the wireless cellular networks are cases of
multiaccess communication, as a set of connected devices share the same communi-
cation channel. Under such scenarios, the overall performance is not limited only by the
noise, distortion, and delay introduced by the channel, but also by the interfering signals
transmitted simultaneously by the other nodes. Dealing with the allocation of the radio
resources — e.g. time-frequency, pilot signals, spreading sequences — is the key path to
provide efficient connectivity, being a concern of the medium access control (MAC)
sublayer. The main problem of the multiaccess communication is to determine allowable
transmission strategies for the devices capable of achieving high performance with small
access delay [23].

Two classical approaches address the multiaccess communication problem. The first
approach allows the devices sending their packets immediately, hoping for no interference.
This strategy implies collisions when multiple devices use the same radio resources for
transmission. Pragmatic strategies called random access protocols introduce mech-
anisms to process the collided signals and manage retransmissions in order to achieve
efficient communication. However, the retransmissions must be carefully supervised, since
they normally increase the access delay. The second strategy is the channel reservation,
which aims to perfectly schedule the resources for channel use. In applications focused on
massive connectivity with sporadic traffic, this strategy leads to resource underutilization
[24]. In addition, considering these features with small payload sizes implies inefficiently
high signaling overhead. In situations that require massive connectivity, e.g. IoT applica-
tions, the random access protocols are more suitable, while channel reservation becomes
more adequate for cases with moderate number of devices and long-length packets, which
is the case of streaming applications.

Often, the random access protocols are classified according to their grant type. In
grant-based access protocols, an active device needs a grant response from the BS to
effectively access the network. The simplest structure of a grant-based access protocol
requires the exchange of four messages between the BS and an active device, as depicted
in Fig. 1.1a. The grant-based protocols are known for being computationally simple due to
the well-established coordination procedure. However, in massive connectivity applications,
they may have increased average access delay due to the high number of collisions. At
the same time, the coordination messages imply high signaling overhead. On the other
hand, in grant-free access protocols, the active devices access the network without a
grant. They send directly unique preambles for identification followed by their payload. At
the BS, the active devices and their respective data are detected from the received signal
and the preambles. This methodology can be deployed without coordination messages, as
depicted in Fig. 1.1b. The result is the reduction on the average access delay. However, in

massive connectivity situations, the number of mutually orthogonal unique preambles is
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less than the number of devices due to the limited channel coherence time. For this reason,
the preambles used for identification are mutually non-orthogonal, generating interference
among the set of active devices. In order to tackle this scenario, the BS must implement

sophisticated signal processing procedures to perform detection [8].

Device BS Device Preamble Payload

D o Tx. frame

Random access request ()
Q 1A
Random access response Channel Activity detection
Data detection
Connection request . (iA))
> 5
Cad :

Contention resolution BS

| Tx. frame + Interference + Noise |

Rx. frame

(a) Grant-based protocol (b) Grant-free protocol

Figure 1.1 — Structure of two basic random access protocols according to their grant type.

1.4 Artificial Intelligence

Al is an interdisciplinary area of study dedicated to understand, model, and replicate
intelligence and cognitive processes [25]. On the vision of the computer science, Al is a
fundamental area for designing machines or computer programs that can compute how to
act effectively in a wide variety of novel situations. These machines or programs, named
agents, are designed with three basic abilities: perceive the environment, compute
these perceptions in order to adapt to changes, and take actions aiming to achieve
the best expected outcomes [26]. Al is used to solve different complex real-world problems,
such as processing and identifying patterns in large datasets, helping the development of
new drugs and the design of devices, and controlling autonomous and adaptive systems in
general. On the matter of wireless communication networks, machine learning, a branch
of Al, has attained the attention of researchers due to the low computational complexity
of the techniques, as well as their high capability for solving intricate problems [27]. In
the following, we discuss one specific class of metaheuristic evolutionary algorithms and
explore the machine learning techniques, both optimization tools that will be applied in

the specific XL-MIMO and mMTC random access problems in the next chapters.
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1.4.1 Genetic Algorithms

GAs are a class of metaheuristic evolutionary search algorithms inspired by
principles of genetics and natural selection often applied to solve optimization problems.
They implement intelligent search techniques that explore the problem sub-spaces gener-
ating candidate solutions along the iterations, and exploit the good properties of these
solutions recombining them into new ones. To operate properly, GAs do not require convex
objective functions or convex constraints. Such aspect is essential as most of the practical
problems on wireless communications are non-convex. Additionally, the GAs implement
efficient strategies to escape from local optimums, while their overall structure being
suitable for implementations which use parallel computing. Meanwhile, as other heuristic
techniques, the GAs do not ensure finding the optimal solution. GAs are powerful tools to
solve non-convex and combinatorial RA problems that have high dimensions with a good
trade-off between performance and computational complexity.

The GAs deal with particular representations of the optimization problem and
the candidate solutions. The optimization problem, including the objective functions
and constraints, is cast to a fitness function which measures the quality of the solutions.
At the same time, the candidate solutions are encoded into chromosomes, which are
string representations of the optimization variables. Fig. 1.2 depicts the steps normally
encountered in the standard GA. The fundamental operators of the standard GA are
selection, crossover, and mutation. These operators constitute basic building blocks to
implement the many variations of GAs. The selection operator compares the chromosomes
at each iteration based on their quality (fitness), selecting the most qualified ones to generate
the population of the next iteration. This operator is responsible for increasing the mean
quality of solutions, as those with the best fitness are more likely to proceed as basis for
the solutions of the next iteration. Common algorithmic implementations of selection are
the roulette wheel with the fitness proportional or ranking strategies, and the tournament
selection. The crossover and mutation are called variation operators, as they create diversity
into the candidate solutions. In the crossover operator, the information contained in
pairs of solutions chosen during selection are randomly merged, generating new candidate
solutions. This recombination is performed intended to merge good properties of the
solutions aiming to improve the overall fitness. The mutation operator add independent
random variations on the properties of the new solutions generated during the crossover.
These variations promote variability among the solutions, exploring new regions of the
problem sub-spaces [28].

The GA operators introduce many input parameters to control the exploration and
exploitation of the feasible sub-spaces. Hence, as other metaheuristics, the performance of
a GA is strongly related to the suitable setting of these parameters. It is worth mentioning
that such parameters are interrelated and they depend on the optimization problem at

hand [29]. For these reasons, there is no effective rule of thumb for choosing the optimal
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Figure 1.2 — Flowchart of the standard GA.

parameter values set. Automated tuning methods have been deployed to set the parameter
values by running and evaluating different instances of a GA. Two classes of these methods
are the search-based tuning and the hand-made tuning. In the search-based tuning, one
heuristic search algorithm, such as the iterated local search, tries to improve the GA
performance from an initial parameter configuration. In contrast, in the hand-made tuning,
the designer defines a set of input parameters and iteratively modify them in order to find

the combination that provides the best performance [29].

1.4.2 Machine Learning

Machine learning is a branch of AI dedicated to the study of algorithms capable of
improving their performance on solving specific tasks by using a set of observations called
data set. Most of the machine learning techniques are founded on the generalization
principle, which consists in the ability of achieving good performance results with
previously unobserved inputs. These techniques have been used extensively in applications
such as computer vision, natural language processing, and anomaly detection [30]. It
is worth mentioning that they have been demonstrated promising results on solving
problems that have cumbersome mathematical models, as the ones observed on the study
of communication networks [5]. For these reasons, machine learning algorithms are suitable
candidates to be part of the future wireless networks, providing integrated solutions
capable of optimizing simultaneously different, even conflicting, performance aspects.

The machine learning techniques are divided into three categories: supervised
learning, unsupervised learning, and reinforcement learning. In the supervised learning,

the algorithms are designed to map their inputs to specific outputs. This element becomes
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clearer when we look at the typical supervised learning training set, composed by examples
containing features and associated to their respective labels. This learning class is often used
in classification and regression problems. In the unsupervised learning, the algorithms
design aims to extract patterns from the data set. Differently from the first category, the
unsupervised learning data sets comprise only the examples with their features [31]. Lastly,
in the reinforcement learning, the algorithms are designed to take actions based on
rewards or penalties. The basic reinforcement learning model is composed by one agent
with learning capacity that interacts with the environment aiming to achieve predefined
objectives. As the actions are carried out, the agent changes the environment, approaching
or distancing itself from its objectives [32]. It is important to stress that reinforcement
learning does not require a model to perform learning.

Despite the advancements of machine learning techniques in the computer science
community, the application of these algorithms in the physical layer of wireless networks
is in its initial state. Some open questions are the optimal representation of the data sets,
the most suitable algorithmic architectures for each problem, and the optimal selection
of loss function and training parameters, e.g. learning rate, training, and validation set
sizes [5]. Also, it is worth mentioning that there is a lack of data sets that represent the
practical operation conditions of the 5G communication networks, as well as the necessity
of training methods to attain the strict real-time requirements of the communication

applications [27].

1.4.2.1 Feedforward Neural Network Model

The feedforward neural network (NN) is the principal model used in machine
learning for classification and regression tasks. It is employed to approximate a desired
function f* using a structure based on applying a sequence of nonlinear transformations to
the input. Figuring in many commercial applications, the feedforward NN is the foundation
for other specialized machine learning models, such as the convolutional NN (CNN) used
widely in image processing [30]. In the following, we present the mathematical model and
the main concepts associated to the feedforward NN model.

Let ry € RM and r;, € RV be respectively the input and output of the model.
Indeed, let fo(r,_q;0,) : RNe-1 — RN be a transformation which maps the vector r,_; €
RNe-1 to v, € RM, considering 6, a set of parameters of f,. The entries of the vectors r,
are called neurons or units, while the mapping transformations in the model are called
layers. A feedforward NN model with L' layers, namely with depth L', is defined by the

input-output relation below:

ry = f(ro;0) = (fio fao -0 fry10 fr)(re; 0) (1.1)

where @ = {6y, ...,01/} is the set comprising the parameters of all the layers which compose

the model. The last layer is called output layer, while the remaining L' — 1 intermediate
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layers are known as hidden layers. We consider that a model with only one hidden layer
is a shallow feedforward NN, while a model with two or more hidden layers is a deep
feedforward NN.

The effectiveness of the feedforward NN model relies on how are defined the layer
transformations f;, V¢, including the function type and the size of its output N,, namely the
width of the layer. The format of f; strongly depends on the type of layer it implements.

For instance, a densely connected layer has the format:
f?c(rg_l; 9?0) = O’(W@I‘g_l + bg) (12)

where o(-) is the activation function, the nonlinear component of the layer, and W, €
RNexNe—1 b, € RN are respectively the network weights and the bias vector, which are
the layer parameters, i.e. #;° = {W,, b,}. The densely connected layer receives this name
because every input neuron is connected to every output neuron. Depending on the type of
tackled problem, other types of layer are used in feedforward NN models. Some examples
are the convolutional layer, normalization layer, and even layers of stochastic nature as
the dropout and the Gaussian noise layers.

The activation function contained in the layers represents the nonlinear compo-
nent of the feedforward NN model. These functions are selected from a pool of effective
common choices, or they are are crafted aiming to deal with specialized problems [30]. In
Table 1.1 we organize the most common activation functions by their names, element-wise

functions, and output ranges.

Name Function [o(u)]; | Output range
Linear w; (—00,0)
Rectified linear unit (ReLU) max (0, u;) [0, 00)
Hyperbolic tangent tanh(u;) (—1,1)
. 1
Sigmoid W((—)ui) (0,1)
exp(u;
Softmax S exp(u;) (0,1)

Table 1.1 — List of most common activation functions [5].

Aiming to get a feedforward NN that approximates well the desired function f*,
the crafted model is subjected to a gradient-based learning method to define the
set of model parameters 6. In supervising learning applications, the learning procedure
uses a loss function which measures the quality of the outputs predicted by the model
w.r.t. the desired outputs stored in a data set. Some common choices of loss function
are the cross-entropy and the mean-squared error (MSE). The set of parameters 6 is
computed by minimizing the loss function with a gradient-based iterative method. Often,
the stochastic gradient descent (SGD) and the adaptive moment (ADAM) estimation
[33] algorithms and their variations are employed to learn the model parameters. Indeed,
the back-propagation algorithm is employed to enable the efficient computation of the

gradients in the chained structure of the feedforward NN model [30].
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1.5 Research Objectives

The objectives of this Master’s Dissertation are in the following:

1. General: Investigate the typical application scenarios of the mMTC service. At the
same time, characterize the wireless networks access problem faced by this service,
identifying potential grant-free random access protocols to enable connectivity. Study
the XL-MIMO transceiver design as a candidate to provide connectivity in crowded
communication environments. Investigate the RA problem of AS and PA in XL-

MIMO arrays aiming to propose practical techniques for BS deployment;
2. Specific:

(a) Perform an extensive literature review of the typical application scenarios and
access protocols for the mMTC service, as well as the XL-MIMO transceiver

design, its associated channel models, and signal processing algorithms;

(b) Propose techniques to solve problems associated with the 5G wireless commu-
nications systems, specifically: i) grant-free random access protocols to provide
massive connectivity for the mMTC service, and ii) RA techniques for XL-
MIMO arrays to attain the bottlenecks of massive multi-antenna systems and

enable practical implementations;

(¢) Implement numerical simulations in order to corroborate the effectiveness of
the proposed techniques and compare them to the state-of-art in the literature.
The metrics adopted for evaluation are: i) error probabilities during activity
detection, ii) SE, iii) computational complexity in terms of floating point
operations per second (flops) or execution time, and iv) volume of exchanged

data among the BS internal components;

(d) Disseminate the achieved results and findings on the development of grant-free
random access protocols for mMTC, as well as the RA algorithms for XL-MIMO

array by means of three scientific publications.

1.6 Contributions and Generated Publications

The scientific publications containing the contributions accomplished by this Mas-

ter’s Dissertation are:

[A] SOUZA, J. H. 1. de; AMIRI, A.; ABRAO, T.; CARVALHO E. de; POPOVSKI P.
Quasi-distributed antenna selection for spectral efficiency maximization in subarray
switching XL-MIMO systems. IEEE Transactions on Vehicular Technology, v. 70,
n. 7, p. 6713-6725, May 2021, DOI: 10.1109/TVT.2021.3081462 (IF: 5.379, Eng. IV
Qualis-CAPES: Al).
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[B] SOUZA, J. H. I. de; ABRAO, T. Deep learning-based activity detection for grant-free
random access. Submitted in 05/17/2021 to the IEEE Transactions on Vehicular
Technology (IF: 5.379, Eng. IV Qualis-CAPES: A1l).

[C] SOUZA, J. H. I. de; ABRAO, T. Performance of Activity Detection and Channel
Estimation Methods for Machine-Type Communications with MIMO Transceiver.

Manuscript in preparation for submission.

1.7 Organization of the Text

The remainder of this text is organized as follows. In Chapters 2, 3, and 4 we outline
the results obtained by the publications, emphasizing their contributions. In Chapter 5 we
provide the final comments, as well as devise possible paths for future works involving
the discussed topics. Lastly, in Appendices A, B, and C are reproduced, in chronological
order of conception, the full text of the scientific publications associated to this Master’s

Dissertation.
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2 Antenna Selection for Spectral

Efficiency Maximization in XL-
MIMO Systems

In the work in Appendix A, we study the joint AS and PA problem for an XL-MIMO
system with limited number of RF transceivers at the BS. The aim of the addressed RA
problem is to jointly select the set of active antennas and distribute the available power
among them in order to maximize the SE of the system, given the constraints of maximum
number of RF transceivers and limited connections imposed by subarray structure in the

BS. The contributions of the work are as follows:

(a) Description of a distributed transceiver design for XL-MIMO based on a subarray
switching architecture, as depicted in the right side of Fig. 2.1;

(b) Proposition of a centralized procedure based on the evolutionary metaheuristic GA
to perform joint AS and PA to maximize the SE with subarray connection and

maximum transmitted power constraints;

(c) Proposition of a distributed version of the GA procedure for joint AS and PA which
achieves performance tight to the centralized one, but with low-size coordination

data and less number of executed operations;

(d) Extensive analysis of the proposed procedures in terms of number of symbols for

training, coordination data size, and number of flops.
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Figure 2.1 — Diagrams of the XL-MIMO communication cell (left) and the BS based on a
subarray switching structure during the downlink (right).
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The studied XL-MIMO system is depicted in the left side of Fig. 2.1, while the
BS structure during the downlink is illustrated in the right side. The BS is composed by
B independent subarrays, each one equipped with a remote processing unit (RPU), N,
RF transceivers, and M, > N, antennas. The RPUs locally carry out channel estimation,
RA, and precoding calculation. In addition, a flexible switching stage connects each active
antenna of the subarray to one available RF transceiver. A central processing unit (CPU)
coordinates the operation of the multiple subarrays in the BS.

Since the number of RF transceivers is less than the number of antennas, AS is
crucial to attain a reasonable downlink performance. On this matter, we devise two GAs
to perform joint AS and PA to maximize the SE, given the maximum number of RF
transceivers, the subarray connection constraints, and the limited power for transmission.
The GAs are designed to compute near-optimal solutions of the optimization problem in

eq. (15, Appendix A), reproduced in the following for the sake of clarity.

ma%i’rg}ize SE = élogz (1 + ig) (2.1a)
subject to Z D,, < N, b=1,...,B (2.1b)
meMy
tr [P(HYDH) ] < Pa (2.1¢)
Dnef{0,1}, m=1,....M (2.1d)
pr > 0, k=1,....K (2.1e)

p, is the allocated power for users k, while o2 is the thermal noise power. D,,,Vm are the
state indicators of the antennas which assume value equal to 1 if the antenna is active, or
equal to 0 otherwise. P, is the available power for transmission, while H, P and D are,
respectively, the channel matrix, the diagonal matrix with the elements py, Vk, and the
diagonal matrix with the elements D,,, Vm. In eq. (2.1), the objective function is the SE
obtained by the ZF precoding. At the same time, the constraints are, respectively, the
connection constraints associated to the switching stage of each subarray, the maximum
power constraint, and the restriction of the antenna state indicators to binary values.

The GA for RA (GA-RA) is the first proposed algorithm. Executed entirely in
the CPU, it uses full knowledge of the channel state information (CSI) to compute the
indices of the active antennas and the power distribution. Aware of the interconnection
bandwidth problem associated to obtaining full CSI at the CPU in systems with extremely
large number of antennas, we propose a distributed GA called quasi-distributed GA for
RA (DGA-RA). The core idea of the DGA-RA is to independently carry out AS and
PA at each subarray, using only local CSI and side information provided by the CPU.
The local RA is enabled by the Sherman-Morrison-Woodbury formula, a matrix identity
that allows calculating (R + pq®)~! from R™!, p and q. Fig. 2.2 depicts the iterative
procedure of the DGA-RA algorithm. Details on the computations are shown in Section
ITI-B of Appendix A.
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Figure 2.2 — Diagram of the proposed DGA-RA procedure steps with coordination between
the CPU and the RPUs.

The proposed techniques are evaluated according to their performance and complex-
ity. Also, we compare them with two methods of the literature. One of the baseline methods
is a heuristic based on the power of the channel coefficients, called norm AS (N-AS) [19].
The other is based on the convex optimization framework, intended to maximize the
downlink sum-capacity rather than the SE [34]. We call it the sum-capacity mazimization
AS (SCMAX-AS) method.

Fig. 2.3a depicts the SE wversus the number of RF transceivers, while the Fig.
2.3b depicts the SE versus the number of users. The results for DGA-RA are generated
considering 5 and 16 iterations of the procedure illustrated in Fig. 2.2. Besides, it is worth
mentioning that we plot the results for the full-array ZF and random AS as upper and
lower performance bounds, respectively. Analyzing the Fig. 2.3a, we see that the GA-based
techniques outperform the baseline methods. The performance gap reduces as the number
of RF transceivers increase. Comparing the GA-based techniques, we see that the DGA-RA
with 5 iterations almost equals the GA-RA, while its version with 16 iterations outperforms
the results of the GA-RA. Next, in Fig, 2.3b we perceive that the performance increases
with the number of users, up to a point where such behavior reverses. This is due to the
reduction of the spatial degrees of freedom of the system by increasing the number of users
while keeping the number of activated antennas constant. When the number of users is
high, 7.e. in crowded scenarios, the GA-based techniques operate substantially better than
the baseline methods.

Lastly, the Fig. 2.4 addresses the results on complexity. Fig. 2.4a depicts the
coordination data size versus the number of users and number of antennas, considering
different number of iterations of the DGA-RA algorithm, antennas, and subarrays. We
consider the coordination data size as the amount of samples transmitted to the CPU
during the RA. This result evidences that the coordination data size of the DGA-RA
technique does not depend on the number of antennas, and is lower than the centralized
methods when the number of users is small. Fig. 2.4b depicts the number of flops per
processing unit versus the number of RF transceivers and users for the GA-RA and DGA-

RA techniques. Analyzing this result, we see that, when the number of RF transceivers
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Figure 2.3 — Performance of the proposed DGA-RA, GA-RA algorithms, and the N-AS
and SCMAX-AS baseline techniques for AS to maximize the SE in XL-MIMO
systems. The SE attained by full-array ZF and random AS are plotted as a
lower and upper performance bounds, respectively. The parameters values
aret M =512, B = 8 and, when it is not specified, K = 50 and N = 256.
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techniques schemes for AS to maximize the SE in XL-MIMO systems. In
(a), when it is not specified, N; = 16 and K = 50, while the centralized
techniques include the GA-RA, the SCMAX-AS and the full-array ZF. In (b),
B = 8 and, when it is not specified, K = 50 and N = 256.
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2.1 Conclusions

In the work in Appendix A, we propose a subarray switching architecture for the
BS antenna array and investigate the joint problem of AS and PA in XL-MIMO systems
with limited number of RF transceivers. We outline the main findings and conclusions of

the publication in the following:

o Two GA-based procedures that achieve near-optimal performance with low compu-
tational complexity are proposed, one implemented with a centralized approach and
the other with a distributed scheme;

o Numerical simulations corroborate that the proposed GA-based procedures attain
high performance-complexity trade-off when compared with the N-AS and SCMAX-
AS baseline techniques, specially in crowded XL-MIMO scenarios;

o The DGA-RA fulfills the initial proposal to perform AS and PA transmitting a
reduced amount of samples to the CPU. Additionally, we demonstrate that the
distributed procedure outperforms the GA-RA in both performance and complexity
by taking the appropriate system operation settings.
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3 Deep Learning-based Activity
Detection for mMTC Grant-free

Random Access

In the work in Appendix B, we study the problem of device activity detection under
grant-free random access protocols aiming to support mMTC scenarios. The contributions

of the work are as follows:

(a) Proposition of two data-driven deep learning (DL) algorithms for activity detection
of machine-type devices, one based on the densely connected layers and the other

based on convolutional layers;

(b) Extensive description of the proposed NNs, presenting the procedures for hyper-

parameter tuning and network training;

(c) Carrying out experiments to evaluate the performance of the activity detection
algorithms in terms of error rate and computational complexity, and compare to

techniques in the recent literature;

(d) Evaluation of the proposed DL algorithms for activity detection with three kinds of
preamble sequences: Gaussian and Bernoulli random sequences, as well as determin-

istic Zadoff-Chu sequences.

The addressed communication scenario is illustrated in Fig. 3.1, including the
random access slot and a high-level diagram of the DL-based activity detection algorithm.
During the uplink, each active device uses the random access slot to transmit its unique
preamble with a length of L symbols followed by the payload. The received preambles are
used to carry out activity detection and channel estimation aiming to gather sufficient
information to decode the data transmitted by each active device. We focus on developing
DL-based techniques to perform activity detection considering mMTC communications
scenarios.

The design of the preamble sequences is non-orthogonal, since the size of the
population of devices, K, is greater or even much higher (crowded scenarios) than the
number of symbols of the preamble sequences, L. This assumption is consistent with
practical applications as one of the mMTC application aims to handle huge populations
of machine-type devices. However, the non-orthogonality makes the activity detection

challenging, since the multiple active users suffer from high inter-user interference levels.
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Figure 3.1 — Diagram of the communication scenario with the random access slot and an
activity detection scheme based on a DL algorithm.

The proposed schemes for activity detection are a DFN and a CNN, depicted
respectively in Figs. 3.2a and 3.2b. Such NNs have extremely-low run time at the cost of
an intense off-line training phase to learn their parameters.

The inputs of the DFN are the real and imaginary parts of the received signal. The
network has 3 densely connected layers with N,,, N,,, and K neurons, respectively. Besides,
the hidden layers have the ReLLU activation function, while the output layer have the
sigmoid activation function. On the other hand, the input of the CNN is a correlator stage,
that multiplies the received signal by the conjugate transpose of the preamble matrix.
The network is composed by the 3 layers of the type 1D convolution. The hidden layers
have N; feature maps and ReLU activation function. At the same time, the output layer
has 1 feature map and sigmoid activation function. The filter length of all the layers is
equal to N,,. Also, both DFN and CNN have a hard decision module at their outputs with
parameter 7 > 0. We incorporate this module since the original activity descriptors are
binary, while the outputs of the networks are values in the continuous range (0,1).

The proposed DL-based techniques are evaluated and compared with two methods
recently available in the literature, the least absolute shrinkage and selection operator
(LASSO) [35] and the approzimate message passing (AMP) algorithm [36]. Additionally, we
study the performance of the proposed techniques with three types of preamble sequences:
random sequences generated by a symmetric Bernoulli distribution, by a complex Normal
distribution, and deterministic Zadoff-Chu sequences [37].

Fig. 3.3 depicts the detection error rate of the evaluated techniques wversus the
undersampling ratio A, calculated by dividing the preamble length by the total number
of devices. We see on this results that the DL-based techniques achieve competitive

performance when compared to the state-of-art AMP and the LASSO methods. Comparing
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Figure 3.2 — Diagrams of the proposed deep NNs for activity detection of machine-type
devices.

the proposed methods, we perceive that the DFN with the three types of sequences achieves
performance substantially higher than the CNN with random sequences. However, the
CNN with the Zadoff-Chu sequences attains a significant improvement on performance,
reaching error rate values comparable to the DFN. Such fact is due to the correlator
stage at the input of the CNN. Although the LASSO attains the best performance for
A > 0.175, we demonstrate in the subsequent results that this technique has extremely
high computational complexity, resulting in a poor performance-complexity trade-off.

Next, Fig. 3.4 depicts the receiver operating characteristic (ROC) curves of the
evaluated techniques for two values of undersampling ratio. For A = 0.525, the CNN
with Zadoff-Chu sequences has a huge improvement on performance, if compared with the
random sequences. Additionally, the result of the CNN is tight to the AMP algorithm. At
the same time, the DFN attains a performance superior to the AMP and comparable with
LASSO. On the other hand, for A = 0.175 all the evaluated techniques have comparable
performance, except the AMP algorithm that attains significantly degraded results.

In Fig. 3.5 are depicted the detection error trade-off (DET) curves of the evaluated
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Figure 3.3 — Detection error rate wvs. the preamble length of the proposed DL-based
algorithms using the Normal, Bernoulli, and Zadoff-Chu sequences, and of
the LASSO and AMP baseline techniques.
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Figure 3.4 — ROC curves of the proposed DL-based algorithms using the Normal, Bernoulli,
and Zadoff-Chu sequences, and of the LASSO and AMP baseline techniques.

techniques for two values of undersampling ratio. Such result is similar to the one illustrated
in Fig. 3.4, with the difference that the axes represent the two types of error that occur
during activity detection. We see that the proposed DL-based techniques cover wider
ranges of miss detection and false alarm rates than the baseline techniques. Additionally,
for A = 0.525 all the techniques achieve smaller false alarm rates, owing to the sporadic
activity of the devices.

Fig. 3.6 depicts the detection error rate versus the activation probability of the
evaluated techniques for two values of undersampling ratio. We stress that the DL-based
techniques are trained with samples with a constant activation probability equal to 0.1.

Hence, this result demonstrates the robustness of the DL-based activity detection tech-
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Figure 3.5 — DET curves of both proposed DL-based algorithms using the Normal,
Bernoulli, and Zadoff-Chu sequences, and of the LASSO and AMP base-
line techniques.

niques against variations on the operation scenario. The proposed techniques demonstrate
consistent performance, following the LASSO and AMP behavior as the activation proba-
bility increases. For A = 0.525, we see again the improvement of the CNN using Zadoff-Chu
sequences. On the other hand, for A = 0.175, the performance of all the techniques is

similar for activation probability values greater than 0.1.
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Figure 3.6 — Detection error rate vs. the activation probability of the proposed DL-based
activity detection algorithms using the Normal, Bernoulli, and Zadoff-Chu
sequences, and of the LASSO and AMP the baseline techniques.

On the matter of computational complexity, Fig. 3.7 illustrates the run time versus
the number of devices of the evaluated techniques for two values of undersampling ratio.
The proposed techniques have extremely low run time values, on the order of 10 us to

100 ps, at least two orders of magnitude less if compared with both baseline methods.
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Besides, the CNN have complexity slightly higher than the DFN. We notice that the
complexity does not change drastically with the undersampling ratio, but increases with
the number of devices, as the number of computed outputs grows. Finally, we notice that,
when compared to the other evaluated techniques, the good performance of the LASSO

method comes with an extremely high computational complexity.
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Figure 3.7 — Run time vs. the number of devices of the proposed DL-based algorithms,
and of the LASSO and AMP baseline techniques, considering two values for
the undersampling ratio.

3.1 Conclusions

In the publication available in Appendix B, the problem of device activity detection
in the context of grant-free random access for the mMTC scenarios is investigated. We
propose two DL-based procedures to perform activity detection. The main findings and

conclusions of the work are outlined in the following.

o A DFN based on densely connected layers and a CNN based on 1D convolutional

layers are proposed for activity detection of machine-type devices;

o The impact of the type of the preamble sequences on the performance of the proposed
algorithms is analyzed. We investigate the performance of the DFN and CNN with
random sequences generated by sampling a complex Normal and a symmetric

Bernoulli distributions, and deterministic Zadoff-Chu sequences;

o Numerical experiments reveal that the DL-based algorithms attains extremely-low
computational complexity when compared with the state-of-art LASSO and AMP
methods. Additionally, the DFN achieves the best performance while the CNN with

Zadoft-Chu sequences outperforms substantially the CNN using random preambles.
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4 Activity Detection and Channel
Estimation for mMTC Grant-free

Random Access

In the work in Appendix C, we investigate the problem of device activity detec-
tion and channel estimation for grant-free random access in mMTC applications. The

contributions of the work are as follows:

(a) Revision and introduction of four methods for activity detection and channel estima-

tion in the context of grant-free random access;

(b) Systematic evaluation and comparison of the introduced techniques in order to

analyze their respective performance and main operation regimes.

We consider the uplink transmission of a cellular mMTC system served by a BS
equipped with M antennas. During the random access slots, the active devices follow
a grant-free random access scheme, transmitting unique mutually non-orthogonal pilot
sequences for activity detection and channel estimation. Fig. 4.1 depicts a diagram of
the investigated communication scenario during the described pilot phase. The detailed

definition of the parameters of the communication scenario is available in Section II of

Appendix C.
Noise
Pilots Activity Channel
User 1 Va1 % ~ CN(0,0°Lyy)

> K, = rowsupp(X)

—>h, =% Vk e K,

Activity detection and
Channel estimation

User K Pak
llax3 =1 Y& ~ Bernoulli(p,) hy ~ CN(0, BiIyr)
Ko={k€Zi|nm=1}

Figure 4.1 — Diagram of the pilot phase, in which the BS perform activity detection
and channel estimation. The output of the activity detection and channel
estimation module is a set with the indices of the active users and their
respective estimated channel vectors.

Now, we briefly describe the evaluated techniques. The MMSE estimator is a
classical estimation method which can be used to estimate the channel vectors after
the activity detection. The derivation of such method is done by calculating the closed-

form solution of the optimization problem of minimizing the expected value of the MSE
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between the received signal and its reconstruction from the estimated channel vectors. It is
worth mentioning that the MMSE estimation requires knowledge of the channel statistics.
Differently, the group LASSO method [38] consists in the solution of an optimization
problem with an objective function that can be divided into a sum of two parts. The
first part represents the MSE between the received signal and its reconstruction from the
estimated channel vectors. The second part is a scaled sum of the norms of the estimated
channel vectors. Specifically, the second part promotes the sparsity of the solution. This is
favorable for our estimation problem, since the desired signal has a sparse structure. The
covariance-based estimation method consists in the optimization problem of minimizing
the MSE between the expected value of the covariance matrix of the received signal and
an estimate of it. Such problem formulation is equivalent to the non-negative least-squares
(NNLS) optimization program [39], and can be solved by coordinate descent (CD) methods
[40]. Finally, the vector AMP algorithm [41] is a multiple-measurement vector (MMV)
version of the original AMP [36]. Such technique is specialized on the estimation of sparse
signals by using an iterative procedure. The state evolution analysis in the AMP theory
allows theoretically predicting the performance of the technique [36].

The introduced techniques are evaluated and compared in terms of the normalized
MSE (NMSE) of the estimated channel vectors and the detection error rate. On the
matter of the error rate, both ROC and DET curves are constructed. For a complete
description of the simulation scenario, refer to the Section IV-C and the Table II in
Appendix C. Fig. 4.2 depicts the NMSE versus the undersampling ratio of the genie-aided
MMSE and the group LASSO. Such result is generated for two values of antennas at the
BS. Both techniques reach an NMSE floor after a certain value of undersampling ratio.
Therefore, the performance of long pilot sequences is limited. The genie-aided MMSE,
which assumes perfect knowledge of the users activity and the channel statistics, achieves
the best performance. However, we notice that the number of antennas does not have
impacts on the NMSE for such technique. Conversely, the group LASSO improves the
performance with 64 antennas and A > 0.2. The exception is the point where A = 0.1, in
which the group LASSO with 4 antennas outperforms the one with 64.

Next, Fig. 4.3 depicts the detection error rate versus the undersampling ratio of
the NNLS and the group LASSO, considering two values for the number of antennas at
the BS. Again, the performance increases with the undersampling ratio, but it is limited.
The group LASSO performance is considerably higher than the NNLS for A > 0.2. On
the matter of the number of antennas, the NNLS with 64 antennas achieves better results
than with 4 antennas. The same occur with the group LASSO for A > 0.3. Such behavior
reverses for A < 0.3.

Still on the performance of activity detection, Fig. 4.4 depicts the ROC curves of
the NNLS and group LASSO techniques, considering two values of antennas at the BS

and two values of undersampling ratio. The result demonstrates that, in general, under
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Figure 4.2 — NMSE of the estimated channel vectors of the detected users vs. the under-
sampling ratio (L/K) of the genie-aided MMSE and the group LASSO. Two
values for the number of antennas at the BS are considered.
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Figure 4.3 — Detection error rate vs. the undersampling ratio (L/K) of the NNLS and
group LASSO considering two values of antennas at the BS.

the same conditions, the group LASSO attains better ROC curves than the NNLS. All
the curves improve by increasing the number of antennas, except for the group LASSO for
A = 0.1. In the particular case of group LASSO for A = 0.1, 4 antennas provide low false
alarm rates, while 64 antennas provide high successful detection rates.

Fig. 4.5 depicts the DET curves of the NNLS and group LASSO techniques,
considering two values of antennas at the BS and two values of undersampling ratio.
Analyzing the results, we notice that, except for the group LASSO for A = 0.1, both

false alarm and miss detection rates improve by increasing the number of antennas. In the
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Figure 4.4 - ROC curves of the NNLS and group LASSO for two values of antennas
at the BS and considering two values of undersampling ratio (L/K). The
dotted curves represent the performance of choosing the activity descriptors
randomly.

exceptional case, the group LASSO degrades with 64 antennas when A = 0.1.
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Figure 4.5 — DET curves of the NNLS and group LASSO for two values of antennas at
the BS and considering two values of undersampling ratio (L/K).

4.1 Conclusions

In the publication in Appendix C, we investigate the problem of activity detection

and channel estimation in grant-free random access protocols for mMTC applications. The

evaluated techniques are the MMSE estimation, the group LASSO method, the covariance
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matrix estimation formulated as a NNLS optimization problem, and the VAMP algorithm.

The main findings and conclusions of the work are outlined in the following:

o The four techniques are introduced and compared in terms of the NMSE of the

estimated channel vectors and the device detection error rate;

o The numerical experiments demonstrate that the group LASSO technique with
sufficiently long pilots benefits consistently from increasing the number of antennas.
Still with long pilots, the group LASSO technique achieves good results on activity
detection. Lastly, the NNLS technique improves the activity detection performance

by increasing the number of antennas.
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5 Conclusions

In this Master’s Dissertation, we investigate the typical use case of the mMTC
service, analyzing deeply different types of grant-free random access protocols to handle
large groups of machine-type devices. On this matter, we propose grant-free random access
protocols based on machine learning. Also, we investigate the XL-MIMO transceiver,
which is a strong candidate to handle crowded communication scenarios. We study the RA
problem of joint AS and PA in XL-MIMO arrays, proposing distributed and centralized
solutions based on the GAs. The results of this study are presented by means of three
scientific publications addressing the listed issues, proposing techniques to enable the
massive connectivity in wireless communication networks. The main conclusions of these

three works are:

e The XL-MIMO BS with a limited number of RF transceivers benefits efficiently from
the extremely-high number of antennas with GA-based AS procedures. The proposed
GAs achieve near-optimal performance with low computational complexity. Besides,
the distributed GA fulfills the technical limitations of the XIL-MIMO, reducing the

size of the coordination data which need to be transferred to the CPU;

o DL-based solutions demonstrate a good performance-complexity trade-off on activity
detection for grant-free random access, attaining the performance of state-of-art
techniques with extremely-low computational complexity. Additionally, we notice
the impact of the type of the preamble sequences on the performance of the DL-
base technique, as the Zadoff-Chu sequences, which present good cross-correlation

properties, outperform significantly the performance achieved by random sequences;

e On the matter of device activity detection and channel estimation for grant-free
random access, techniques available in the recent literature benefit from the multiple
antenna transceiver, improving their performance even using pilot sequences with
limited length.

5.1 Future Research Directions

Finally, we highlight some future research directions associated with the study

accomplished in this Master’s Dissertation:

o DL-based activity detection with MIMO: few works approach the activity de-
tection problem with machine learning techniques considering the MIMO transceiver.

Furthermore, the existing works approach the deep autoencoder model [42], or
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model-driven methods obtained by unfolding iterative algorithms [43]. Other ma-
chine learning models need to be evaluated. For instance, models developed with
convolutional layers are suitable to process the uplink signal simultaneously in the

time and antenna domains;

« DL-based random access protocols for heterogeneous applications: [oT
exhibits a diversity of supported devices and applications, with varying QoS re-
quirements, demands, and traffic models. Solutions tackling the problems associated
to such heterogeneous requirements are needed [44]. DL models are promising for
implementing efficient resource — e.g. pilots, and time-frequency slots — allocation
strategies, and receiver designs accounting the different activation patterns and

priorities of devices.
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Quasi-Distributed Antenna Selection for Spectral

Efficiency Maximization in Subarray Switching
XL-MIMO Systems

Jodo Henrique Inacio de Souza
Taufik Abrao

Abstract—In this paper, we consider the downlink (DL) of
a zero-forcing (ZF) precoded extra-large scale massive MIMO
(XL-MIMO) system. The base-station (BS) operates with limited
number of radio-frequency (RF) transceivers due to high cost,
power consumption and interconnection bandwidth associated to
the fully digital implementation. The BS, which is implemented
with a subarray switching architecture, selects groups of active
antennas inside each subarray to transmit the DL signal. This work
proposes efficient resource allocation (RA) procedures to perform
joint antenna selection (AS) and power allocation (PA) to maximize
the DL spectral efficiency (SE) of an XL.-MIMO system operating
under different loading settings. Two metaheuristic RA procedures
based on the genetic algorithm (GA) are assessed and compared in
terms of performance, coordination data size and computational
complexity. One algorithm is based on a quasi-distributed method-
ology while the other is based on the conventional centralized pro-
cessing. Numerical results demonstrate that the quasi-distributed
GA-based procedure results in a suitable trade-off between perfor-
mance, complexity and exchanged coordination data. At the same
time, it outperforms the centralized procedures with appropriate
system operation settings.

Index Terms—Extra-large scale massive MIMO (XL-MIMO),
antenna selection (AS), resource allocation (RA), genetic algorithm
(GA), distributed signal processing.

1. INTRODUCTION

HE benefits of adopting a high number of antennas at
T the base-station (BS) have attracted the interest on the
massive MIMO transceiver design for the multi-antenna wireless
communications systems beyond the fifth generation (B5G) and
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of the sixth generation (6 G). The main advantages are the large
array gain, inter-channel orthogonality and channel hardening.
Also, increasing the number of antenna elements can enhance
the cell coverage, improving the quality-of-service (QoS) of the
border-cell users [1].

When the BS array attains extreme physical dimensions to
support crowded scenario locations, such as airports and large
shopping malls, the system is classified as extra-large scale
massive MIMO (XL-MIMO) [2]. The XL-MIMO array provides
the benefits of massive MIMO with additional beam-forming
resolution due to the large array aperture [3]. The XL-MIMO
array is characterized by key changes in the electromagnetic
propagation conditions when compared to the conventional spa-
tial stationary massive MIMO regime. The first property is the
spherical wavefront propagation feature for the received signal
due to the distance between the BS and the users being less
than the Rayleigh distance [4]. Second, each cluster of scatterers
sees only a portion of the array. Thus, the transmitted signal by
each user reaches a small group of antennas, which comprises
the visibility region (VR) of this user [2]. Additionally, the
different propagation paths experienced along the array result
in variations on the average received power. Results in [5], [6]
demonstrate that the spatial non-stationarities produced by these
two properties limit the performance of the system in terms of
spectral efficiency (SE) unless an appropriated signal processing
technique is applied.

Despite the benefits of high numbers of antennas, the XL-
MIMO scenario imposes challenges for transceiver design. The
first of them is the high cost and power consumption of fully dig-
ital implementations, which require one radio-frequency (RF)
transceiver per antenna element [7], [8]. In addition, adopting
a large number of antennas demands a high interconnection
bandwidth to transmit the baseband data throughout the links to
the BS processing unit. This turns into a serious implementation
bottleneck, since the required bandwidth can not be handled
by the current radio interfaces [9], [10]. Lastly, handling the
complexity of signal processing techniques is a relevant issue,
since the number of executed operations in linear detectors,
such as zero-forcing (ZF) and minimum mean-squared error
(MMSE), scales with the number of antennas [11].

In order to design practical BS architectures, one can limit the
number of RF transceivers to cope with the cost constraints. The

0018-9545 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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implementation with a limited the number of RF transceivers
can benefit from the large array by adopting techniques such
as antenna selection (AS) and hybrid precoding. Often, hybrid
precoding design is associated with the solution of intricate
optimization problems [12]. In addition, the commonly em-
ployed analog phase shifters are more expensive and consume
more power than conventional on-off switches [8]. For these
reasons, combining the AS procedures with linear precoding
designs result in attainable strategies aiming at robust and ef-
fective implementations. Different approaches and tools can
be adopted to perform AS, such as convex optimization [7],
[13], [14], greedy heuristics [7], [15], machine learning [16]
and metaheuristics [17]-[20].

One strategy to combat the problem of high interconnection
bandwidth is to use hierarchical architectures. Adding multiple
processing units to handle small groups of antennas and choos-
ing the right signal processing methods can reduce significantly
the amount of exchanged information in the regime of asymp-
totic number of antennas, as discussed in [9], [10]. However,
the coordination of such processing units to perform different
signal processing and resource allocation (RA) tasks constitutes
a big challenge. In addition, many of these activities rely on
the knowledge of fully reliable channel state information (CSI),
which is hard to attain due to the high array dimensions. Many
works on channel estimation [21], precoding and data detec-
tion [9], [10], [22]-[25] in massive and XL-MIMO consider
distributed pre-processing at local nodes. However, studies on
the distributed RA strategies, mainly involving AS, are scarce.

The signal processing complexity is an important con-
cern in XL-MIMO due to the high number of antenna el-
ements. However, differently from the conventional massive
MIMO, the XL-MIMO can benefit from the spatial non-
stationarities adopting local signal processing strategies to treat
the signals inside the VRs at the BS subarrays with reduced
complexity [22], [24].

A. Literature Review

AS strategies for MIMO systems are extensively discussed in
the literature. One AS algorithm to improve capacity in low rank
matrix channels on point-to-point MIMO was first introduced
in [26]. Later, the capacity distribution of systems with receive
AS has been derived in [27]. These results were extended to
massive MIMO regime in [28] and [29]. In these papers, the
authors derived capacity bounds for systems with transmit and
receive AS, respectively.

The authors in [13], [14] proposed AS procedures respectively
for the channel capacity and downlink (DL) sum-capacity max-
imization based on the convex optimization framework. One
technique based on the branch-and-bound algorithm is used
in [8]. Considering linearly-precoded systems, the problems
of AS for SE and sum-SINR maximization are addressed re-
spectively in [15], [30]. Differently, the work in [31] analyzed
one joint AS and power allocation (PA) procedure in a system
with spatially distributed antennas. The proposed procedure
runs at each antenna with side-information shared within its
neighborhood. Besides, AS considering limited connections in
the RF transceivers switching matrices is examined in [7].

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 70, NO. 7, JULY 2021

On the other hand, there are only a few works that consider the
AS problem for the XL-MIMO systems. A spatial users mapping
procedure to maximize SE implemented with convolutional neu-
ral networks (CNN) is proposed in [16]. The aim is to determine
each effective subarray window to precode the users signals
using ZF. Results demonstrate that the CNN-based procedure
achieves SE values comparable to the optimal mapping algo-
rithm. In [17], several transmit AS procedures to maximize the
energy efficiency (EE) from the long-term fading coefficients are
proposed. Asymptotic SINR expressions for the received signal
with AS are derived. Since the derived optimization problem is
NP-hard, three of the proposed procedures are implemented by
metaheuristic techniques, one being the genetic algorithm (GA).
The GA is a powerful evolutionary metaheuristic that was used
in different contexts to solve AS problems, as it is considered
in [18]-[20].

B. Contribution

Motivated by the benefits of large numbers of antennas at
the BS and the restricted number of RF transceivers, this work
examines the joint AS and PA problem on the DL of a linearly-
precoded XL-MIMO system. Differently from other papers
adopting AS strategy, a distributed BS signal processing archi-
tecture is considered and the AS procedures are characterized
in terms of the exchanged information between the processing
nodes. Furthermore, we extend part of the results of [17] with
the proposition of AS algorithms for XL-MIMO that use the
short-term fading coefficients instead of the long-term ones.
Additionally, we address the problem of joint AS and PA in
XL-MIMO subarrays using a decentralized RA algorithm. The
proposed RA algorithm uses the Sherman-Morrison-Woodbury
(SMW) formula to perform optimal power allocation (OPA) and
AS in a decentralized fashion.

The BS is constituted by multiple non-overlapping subarrays
with dedicated remote processing units (RPUs), which perform
independently channel estimation, precoding calculation and
RA, mainly AS and PA. Each subarray is equipped with a
fixed number of antenna elements and RF transceivers. Using
the ZF precoding, the optimization goal is to maximize the
SE subjected to the constraints of subarrays connections and
maximum transmitted power.

The contribution of this work is fourfold. i) Description
of a distributed transceiver design for XL-MIMO based on a
subarray switching architecture; ii) proposition of a centralized
procedure based on the evolutionary heuristic GA to perform
joint AS and PA to maximize the SE with subarray connection
and maximum transmitted power constraints; iii) proposition
of a distributed version of the GA procedure for joint AS and
PA which achieves performance tight to the centralized one but
with low-size coordination data and less number of executed
operations; iv) extensive analysis of the proposed procedures in
terms of number of symbols for training, coordination data size
and number of floating point operations per second (flops).

The numerical results corroborate the GA-based procedures in
achieving high performance, specifically in crowded XL-MIMO
applications. Additionally, the decentralized GA version offers a
good trade-off between performance, number of operations and
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Fig. . XL-MIMO system deployed inside a square cell with size L. The BS

is a ULA with M antennas divided into B subarrays of M} antennas each one.
The K users are randomly distributed at a distance in the range (0.17 L, L) from
the array.

coordination data size, outperforming the centralized procedures
by adopting proper settings.

The rest of the paper is organized as follows. In Section II is
described the system model, including the distributed subarrays
processing at the BS. Next, in Section III are described the
centralized and distributed GA-based optimization procedures
for joint AS and PA in XL-MIMO systems, while Section IV
discusses two feasible AS procedures adopted as a result of
decoupling the joint AS and PA optimization problem. Section V
examines the complexity of the proposed algorithms. Extensive
numerical results are discussed in Section VI. Final comments
and conclusions are provided in Section VII.

C. Notation

Boldface small a and capital A letters represent respectively
vectors and matrices. Capital calligraphic letters A represent
finite sets, and | 4| denotes the cardinality of the set .A. I,, denotes
the identity matrix of size n. {-}7 and {-} denote respectively
the transpose and the conjugate transpose operators. diag(-),
tr(-) and det(-) denote respectively the diagonal matrix, trace
and determinant operators. —pla — left — lceil-] denotes the
greatest integer operator. (Z) denotes the binomial coefficient.
CN (11, 0%) is a circularly symmetric complex Gaussian distribu-
tion with mean ;. and variance o2. E[-] denotes the expectation
operator.

II. SYSTEM MODEL

Consider the DL of a narrow-band multi-user XL-MIMO
system with the BS equipped with M antennas and N RF
transceivers serving K single-antenna users, as is depicted in
Fig. 1. During the DL, the BS uses 7, symbols to perform
channel estimation and 74at, Symbols to transmit the payload.
We assume that the time interval used to send the total DL

6715

Subarray B
1 2 M,

Switching stage |

Subarray 1
1 2 M,

| Switching stage | |

[RE1 | ... [RFN;]

Ch. estimation Ch. estimation

RPU RA RPU RA
Precoding Precoding

| CcPU |

Fig. 2. Diagram of the BS architecture for DL. The BS array is composed
by B subarrays containing M} antennas, N, RF transceivers and one RPU.
Additionally, the BS has a CPU for subarrays coordination.

symbols 7. = Nty + Ndata 1S less than the channel coherence
time.

The array in the BS is composed of B independent subarrays,
each with M, antennas and N, < M, RF transceivers. The
subarrays are equipped with a RPU to perform, in a distributed
way, channel estimation, precoding calculation and RA tasks,
specially AS and PA procedures. In addition, the BS has a central
processing unit (CPU) to coordinate the subarrays operation.
Fig. 2 depicts all the described BS blocks.

Assumption 1 (Subarray switching stage): A flexible switch-
ing stage is implemented in each XL subarray. This stage allows
every antenna of the subarray 7 to connect to any RF transceiver
of it. Results in [7] demonstrate that partially connected architec-
tures introduce lower insertion loss than fully-flexible matrices,
which allows the connection of any antenna in the entire array
to any RF transceiver.

We assume that each subarray has perfect knowledge of the
channel coefficients associated to its antennas. See [21] for
details on channel acquisition in distributed signal processing
architectures. Besides, we deploy the ZF precoder to decode
signals in each subarray. We adopt the technique in [21] to cal-
culate the ZF precoder with low interconnection traffic, splitting
the computations between the RPUs and the CPU.

A. Channel Model

In the XL-MIMO scenario, spatial non-stationarities arise due
to the large array physical dimensions and number of antenna
elements. Such non-stationarities are addressed in the adopted
channel model as the variation of the mean received power along
the array, as in [17], [22]. The path-loss coefficient associated
to the BS antenna m and the user k is defined as

Bm,k’ = QOd;fk (1)

where qq is the path-loss attenuation at a reference distance, d,y, 1,
is the distance between the antenna m and the user & and k is
the path-loss exponent.
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Let Ry € CM*M Ry = diag([B1x - Bark|T) be the ma-
trix with the long-term fading coefficients of the user k. The
channel vector of the user k is defined as

hy, = RZh) )

where hj € CM*! h} ~ CN(0,I,) is the short-term fading
vector. From the users channel vectors, the channel matrix H €
CMxK ig defined as

T
H = [h, hie| = [nf nf, | 3)
considering h,,, € C'*¥ as the channel vector with the coeffi-
cients associated to the antenna m.

During the DL, the BS activates a group of antennas repre-
sented by thesetS C {1,..., M} suchthat|S| < N.A partition
of the set S, i.e. {Sp}, Vb = 1,..., B, contains the index of the
selected antennas in the subarray b. This set is defined such
that |Sy| < N, Vb, meeting the adopted subarray structure. The
equivalent channel matrix of the active antennas is defined as a
row-wise submatrix of H, Hse CISIxK Similarly, the matrix
Hg, € CIS*K contains only the channel vectors related to the
active antennas in the subarray b.

Let D,, € {0,1}, YVm = 1,..., M be an indicator equal to 1
if the antenna m is active during the DL and O otherwise. These
indicators form the diagonal matrix D = diag([D; --- Dy/]7).
During the precoding and SE computations, it is required to
calculate the matrix product Hg Hs of the active antennas
channel matrix. Intended to enable this computation by the
distributed signal processing architecture, the Gramian matrix
is defined as in the following.

Remark 1 (Gramian matrix): Let G, = hﬁhm, VYm =
1,..., M be the Gramian matrix associated with the BS antenna
m. The set M, is defined for b=1,..., B as the group of
antennas in the subarray 0. The Gramian matrix associated to
the b-th subarray includes only the active antennas inside it, and
it can be written as

Gsb = H‘g,HSb = Z D, Gy,

meMy

“4)

Similarly, the array Gramian matrix considering only the active
antennas is defined as

M
Gs=HiHs = Z DG,

m=1

®)

An upper bound for the system performance considering the
active antennas in the set S, namely the DL sum-capacity, is
calculated by [14]:

1
Cppec = max log, det (IK + 2PH‘IS;IHS)
P o

z

1
= max log, det (IK + 2PGS) (6)

P op:
where o2 is the additive noise power, while P =
diag([p; --- px]) denotes the matrix with the allocated power

for each user. The powers pi, Vk =1,..., K are defined in
order to meet the total power constraint Zszl Pk = Pnax. The
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DL sum-capacity is achieved by the dirty paper coding (DPC)
precoder, which has prohibitive high-complexity for practical
implementations.

B. Downlink Signal
The data signal transmitted by the BS is defined as x € CSI*1,

(N

the ZF precoding matrix,

x = FP%s

where Fe CISI*K  denotes
calculated by

(®)

s=[s; --- sx|? denotes the vector of modulated data sym-
bols such that E[|[s;[3] =1, Vk=1,..., K and E[s}sy]
0, Vk # K'. The allocated powers in (7) are calculated in order
to meet the following power constraint

[P (HIHs) | =0 (PGS) = Pux )
Therefore, the entries of P depend on the active antennas set S
and the PA policy.

The signal received by the users in the DL is defined as y €
C Kxl1 ,

y :HgFP%erz

=Pis+z (10)
where z € CE*! 7z ~ CN(0, 021 ) denotes the additive noise
vector.

Given the ZF precoding design, the system SE is calculated
by

K
Pk
SE = 1 —
> log, (1 + 0-2) (1n
k=1 z
which is equivalent to the SE of K independent Gaussian

channels with received signal-to-noise ratio (SNR) equal to
pi/o2 Vk.

C. Optimal Power Allocation (OPA) Policy

The OPA policy is the one that solves the problem of maxi-
mizing the system SE at (11), subjected to the maximum power
constraint in (9):

K
.. Pk
maxi)mlze SE = kz_:l log, (1 + a§> (12a)
subject to  tr [P(H{ Hs) '] < Prax (12b)
pr>0,Ve=1,... K (12¢)

The optimization problem in (12) is equivalent to the well-
known PA problem on independent Gaussian channels. It has
an analytical closed-form solution derived by the Lagrange
multipliers method (water filling solution). The optimal power
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distribution is calculated by [32]:

pi = (n[(BEHS) ) —o?)

where (z)T = max(z,0) and y is a constant calculated by

13)

= % {Prax + oZtr [(HEHs) ']} (14)

If pr, = O for some user k, the PA problem including this user is
not feasible. For this reason, the k-th user is deactivated and the
power distribution is recalculated considering only the group of
the remaining active users. This process must be repeated until
a group of users which results in a feasible solution is found.

III. ALGORITHM FOR JOINT ANTENNA SELECTION AND
POWER ALLOCATION

The problem of jointly selecting the antenna-elements of the
BS and allocating appropriate power amounts to maximizing
the ZF SE given the constraints of maximum RF transceivers,
subarray connections, and maximum power is formulated as

K
ma%iflrjlize SE = glogz (1 + ig) (15a)
subjectto Y Dy <N, b=1,...,B (15b)
meMy
tr[P(H'DH) '] < Pyax (15¢)
Dy, e{0,1}, m=1,...,.M (15d)
pr >0, k=1,....K (15¢)

The objective function in (15a) is the system SE. The con-
straints (15b) are the subarray connections constraints, which
allow the activation of a maximum of /N, RF transceivers in each
subarray. Also, the constraint (15¢) ensures that the maximum
transmitted power is equal to or less than P, .. Moreover, the
constraints (15d) and (15e) define respectively the binary an-
tenna association variables and non-negative allocated powers.

Since D is binary constrained, the problem (15) constitutes a
non-convex combinatorial optimization problem. One approach
to solve (15) comprises two steps: firstly, determining the op-
timal active antennas set via exhaustive search assuming equal
PA; after that, given the result D* from the exhaustive search,
the allocated power matrix P* is calculated adopting the OPA
policy in (13).

The AS via exhaustive search considering the activation of all
the RF transceivers requires testing (1‘1\/{:) P candidate solutions,
a number that attains prohibitive dimensions in the XL-MIMO
regime. For instance, in a system with B = 8 subarrays equipped
with M, = 64 antennas and [N, = 32 RF transceivers, there is a
number of feasible solutions on the order of magnitude equal to
1046, Testing all these solution candidates in a timely manner is
impracticable. An efficient alternative to the exhaustive search
is to perform a guided search along the feasible set using an
intelligent metaheuristic procedure. In this way, a good quality
solution can be obtained in feasible time testing only a few
candidates.
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TABLE I
GLOSSARY OF THE GENETIC ALGORITHM TERMS

Parameter Description

Individual Candidate solution for the optimization problem
Population Set of candidate solutions for the optimization problem
Offspring Set of candidate solutions generated during an iteration
Gene One optimization variable of the candidate solution
Chromosome | Set of optimization variables of the candidate solution
Generation Genetic algorithm iteration

Fitness Objective function of the optimization problem

Score Value of the objective function for a candidate solution

A. Genetic Algorithm

One metaheuristic procedure adopted to solve many different
combinatorial problems in wireless communications is the GA.
This technique implements different search phases to efficiently
explore the feasible set and exploit the good candidates prop-
erties in order to find promising regions in the feasible sub-
spaces. Differently from exact optimization methods, evolution-
ary metaheuristics do not require convex objective functions or
constraints. In addition, the execution complexity can be fitted
to the available computational burden by adjusting the input
parameters and number of iterations. Despite the advantages,
the GA, as well as other metaheuristics, does not ensure finding
the optimal solution.

In general, GA solves efficiently a variety of optimization
problems [17]-[20]. Our implemented version of GA has at-
tained near-optimum solutions for the problem (15) in a com-
petitive time/complexity, owing to its competitive performance-
complexity trade-off. Besides, the GA comprises smart mecha-
nisms to balance exploration and exploitation of the search sub-
spaces, as well as avoiding local optima in complex cost surfaces.
Lastly, unlike single-state strategies, e.g. simulated annealing
and tabu search, the GA has a readily parallelizable algorithmic
structure, capable of providing fast convergence [33].

As the GA is a procedure inspired by principles of genetics
and natural selection, it inherited several terms from biology.
To simplify understanding, Table I contains a glossary of some
common GA terms adopted throughout this work. In the fol-
lowing, the implemented GA procedures, phases and variables
deployed to solve the problem (15) are briefly described.

Optimization variables encoding: The optimization vari-
ables of the problem (15) are the antennas state indicators
D,, and the users allocated powers pi. The powers p; are
determined by the OPA, eq. (13). Therefore, only the antennas
indicators should be encoded as individuals. Thus, the antennas
state indicators D,,, Ym = 1,..., M are defined as genes and
the vectors d, ;, € {0, 1}**! such that [d; ;] = Di, Ym €
My, b=1,..., B containing the optimization variables w.r.t.
each subarray represent the chromosomes, where ¢ is the in-
dividual index. Every individual is defined by a vector d; €
{O7 1}]\/1 x1 ,

T T

d; = [dT, dly| = [os Dy| 6)

Fitness function: The fitness function considered for the im-

plementation is the ZF SE defined in (11), with the power
distribution computed by the OPA policy.
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Algorithm 1: Mutation Procedure.

Algorithm 2: GA-RA.

Input: Crossover offspring P, , py,, B, My, Np
Output: Mutated offspring P,,

1 Py, 0

2 for d; € P. do

3 forb=1:B do

4 if rand uniform(0, 1) < p,, then

5 k < rand discrete uniform(1, M);

6 if [d; )];m == 0 and 29211 [dipli == Nb
then

7 L Go to line 5;

8 [Qi,b]m — ﬂip([gi,b]m);

9 | Pm < Pm U di;

The implemented GA contains the following phases: a)
elitism, b) tournament selection, ¢) crossover and d) mutation.
These phases require the definition of the parameters: population
size N, number of individuals for elitism N, number of tour-
naments N, crossover probability p. and mutation probability
Pm . BEach procedure is summarized in the sequel.

Elitism: The elitism aims to keep the best individuals of the
current generation without change. At every generation, the IV,
best individuals are chosen as the first individuals of the next
generation. Elitism ensures that the SE obtained with the best
AS indices of the GA iteration is always a non-decreasing value.

Tournament selection: During the tournament selection, the
individuals are pairwise randomly compared according to their
score values. The winners of the IV, tournaments become can-
didates for the crossover phase. The selection step compares the
sets of AS indices produced at each GA iteration according to
the SE achieved by them.

Crossover: The crossover phase aims to mix the chromosomes
of the tournaments winners in order to obtain new solutions.
This phase exploits the good properties of the current set of AS
indices. Two tournament winners, named parent 1 and parent
2, are randomly selected to generate two new individuals. Each
chromosome of child 1 has the probability p. of being inherited
from parent 1 and 1 — p. from parent 2. Considering child 2,
every chromosome has the probability p. of being inherited from
parent 2 and 1 — p, from parent 1.

Mutation: The mutation phase aims to add random small
changes at the offspring generated by crossover. This phase
promotes the variability among the set of AS indices, explor-
ing different regions of the feasible set. The chromosomes are
mutated with probability p,,, when one random selected gene
of the chromosome is flipped. To preserve the feasibility of the
solutions, the mutation phase is implemented by the scheme of
Algorithm 1. The set P, denotes the offspring generated during
the crossover, and P, is the offspring after mutation.

Convergence: There are several mechanisms to check the
GA convergence. Herein, the implemented algorithm has two
different criteria: the maximum number of generations 7y,ax
and the no improvement of the best score during the last Ti;a11
generations.

Il‘lpllt: va Nm Nsapcvp'rm Tmaxy Tstalh 37 Afba be H
Output: The best selected antennas set, D*
1 Py (Z);
2 Py + Po UN-AS(H) (Section IV-B);
3fori=1:N,—1do
4 L Po < Py Urand individual();
5 for t =0: T do
6 ,Pt+1, PS, Pc — Q);
7 Ptcmp — Py
8 for i =1: N, do Elitism
9

d. < argmax score(d;), d; € Piemp;
j
10 Piy1 Py U d;
11 L 7Dtemp — Ptemp\de;
12 for i = 1: N, do Tournament selection
13 ds,,ds, < rand(P;);
14 d; + argmax [score(ds, ), score(ds,)];
15 | Ps <+ PsUdsg;
16 for i =1: N, do Crossover
17 d.,,d., + rand(Py);
18 d,,,do, < 0y
19 for j=1: B do
20 if rand uniform(0,1) < p. then
21 L d, ;—d.
22 Qoz,j A ch,j;
23 else
24 L d,, ;—d,
2 4o, 5 < dey 5
26 77?c<—73’cUd01Ud02;

27 P < mutation(P,.) (Algorithm 1);

28 ’Pt+1 — P{,+1 @] Pm;
29 dj,, < argmax score(d;), d; € Pry1s

d;
30 if ¢ > T then Stall convergence criterion
31 dgtan < argmax score(d;), d; € P15
32 if score(d}, ) == score(dgan) then
3 | Break the loop;

34 D* « diag(df ,);
35 return D*;

Algorithm 2 summarizes the implemented procedure, named
genetic algorithm for resource allocation (GA-RA). The set
‘Po denotes the initial population, P; the population of the
generation ¢, Py the winners of the tournament selection and
Ptemp a temporary set for the elitism phase.

B. Quasi-Distributed Genetic Algorithm

The proposed GA-RA procedure requires the entire channel
matrix H knowledge at the CPU to compute the individuals
score values. Such requirement is unfeasible in the XL-MIMO
scenario due to the high bandwidth to transfer all the channel
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coefficients associated to thousands of antennas to the CPU. For
this reason, one solution that does not depend on the knowledge
of full CSI at the CPU is preferable.

One solution to avoid the requirement of full knowledge of
the H matrix consists of performing local AS at each subarray,
considering fixed the AS indices in the other subarrays. The
contribution of these fixed AS indices can be calculated pre-
viously by the CPU and transmitted to the RPUs with reduced
bandwidth and processing power resources. Therefore, each sub-
array can selects its antennas using the GA. The proposed quasi-
distributed genetic algorithm for resource allocation (DGA-RA)
implements this concept and is presented in the following.

Analyzing the fitness function of the GA-RA procedure in
(11), one can observe that it depends on the inverse of the array
Gramian matrix, Gg' = (HY Hg)~'. The computation of G5’
can be done from the subarrays Gramian matrices by

B -1
Ggl = <Z GSb)
b=1

Therefore, the CPU can compute the inverse of the array
Gramian matrix to calculate the GA-RA fitness function only
with the subarrays Gramian matrices calculated locally at the
RPUs. Each subarray Gramian matrix has K 2 entries, while the
channel matrix has M K. Therefore, calulating the contribution
of the selected antennas at the CPU using the Gramian matrix
strategy requires less bandwidth than by using the centralized
strategy if BK? < MK holds.

Based on (17), the DGA-RA procedure operates as follows.
Initially, each subarray selects an active antennas set based on
a simple criterion, such as the norm-based antenna selection
(N-AS) described in the subsection IV-B. Then, the subarrays
compute their Gramian matrices based on the selected set and
transmit them to the CPU. At the CPU, the array Gramian matrix
is computed by (17) and transmitted back to the subarrays.
Afterwards, every subarray performs local antenna selection by
a GA implementation, considering that the other subarrays are
fixed. To evaluate the fitness function in eq. (11), the subarrays
compute the array Gramian inverse matrix adopting the SMW
formula for matrix inversion, as follows.

Remark 2 (SMW formula): The SMW formula [34] gives the
inverse of the matrix (A +UV#) from A~!, U and V by
computing:

a7

(A+UVH) ' = A A 'TU(T+VHAA'U) VHA
(18)

Adopting this formulation, the array Gramian matrix can be

calculated at the subarray b during the iteration n by letting

Al = (Gg”-”)” : (19)

o= [-(me)" (me)"]. e
(n-1)

vH — [HI%’;) ] 7 ©2))
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Fig. 3. Proposed DGA-RA procedure steps with coordination between the
CPU and the RPUs. The superscript (n) denotes the n-th iteration.

where the superscript (n) denotes the variable during the n-th
iteration of the DGA-RA procedure (proof in Appendix IX).

After performing local AS, each subarray transmits their
achieved SE values to the CPU. The CPU updates the AS indices
of the subarray that has achieved the maximum SE values at
the iteration n. Then, the CPU requests the subarray Gramian
matrix of the updated subarray, and recalculates the inverse of the
array Gramian matrix, ( ng))’l. The process can be executed
iteratively following the scheme depicted in Fig. 3.

The GA implemented in the DGA-RA procedure is similar to
that one described in the Algorithm 2, except for some details at
the optimization variables encoding and the crossover phase.
About the individual encoding, the optimization variables at
each subarray are reduced from M to My, since local AS is per-
formed at each RPU. In addition, as the optimization variables
consider only one subarray at each RPU, the individuals have
two chromosomes: one represented by the first M, /2 genes, and
another composed by the remaining genes.

Due to this new chromosome definition, one further procedure
after the crossover phase is required to preserve the feasibility
of the solution. The chosen method is to deactivate antennas of
individuals with more than /N, antennas in a random fashion
until they become feasible.

IV. ANTENNA SELECTION PROCEDURES

Two techniques to perform antenna selection are presented in
the sequel, the DL sum-capacity maximization antenna selection
(SCMAX-AS) and the N-AS method, proposed respectively
in [14], [7]. The goal of solving only the antenna selection
problem is to decouple the two RA problems associated to (15)
aiming at obtaining tractable formulations.

A. Antenna Selection for DL Sum-Capacity Maximization

Firstly, we analyze the equal power allocation (EPA) strategy,
ie. P = %I K, intended to obtain a manageable optimization
problem. The problem of selecting the set of active antennas in
order to maximize the DL sum-capacity with the constraints of
maximum number of RF transceivers and subarray connections
is formulated as [14]:

P)III‘ X
maximize  Cgpy = log, det (I o+ X ygH DH) (22a)
D Ko?
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subject to Z Dy <Ny, b=1,...,B (22b)
meMy
Dnme{0,1}, m=1,....M (22¢)

Despite the concavity of the objective function in (22a) [13],
the problem (22) is not convex due to the binary constraint in
(22¢). Hence, we define a convex relaxation of (22) by taking
the variables D,, in the range (0, 1). This new problem, which
can be solved with convex optimization tools, has the constraint
(22c¢) replaced by

0<Dn<1, m=1,....,M (23)

Notice that the solution of the convex relaxation results in non-
binary values for the active antenna indicators D,,, which is
outside the original problem domain.

One method for performing the antenna selection by solving
the convex relaxation is to activate the /N, antennas with the
highest D,,, values at each subarray. This procedure is named in
this work as SCMAX-AS, and is followed by the OPA policy in
eq. (13). This AS procedure gives near-optimal results, except
for N < M [14]. Therefore, in a XL-MIMO system where
the number of available RF transceivers is much less than the
array antennas, the achieved system SE with the SCMAX-AS
algorithm will be sub-optimal.

B. Norm-Based Antenna Selection (N-AS)

The N-AS procedure focus on selecting the subset of NN
antennas with the highest channel vector norm values [7]. We
adopt this method to initiate the population of the GA-based
procedures due to its low computational cost. The N-AS method
solves the optimization problem formulated as

M
max]ijmize II = Z Db, |13

(24a)
m=1
subject to Z Dn<N,, b=1,...,B (24b)
meMy
Dnef{0,1}, m=1,....M (24c¢)

where the objective function consists of the sum of the squared
norms of the channel vectors associated to the selected antennas.
The problem (24) can be solved quickly by selecting the NN
antennas with the highest channel vector norms at each subarray.
After selection, the PA is performed by the OPA policy in (13).

V. COMPLEXITY ANALYSIS

The complexity of the presented procedures is evaluated in
terms of the number of symbols required for channel acquisition,
the size of the coordination data exchanged between the RPUs
and the CPU, and the number of flops during execution.

A. Training

In the following, we analyze the procedures in terms of
training symbols for CSI acquisition. The length of the mutually
orthogonal pilot signals used to estimate the channel vectors at
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TABLE II
COORDINATION DATA EXCHANGED BETWEEN THE RPUS AND THE CPU

Procedure Implementation Data type Data size
GA-RA Centralized Channel matrix MK
SCMAX-AS [14] | Centralized Channel matrix MK

N-AS [7] Totally distributed | — -

DGA-RA Quasi-distributed Gramian matrix | (B + Nj) K2

the BS depends on: a) the number of users; b) the number of
available RF transceivers; c¢) the number of antennas at the BS.

The number of symbols to acquire the entire channel matrix,
required in all the presented procedures except in the N-AS, is
K — plx — left — lceil %] Particularly, the N-AS algorithm
requires only the knowledge of the channel vector norms for
selection. For this reason, the N-AS can be implemented with-
out explicit channel estimation, supported by physical power-
meters [21]. With this implementation, the N-AS requires a total
of 27K symbols to operate. From this total, & symbols are
required to estimate the norms of the channel vectors, and the
remaining K symbols are used to estimate the channel vectors
associated to the selected antennas.

B. Coordination Data Size

The coordination data is defined as the data originated at the
RPUs that is required at the CPU during the RA procedures.
Determining the coordination data size is crucial since it can
grow tremendously in the XL-MIMO scenario. In practical im-
plementations, techniques as data compression helps alleviating
the high interconnection bandwidth associated to the coordina-
tion data. However, such kind of consideration and optimization
are out of the scope of this work.

Table II contains the coordination data size associated to the
considered RA procedures, detailing the type of required data in
each one. The GA-RA and SCMAX-AS procedures require the
entire channel matrix at the CPU, while the DGA-RA one relies
on the subarrays Gramian matrices. On the other hand, the N-AS
procedure does not require any CSI knowledge at the CPU for
antenna selection purpose, being the most appealing technique
in terms of the coordination data size.

C. Number of Flops

The third complexity metric is the number of flops executed
by each procedure. The complexity analysis for the N-AS and
the GA-based AS algorithms are as follows. The SCMAX-AS
procedure is not considered due to the high complexity associ-
ated with computing the number of executed operations by the
convex optimization solver.

N-AS: The operations executed at each subarray on the N-AS
procedure consists of calculating the channel vector norms then
sorting the obtained values to get the IV, largest ones. Assum-
ing that the sorting operation has the complexity of the order
My, log(My), the per-subarray flops for N-AS is

Cxoas = Mp(2"K — 1) + My log(My) (25)

GA-RA: The complexity of the GA-RA method is dominated by
the number of operations required for the evaluation of the GA
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TABLE III
SIMULATION PARAMETERS

[ Parameter [ Value |
Cell size L =30m
# Users K € [1,217]
Maximum transmitted power Prmax = 230 uW
Path-loss at the reference distance | go = —35.3 dB
Path-loss exponent K=3
Noise power 02 = —96 dBm

Uniform Linear Array Setup

# Antennas M € [32,2048]
# RF transceivers N € [64,256]
# Subarrays B =1{2,4,8}
# Antennas per subarray M, =M/B

# RF transceivers per subarray N, = N/B

fitness function, eq. (11). At the first iteration, the algorithm
evaluate the fitness function for N, individuals. During the
remaining iterations, (" — 1)(N, — N.) fitness function evalu-
ations are done, where 7" denotes the total number of generations.

As the OPA policy involves simple computations, the com-
plexity of the fitness function is reduced to the inversion of the
array Gramian matrix. The flops to compute the array Gramian
matrix inverse is derived in Appendix XI. From this result, the
total flops for the GA-RA algorithm is

Coara = [T(N, — N.) + N.] (;K3 +2NK? — K2> (26)

DGA-RA: For the DGA-RA procedure, a similar approach
to the one used for GA-RA can be followed. Despite that, the
inverse of the array Gramian matrix is computed by the SMW
formula, which is implemented with a different number of flops.
The number of flops to obtain the inverse of the array Gramian
matrix in the DGA-RA procedure is derived in Appendix XIII.
Taking into account these differences and the fact that the DGA-
RA procedure runs over /V;; iterations, the total number of flops
is given by:

CDGA—RA = Nit [T(Np - Ne) + Ne] X

7
X 5N,f +2°K3 + N4 K — 1) +

+ K?(4N, —2) + N}(1 - 2°K) + K| (27)

VI. NUMERICAL RESULTS

The numerical evaluations of the proposed methods as well
as the benchmark techniques are presented in this section. The
simulation system parameters are given in Table III. The users
are randomly located inside a square cell of size L, and the
BS is equipped with a uniform linear array (ULA) positioned
on one side of the cell, as depicted in Fig. 1. Additionally, the
users are random uniformly located at a distance in the range
(0.17 L, L) from the array. Although the results in the following
are obtained for the ULA, they can be easily extended to other
array form factors, such as the uniform planar one.

Before comparing the proposed techniques, it is necessary to
tune the GA-RA and DGA-RA GA input parameters in order to
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TABLE IV
GENETIC ALGORITHM PARAMETERS

s e Parameter value
Symbol | Description GA-RA  DGA-RA
Np Population size 80 80
Ne Elitism individuals 8 8
N Tournaments 36 36
Pe Crossover probability 0.33 0.35
Pm Mutation probability 0.13 0.36
Trmax Maximum generations 103 102
Tstan Stall generations 300 30

obtain a suitable performance-complexity trade-off. The input
parameter N, p. and p,, values are selected using the iterated
local search algorithm [35]. The number of individuals for
elitism is equal to 10% of the population size, and the number
of tournaments is defined in order to fill the population after
the elitism phase. Additionally, the stall convergence criterion
parameter is approximately 30% of the maximum number of
generations. The selected parameters for the GA-based proce-
dures are listed in Table IV. Notice that the DGA-RA procedure
is set to run 10 times less generations than the GA-RA, since
the number of optimization variables decrease from M at the
GA-RA to M, in the DGA-RA procedure.

In Fig. 4, the quality of convergence of the GA-RA procedure
is corroborated varying the parameters N,, p. and p,, inde-
pendently. Each surface is computed by averaging the achieved
scores over 20 realizations. These results on the best and aver-
age SE scores among the generations ¢ confirm the parameter
values adopted in Table IV, while demonstrating a relative low
tuning sensibility of the GA-RA convergence to the three input
parameters.

Fig. 5 depicts the system SE achieved by the proposed RA
procedures versus the number of available RF transceivers. In
addition to the proposed solutions, the SE attained by random
AS scheme and using all the M antennas are plotted as the
lower and upper performance bounds, respectively. The results
consider M = 512, B =8, K =50 and Ny; € {5, 16} for the
DGA-RA procedure. Observing the Fig. 5, one realize that the
GA-based procedures achieve better SE results than the other
ones. In the sequence, there are respectively the SCMAX-AS
and N-AS. As expected, all the performance curves are upper
and lower bounded by the SE achieved using full-array ZF and
random AS, respectively. The SE gap between the procedures
decreases as the number of RF transceivers increases. Analyzing
the GA-based procedures, the DGA-RA achieves SE values tight
to the GA-RA running with only five iterations. However, setting
Niy = 16 makes the DGA-RA system SE values outperform
marginally the ones obtained by the GA-RA procedure. There-
fore, the quasi-distributed procedure can achieve a performance
comparable, or even better, to the fully centralized approach by
adopting a sufficient number of iterations.

In the following, Fig. 6 depicts the system SE achieved by the
proposed RA procedures versus the number of users. These nu-
merical results consider M = 512, B =8, N = 256 and Nj; €
{5, 16} for the DGA-RA procedure. For better understanding,
let £ = K/N be the system effective loading factor. For all the
proposed procedures, firstly the SE increases with /', assuming
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a decreasing behavior after a peak. This is due to the reduction of
spatial degrees of freedom increasing the system loading factor,
typically observed in linearly precoded systems [36]. Comparing
the procedures, all of them get comparable SE values for a low
loading factor. However, for high loading factor values, typically
L = 0.6, the GA-RA and DGA-RA procedures get substantial
better results. Again, the DGA-RA outperforms the GA-RA in
terms of SE by setting V;; = 16. Combining the results in Figs. 5
and 6, we conclude that the GA-based procedures perform with
higher SE gains over the other available AS schemes [7], [14]
in crowded XL-MIMO scenarios, i.e., when the loading factor
is high, £ > 0.25.

A. Complexity Analysis

The numerical results in the following cover the computa-
tional complexity of the proposed procedures. In Fig. 7(a) the
coordination data size of the centralized procedures (GA-RA
and SCMAX-AS) and the DGA-RA one versus the number of
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Fig. 8.  Flops per processing unit of the proposed GA-based procedures vs the
number of (a) available RF transceivers and (b) users. B = 8 and, when it is not
specified, K = 50 and N = 256.

users is illustrated. The curves are evaluated by the expressions
in Table II. The result considers M € {512,2048} and, for the
DGA-RA procedure, Nj; = 16 and B € {2,4,8}. Comparing
the RA approaches when the number of users is low, the quasi-
distributed one get lower coordination data sizes than the central-
ized procedures. For higher numbers of users, the coordination
data size associated to DGA-RA acquires larger values than the
obtained by the centralized procedures. This point of inversion
of behavior depends on the numbers of antennas, subarrays and
iterations w.r.t. the DGA-RA procedure. It is worth mentioning
that the coordination data size grows quadratically with K for
the DGA-RA procedure, while it grows linearly with K for the
centralized RA procedure.

Fig. 7(b) depicts the coordination data size of the centralized
procedures and the DGA-RA one versus the number of antennas
in the BS. The results consider X = 50 and, for the DGA-RA
method, Ny, € {5,16}and B € {2,4, 8}. The coordination data
size grows linearly with M in the centralized procedures, while
for the DGA-RA procedure, it does not depend on M. In fact,
this is the primary aim for choosing a distributed RA technique in
XL-MIMO, in which the BS is equipped with an asymptotically
high number of antennas.

The next results are related to the complexity in terms of
flops. Fig. 8(a) illustrates the number of flops per processing
unit of the GA-based procedures versus the number of available
RF transceivers. The curves are evaluated by the eqs. (26)
and (27). Such results consider KX = 50 and, for the DGA-RA
procedure, B = 8 and Ny, € {1, 5, 16}. For low numbers of RF
transceivers, the values of flops for the DGA-RA procedure
are lower than the GA-RA algorithm. Again, after a point of
inversion of behavior, the values of flops for GA-RA get lower
than the ones for the quasi-distributed procedure. This point of
changing of behavior decreases as N, increases.

The curves with the number of flops per processing unit of the
GA-based procedures versus the number of users are depicted in
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Fig. 8(b). This result considers /N = 256 and, for the DGA-RA
procedure, B =8 and N, = {1,5,16}. For low numbers of
users, the values of flops of the GA-RA procedure are lower
than the ones get for the DGA-RA. However, this behavior
inverts quickly, and the gap between the values of flops for both
centralized and distributed procedures becomes constant. This
constant behavior for large K is due to the fact that both eqgs.
(26) and (27) grow asymptotically with K.

VII. CONCLUSION

This work proposes a subarray switching architecture for the
BS antenna array, while examining the problem of joint AS and
PA optimization aiming at maximizing the SE of XL-MIMO
systems with limited number of RF transceivers. Two GA-based
near-optimal and low-complexity procedures are proposed. One
is the centralized GA-RA, designed to operate with the entire
channel matrix available at the CPU. The other is the quasi-
distributed DGA-RA, based on the subarrays Gramian matri-
ces. Both evolutionary metaheuristic optimization methods are
analyzed in terms of achieved SE, coordination data size and
flops, and compared with benchmarks, including two procedures
from the literature, the SCMAX-AS and the N-AS followed by
optimal PA. Numerical results corroborate that the GA-based
AS and PA procedures achieve high SE gains compared to
the selected benchmarks, particularly in crowded XL-MIMO
scenarios, i.e., when the effective loading factor £ > 0.25. At
the same time, the distributed DGA-RA method can outperform
the other procedures with low-size coordination data and low
computational complexity by taking the appropriate system
operation settings.

APPENDIX A
LocAL COMPUTATION OF THE INVERSE OF THE ARRAY
GRAMIAN MATRIX VIA THE
SHERMAN-MORRISON-WOODBURY FORMULA

To compute the array Gramian matrix at the subarray b, the
RPU must follow these two steps. Firstly, remove the contribu-
tion of the selected antennas at the subarray b at the iteration
n — 1. Then, add the contribution of the selected antennas at
the iteration n. Therefore, it needs to compute the inverse of the
array Gramian matrix by the expression

—1 —1
(ng)) _ (Gén—l) B Ggrbz—l) + ng))

b

(28)

which evaluation would be straightforward if all the terms were
available at the subarray.

However, the subarray needs to compute (Gk(gn))‘1 knowing

only (G™Y)~1 and the local channel vectors, i.e. h,, Ym €
M,, for the subarray b. Writing the subarray Gramian matrices
of (28) in terms of the local channel matrices results in

n—1 n
- Géb ) + Géb)

_ -\ 11(n-1) W\ 15(n)
= (") mg s ()
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TABLE V
FLOPS INVOLVED ON THE SHERMAN-MORRISON-WOODBURY FORMULA
COMPUTATION
Symbol | Expression | Number of flops
Q: VHAT 2N, K2 — N, K
Q2 I1+QU 2NZK — NZ + N,
Qs Q! 7/3N}
Qq UQs 2NZK — Ny K
Qs I-QuQ1 | 2N K?2 -~ K2+ K
Qs A~1Qs 2K3 — K?
(n—1)

H H
— (n—1) (n) Sy,
= [— (B Hy, am | @

Sp

From (28) and (29), it is possible to define the SMW formula
variables, A~!, U and V¥, in terms of the available information
at the subarray as the egs. (19), (20) and (21), respectively.

APPENDIX B
FLoPS TO COMPUTE THE INVERSE OF THE ARRAY GRAMIAN
MATRIX VIA THE CHOLESKY DECOMPOSITION

Initially, the computation of the array Gramian matrix is
done by solving the product in (5), which costs 2" K> N — K?
flops [34]. Afterwards, define the Cholesky decomposition of
the array Gramian matrix as

Gs=LL"Y (30)

where L is a lower triangular matrix. The computation of L can
be done with K /3 flops [34]. Then, each column of the inverse
of the Gramian matrix can be computed solving the set of linear
systems below by backforward substitution,

LLx=¢;, Vi=1,... K (31)

where e; denotes the canonical basis vector, i.e. a row vector
with all entries equal to 0, except the entry ¢ which is equal to 1.
Each linear system can be solved with 27 K? flops [34], totaling
2" K3 flops for all the columns of Ggl . Therefore, the total flops
for the array Gramian matrix computation and inversion is equal
to

7
Cehol. = gK3 +2NK? - K*? (32)
APPENDIX C
FLOPS TO COMPUTE THE INVERSE OF THE ARRAY GRAMIAN
MATRIX VIA THE SHERMAN-MORRISON-WOODBURY
FORMULA

To count the flops to compute the matrix inversion by the
SMW formula, the eq. (18) is decomposed in six parts. The
computations involved in each part and their respective flops are
organized in Table V. The flops in Table V are counted assuming
that the contribution of the selected antennas during the previous
iteration is removed. Such assumption is reasonable since the
expression in (28) can be done sequentially, by keeping only the
terms —Gggfl) or Gg) at a time.

All the parts include only simple matrix multiplications and
sums, except for the part Q3. This part can be efficiently com-
puted by the Cholesky decomposition approach followed by the
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backforward substitution procedure described in Appendix XI.
Therefore, the total flops required to compute the inverse of the
array Gramian matrix via the SMW formula is equal to

7 y -
Csmw = gN,§+2 K>+ N}(4K —1)

+ K*4N, —2) + N}(1-2°K)+ K (33)
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Joao Henrique Inacio de Souza, Taufik Abrdo

Abstract—The cellular internet-of-things (IoT) wireless net-
work is a promising topology to provide massive connectivity
for machine-type devices. However, designing grant-free ran-
dom access (GF-RA) protocols to manage such connections
is challenging, since they must operate in interference-aware
scenarios with sporadic device activation patterns and shortage
of mutually orthogonal resources. Supervised machine learning
models have been provided efficient solutions for non-orthogonal
preamble design, activity detection, as well as non-coherent data
detection in scenarios with massive connectivity. Considering
these promising results, in this work we propose two deep
learning (DL) sparse support recovery algorithms for activity
detection in random access (RA) communications, one based
on the deep feedforward network model, and another based
on the convolutional neural network model aiming to deploy
GF-RA protocols. Differently from other works, we investigate
the impact of the type of sequences for preamble design on
the activity detection performance. Our results reveal that
preambles based on the Zadoff-Chu sequences, which present
good cross-correlation properties, achieve better performance
with the proposed algorithms. Besides, we demonstrate that our
DL algorithms achieve performance comparable to state-of-art
techniques with extremely-low computational complexity.

Index  Terms—Massive  machine-type = communications
(mMTC), random access protocols, grant-free access, deep
feedforward networks, convolutional neural networks.

I. INTRODUCTION

The massive machine-type communication (mMTC) ser-
vice will provide full connectivity for internet-of-thing (IoT)
applications in cellular wireless networks. The machine-type
devices have sporadic activation patterns, transmit small pay-
loads with low-complexity network hardware and are powered
by short lifetime batteries. At the same time, they appear
as increasing massive populations distributed over wide ar-
eas. All these characteristics combined impose challenges
to provide connectivity, principally in regarding to network
access. The limited channel coherence time and the high
number of devices prohibit the design of mutually-orthogonal
preamble sequences. Operating with fewer preambles than
devices result in resource contention and network collision,
which increases the access delay due to retransmissions. On
the other hand, non-orthogonal preambles reduce the number
of collisions, at the cost of introducing interference among
the active devices and degrading the system performance [1].

This work was supported in part by the Coordenacdo de Aperfeicoamento
de Pessoal de Nivel Superior - Brazil (CAPES) - Finance Code 001 and in
part by the National Council for Scientific and Technological Development
(CNPq) of Brazil under Grant 310681/2019-7.

J. H. I. de Souza and T. Abrdo are with the Electrical Engineering Depart-
ment, State University of Londrina, PR, Brazil. E-mail: joaohis @outlook.com;
taufik @uel.br.

The grant-free random access (GF-RA) is an alternative to
provide connectivity dealing efficiently with the interference
generated by the non-orthogonal preambles, while keeping a
low network access delay [2].

Methods for sparse signal processing are broadly employed
to cope with the interference and enable GF-RA procedures.
These techniques are suitable for the typical mMTC scenario
due to the sparse nature of the signals generated by machine-
type devices. Specifically, we are interested in the sparse
support and signal recovery methods. Sparse support recovery
aims to estimate the indices of the active devices during a
random access slot transmission. In contrast, sparse signal
recovery is employed for channel estimation or data detection.
Approaches to perform sparse support and signal recovery are
classified in compressed sensing (CS)-based, covariance (CV)-
based [2] and, more recently, machine learning (ML)-based.

The sparse support and signal recovery based on ML
approaches have presented results which outperform sub-
stantially the other two CS-based and CV-based techniques,
both in performance and computational complexity. These
methods have extremely-low run time at the cost of an intense
off-line training phase to learn the neural network weights.
Furthermore, the universal approximation theorem states that
properly-designed neural networks are capable of approximate
any Borel measurable function with an arbitrary non-zero
amount of error [3].

A. Literature Review

We provide an outline of the literature on sparse support
and signal recovery applicable to GF-RA protocols. The
approximate message passing (AMP) algorithm from the CS
literature is present in many recent contributions for activity
detection and channel estimation purpose [4], [S]. Specifically,
the authors in [5] propose a non-coherent scheme that embed
information bits into the devices preamble sequences, allowing
joint activity and data detection. Despite the positive results
involving the AMP algorithm, its dependence on statistical
channel information represents a technical difficulty for prac-
tical implementations.

Iterative methods using the empirical covariance matrix
of the received signal are used for activity detection in [6].
The authors study two low-complexity algorithms for activity
detection in massive MIMO unsourced random access. Despite
the scheme being non-coherent, the computational complexity
is still high owing to the iterative nature of the detection
algorithms.

When it comes to ML methods, we can separate them as
model-driven and data-driven approaches. The model-driven



approaches are networks designed to mimic the detection
process of existing sparse support recovery algorithms. On the
other hand, data-driven approaches are conventional network
architectures trained to learn the inverse mapping from noisy
received symbols to the original transmitted signals. Model-
driven approaches obtained by unfolding the AMP algorithm
and variations are given in [7], [8]. Additionally, the authors in
[9] parameterize the iterative shrinkage thresholding algorithm
(ISTA), implementing a recurrent neural network (RNN) to
perform joint activity detection and channel estimation. The
devised RNN outperforms the classic ISTA. On the matter of
the data-driven approaches, we have the network of [10] which
performs active device detection in non-orthogonal multiple
access (NOMA), while the scheme of [11] is capable of adjust
dynamically its number of layers for sparse signal recovery.
Specially, in [12] a deep auto-encoder for jointly design the
preamble matrix and the activity detection algorithm is devel-
oped. The proposed approach achieves a much lower error rate
than classic methods with lower computational complexity,
due to the efficient joint design. The results are extended to
the massive MIMO receiver in [13].

The authors in [14] developed a framework to recover sparse
signals from noisy measurements in imaging applications
using the convolutional neural network (CNN). The scheme
learns both the representation for signals and the inverse map-
ping function from measurement vectors. Compared with the
conventional densely connected networks, the convolutional
layers have as advantage the sparse connections between the
neurons and parameter sharing. The scheme in [14] presents a
good tradeoff between the reconstruction time and probability
of successful signal recovery, approximating the solution of
state-of-art algorithms in a much lower run time.

B. Contributions

We develop two deep learning (DL) algorithms for sparse
support recovery, used for efficient activity detection in
machine-type GF-RA protocols. The networks are subjected
to an off-line training with the backpropagation algorithm
and a representative data set to learn the weights in order
to obtain accurate activity detection. The algorithms, which
inputs are the received symbols during the random access slot,
are designed using a deep feedforward network (DFN) with
densely connected layers, and also a CNN built on stacked
convolutional layers.

Contributions: To our knowledge, it is the first time that a CNN
is used for activity detection of machine-type communication
devices. Besides, unlike works in the recent literature that
use model-driven approaches [7]-[9], we use a data-driven
approach. We extensively describe the architecture of the
networks, presenting the procedures for parameter tuning and
network training. Then, we conduct experiments to evaluate
the performance of the activity detection algorithms in terms of
error rate and computational complexity. Differently from [12],
we focus on a broad analysis of the types of error occurred
during activity detection, as they have different impacts on the
system performance according to the application. Additionally,
we evaluate the algorithms with three kinds of preamble

sequences: Gaussian and Bernoulli random sequences, as well
as Zadoff-Chu (ZC) sequences [15], which present good cross-
correlation properties. The numerical results reveal that the DL
algorithms achieve accurate activity detection with extremely-
low computational run time owing to the networks architec-
ture. Specifically, our CNN-based activity detection scheme
has its performance improved with the ZC, thanks to the good
cross-correlation properties of ZC sequences. The extensive
numerical results corroborate both the performance gains and
improvements on the computational complexity attained by
the proposed algorithms when compared with the reference
methods.

II. SYSTEM MODEL

In this section, we describe the system model, as well as
devise the activity detection problem. We consider the uplink
of a narrow-band system constituted by one cell with K
machine-type devices served by a single-antenna base-station,
as Fig. 1 depicts. These devices access the network with
probability p, < 1. For this reason, the number of active
devices is much less than the total in the cell.

During the random access slot, the active devices transmit
unique preamble sequences. These sequences identify the
devices and are used to performing activity detection at the
base-station. The preamble sequences have a length of L < K
symbols due to the limited channel coherence time. For this
reason, it is impossible to design mutually-orthogonal sets
of preambles. In our work, we consider three types of non-
orthogonal sequences for the preambles. The non-orthogonal
sequences result in interference on the transmitted signal by
the set of active devices during a random access slot. Details
on the used sequences are given in the next subsection. The
preamble sequences are defined by the vectors a;, € CE*! for
k =1,...,K, and are normalized such that ||a;||3 = L,Vk.
The preamble matrix A € CL*K which is known at the base-
station, contains in its columns the preamble sequences of all
the K devices in the cell.

Let ap € {0,1} for £ = 1,..., K be an activity state
indicator of the device k, which is equal to 1 if the device
is active and O otherwise. We consider that the probability
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Figure 1. System diagram with an activity detection scheme based on a deep
learning algorithm and the random access slot.



of each device being active follows a Bernoulli distribution,
ie. ap ~ Po,(u) = (1 = pa)d(u) + pad(u — 1),Vk, where
Day, (1) is the probability mass function (PMF) of ay, and d(u)
is the Dirac delta function. The vector with the activity state
indicators of all the K devices is named activity descriptor,

ak]” (1)

The channel links between each device and the base-station
follow the Rayleigh fading model, with channel coefficients
associated to the device k defined by hy ~ CN(0,1).

The received signal at the base-station during random access
slot is equal to the superposition of the preambles transmitted
by each active device, which is written as

a:[al

K

y = ahiag +z )
k=1

where z ~ CN (0,021 is the additive white Gaussian noise.

Letting x = [aihy - aKhK]T allows us to write the
compact form of the received signal

y=Ax+1z 3)

The goal of the activity detection problem is to determine
the set of active devices from the received signal y and the
preamble matrix A. This is equivalent to finding the index of
the non-zero entries of the vector x, namely the support of x,

supp (x) = {k € Ny |z, # 0} 4

As the number of active devices is much less than the
total number of devices in the cell (sporadic activation, i.e.
Do < 1), x has a sparse structure. For this reason, the
problem of finding the support of x from y and A can be
cast as a sparse support recovery problem.

The sparse support recovery problem is an object of study
of the compressed sensing field, and have been addressed in
many works using different approaches, e.g. see [16] and the
references therein. In our work, the aim is to develop two DL-
based algorithms for sparse support recovery in the context of
activity detection for massive machine-type communications.
We demonstrate that a DL algorithm which inputs are the
real and imaginary parts of the received signal is sufficient
to perform activity detection efficiently.

A. Non-orthogonal Sequences

The preamble sequences play a key role in the activity
detection problem, as they dictates the interference levels on
the transmitted signal by the active devices during a random
access slot. In the context of sparse support recovery using
CS techniques, it is common to use preambles generated by
sampling random distributions. However, we show that using
deterministic sequences with good correlation properties in a
DL technique achieves good activity detection results. In the
following, we present suitable types of sequences used in our
work.

Random Sequences. We use two types of random sequences
for the preambles. Random sequences are useful, specially in

cases where the number of mutually orthogonal preambles
is not sufficient for all devices, e.g. in crowded mMTC
applications, because it is easy to generate large amount
of unique preambles. Additionally, matrices generated by
sampling sub-Gaussian random distributions (e.g. Normal and
Bernoulli) satisfy, with high probability, the restricted isometry
property (RIP), a necessary condition to guarantee the signal
reconstruction of many CS algorithms [17]. The first type
of random sequence is obtained by sampling a circularly-
symmetric complex Normal distribution with zero mean and
unitary variance:

@3] ~ CN(0,1) )

fork=1,...,Kand [ =1,..., L. We name this type of se-
quence as Normal. In order to met the preamble normalization
presented previously, we scale the Normal preamble with the
factor:

~

aj = ag (6)

a3
The second type of random sequence type is the Bernoulli.
The Bernoulli sequences are real two-valued sequences ob-
tained by sampling a symmetric random distribution of the
type
1 1
[a}]; ~ ps(u) = 5(5(11 +1)+ 55(u -1) 7

for k =1,...,K and | = 1,...,L. As each entry of the
Bernoulli sequence has norm equal to 1, normalization is not
required.

Zadoff-Chu Sequences. The ZC sequence is a type of
polyphase sequence which entries are defined by [15]:

jmr

L(l—l)zyl_L...,L 8)

&) = exp {

where j = v/—1and r € {1,..., L—1} is a number relatively
prime to L named the sequence root. A ZC sequence has
the ideal auto-correlation property, i.e. its auto-correlation
value is equal to zero for all shifts other than zero. For this
reason, a sequence and its shifted versions comprise a set
of mutually-orthogonal sequences. The ideal auto-correlation
property holds only for sequences generated by a single root.
On the other hand, sequences generated by different roots
have constant cross-correlation equal to /L if the difference
between the roots is relatively prime to L [18]. Therefore,
a set of non-orthogonal sequences with a three-valued cross-
correlation function can be generated by taking the shifted
versions of multi-root ZC sequences. We use this set of non-
orthogonal sequences to generate the ZC preambles. The ZC
preambles are defined by the sequences

& VreR ©)

and its shifted versions, considering R C {1,...,L — 1} the
set of chosen roots. Given the number of devices in the cell and
the preamble length, the minimum number of roots to generate
unique preambles for all the K devices is equal to

K
Ny = {Lw (10)



It is worth mentioning that the set of non-orthogonal ZC
preambles is composed by |R| > N, smaller sub-sets of
orthogonal ones. For this reason, allocating the sub-set of
orthogonal preambles to devices with similar activation pattern
is an efficient alternative to manage the interference levels.

B. Sequences Performance in Activity Detection Problem

In order to give an insight of the impact of the preamble
design on the system performance, we demonstrate a result on
the distribution of the signal-to-interference-plus-noise (SINR)
ratio of the received signal at the base-station for the analyzed
sequence types. The SINR gives an indirect measure of activity
detection performance, as it demonstrates the ratio between the
power of the signal of an active device and the power of noise
plus interference generated by the simultaneous interfering
devices. Fig. 2 depicts the empirical cumulative distribution
function of the SINR for the k-th device by using the Normal,
Bernoulli and ZC sequences, considering three values of
activation probability, p, € {0.01, 0.10, 0.30}. The remain
setup parameter values to generate this result are K = 40,
L = 20 and 02 = 0.1, resulting in a signal-to-noise ratio
(SNR) of 10 dB. Besides, we define the SINR correlating the
received signal at the BS with the preamble of each active
device, resulting:

[E L

SINRy, —
Dicic, ik laf @il?|hil? + af 2|2

(1D

for £k € K., where IC, is the set of active users during a
specific random access slot. From Fig. 2, one can observe
in the set of curves that decreasing the activation probability
increases the average SINR values, since it reduces the number
of simultaneous interfering devices during a specific transmis-
sion interval. The ZC sequences achieve the best average SINR
values due to their good (reduced) cross-correlation proper-
ties. At the same time, the Bernoulli sequences outperform
marginally the Normal ones in terms of the SINR distribution.
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Figure 2. Empirical CDF of the SINR using the Normal, Bernoulli and
Zadoff-Chu sequences for three values of pg.

Table 1
DESCRIPTION OF THE LAYERS IN THE DFN ALGORITHM.
Layer Type Activation function | Neurons
Hidden 1 Densely connected RelLU Ny,
Hidden 2 | Densely connected ReLU Nn,
Output Densely connected Sigmoid K

III. DEEP LEARNING ALGORITHMS

In this section, we introduce the architectures of the DFN
and CNN algorithms devised for activity detection. The DL
algorithms are represented by functions of the type f(vq,6) :
Z — REX1 where vy € T are the network inputs in the
input space Z and 6 is a set with the network parameters,
which learns an inverse map of the activity descriptor from
the received signal during the random access slot. The learning
phase is implemented by a training procedure, in which the
parameters 6 of the function f(vo,8) are adjusted following
a set of examples containing the activity descriptor and the
respective received signal at the base-station.

Let {(y(s),a(s)) [s=1,.. .,S} be a set of samples con-
taining the received signal and the activity descriptor of a
random access slot. We denote the output of a DL algorithm
for the sample s as a'®. Taking this into account, we can
measure the quality of the estimate &' with respect to
the original activity descriptor a(*) by calculating the binary
cross-entropy function. In the DL methods, the loss function
is defined as the average binary cross-entropy function [19],
calculated over all the S samples as:

| S.X
L= SK ZZ - {Oz;:) log (d,(cs)) +

s=1 k=1
(1 — 04,(:)> log (1 - &,(CS))]

The aim of the training procedure is to minimize £ by
choosing the right parameters of f(vg,8). In this way, the
trained DL network produces an accurate estimate of the
original activity descriptor.

12)

A. Deep Feedforward Network

The DEN algorithm, as depicts the Fig. 3, is implemented
with densely connected layers. Its inputs are the real and
imaginary parts of the received signal, while the output is
an estimate of the activity descriptor. In the following, we
describe in detail the layers of the DFN.

The DFN architecture has two densely connected hidden
layers with N,, neurons and one densely connected output
layer with K neurons. The hidden layers have the ReLU
activation function:

ReLU(u) = max(0, u) (13)

On the other hand, the output layer has the sigmoid activation
function: 1

1+ exp(—u)

The details of the DFN layers are organized in Table L.
Now, we introduce the parameters of the DFN layers, which

are the weights matrices and the bias values vectors. Given the

Sigmoid (u) = (14)
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Figure 3. Architecture of the DFN algorithm proposed for activity detection.

dimensions of the inputs and outputs of each layer, we have
the weights matrices W; € RV»*2L W, € RN»*Nn and
W3 € REXNn for the hidden layers 1 and 2, and the output
layer, respectively. Similarly, the vectors with the bias values
are by € RV»*1 by € RV»*1 and by € RX*!. Taking this
into account, we define the set with the DFN parameters by

ODFN = {W’hbi}?:l (15)

Considering the DFN parameters, we write the input-output
relation of the hidden layers in the DFN:

V; = ReLLU (Wivi_l + bz) N L= 1, 2 (16)
where v; is the layer output, considering v as the DFN input,
and the activation function is calculated for each entry of
the input vector. The input-output relation of the output layer
is obtained following the same logic, substituting the layer
parameters, as well as the ReLU activation by the sigmoid
function.

With @y in hands, it is possible to calculate the number
of trainable parameters in the DFN algorithm. Considering the
dimensions of the weights matrices and the bias vectors values,
the number of trainable parameters is given by:

Ovix(Nn, L, K) = N2 + 2N, L + N, K + 2N, + K (17)

Since the outputs of the DFN are in the range [0,1], a
hard decision module with threshold parameter 7 > 0 is
positioned at the output of the algorithm to calculate the

—»| Correlator
Feorr. R{:}

Hidden

layer 1

activity descriptor in its original domain. Hence, the hard
decision output is:
. 0,
ap =
L

During the activity detection, two different kinds of error
may occur. First, a false alarm (FA) occur when an inactive
device is detected as active. Second, a miss detection (MD)
occur when an active device is detected as inactive. The
probabilities of FA and MD are calculated in terms of the
hard decision threshold by:

PFA(T) = Pr(&k Z T | ap = 0)

ap < T
18
G > 7 (18)

19)

Pup(7) =Pr(ay < 7|y, = 1) (20)

Given the imbalance on the number of active devices during
each random access slot, the frequency of each type of error
changes. The error probability as a function of 7 is written in
terms of the FA and MD probabilities as

PE(T) = (1 - Pa)PpA(T) +paPMD(T)

The hard decision module can be optimized in order to meet
different design criteria, e.g. minimize a specific type of error,
or a metric which combines the two types of error with
different weights. In our work, we evaluate the algorithms
adjusting the hard decision thresholdsuch that

@2y

(22)

7" = arg min P;(7)
72>0

B. Convolutional Neural Network

Now, we introduce the CNN architecture depicted in the
Fig. 4. Differently from the DFN, the CNN algorithm is
implemented with convolutional layers. Particularly, we need
to adjust the input dimension aiming to match it with the
number of outputs. In order to accomplish this while exploiting
the good correlation properties of the ZC preamble sequences,
we use a correlator stage at the input of the network which
produces the signal

Ycorr = AHy (23)

This correlator stage can be seen as an additional layer with
fixed weights instead of trainable parameters. Then, the inputs
of the CNN are the real and imaginary parts of the correlated
received signal, organized as two vectors of dimension K x 1.
The output is an estimate of the activity descriptor.

Qt
Q

1
Output K
layer

Hidden
layer 2

Figure 4. CNN algorithm, which inputs are the real and imaginary parts of the correlated received signal at the BS.



Table 11
DESCRIPTION OF THE LAYERS IN THE CNN ALGORITHM.

Layer Type Activation | Feature maps | Filter length
Hidden 1 1D Conv RelLU Ny Ny
Hidden 2 1D Conv RelLU N I3 Ny
Output 1D Conv Sigmoid 1 Ny

Conv: convolution.

The CNN architecture has two hidden layers of the type 1D
convolution with Ny feature maps each one, filters of length
N,, and ReLU as the activation functions. The output layer
has one feature map, filters of length N, and sigmoid as
the activation function. The details on the layers of the CNN
algorithm are described in Table II.

The parameters of the CNN layers are the filters and the bias
values with respect to each feature map. Let the superscript £
be the index of the feature map. The parameters of the first
hidden layer are W{ € RN«*2 and b{ € R,¢ = 1,...,Ny.
Next, the parameters of the second hidden layer are W €
RNw>Ni and b5 € R, ¢ = 1,..., Ny. Finally, the parameters
of the output layer are W} € RM»*Ns and b} € R. With
these definitions, we assume the set with the CNN parameters
as:

N N
e = { (WL W1 (WS 1Y (W) 24)
Given the respective dimensions of the CNN parameters, we
calculate the number of trainable parameters in the algorithm
by the equation:

Ocxn(Ny, Nyw) = N3N, +3N;N, +2N; +1  (25)

It is important to stress that, differently from the DFN, the
number of trainable parameters in the CNN does not depend
explicitly on the number of devices and the preamble length.
This is a good advantage of the CNN, as its size do not grow
rapidly with the scenario parameters. However, Ny and N,
must follow the changes of the parameters in the scenario in
order to achieve efficient results on activity detection.

(26)

where M € R™*P is a zero-padded version of M. The input-
output relation of the hidden layers is given by the equation:

[v]; = ReLU ([Wf * Vit + bf) 27)

fori=1,2and { =1,..., Ny. We consider v# as the output
of the /-th feature map in the layer ¢, while V; is a matrix
which columns are the output vectors of all the feature maps,
or channels, in the layer ¢,

Vi = |vi va} (28)

1 1
The input-output relation of the output layer can be obtained
easily by substituting the layer parameters and the ReLU
activation by the sigmoid. As the DFN, the CNN has a
hard decision module to calculate the estimate of the activity
descriptor in the original domain.

IV. NUMERICAL RESULTS

In this section, we cover the numerical results associated to
the proposed DL algorithms and the preambles design, as well
as the baseline techniques for activity detection.

A. DL Training Procedure

The steps required to train both DFN and CNN DL algo-
rithms for solving activity detection problem in mMTC scenar-
ios are described herein. First, observe that a sample represents
a transmission interval, storing the real and imaginary parts of
the received signal, as well as the devices activity descriptor.
We create the samples generating the activity descriptor and
evaluating eq. (2). It is worth mentioning that we generate
all the signals by sampling random distributions following the
definitions in Section II. A data set is constituted by 5 - 10°
samples, from which 4.5 -10° are used for training and 5- 10*
used for validation. Each data set is generated with a single
realization of the preamble matrix. The DL algorithms are
trained with the data set samples using the adaptive moment
(ADAM) estimation algorithm. The training stops if the loss
function L in eq. (12) do not improve after 5 epochs. Table
IIT contains the information on the training setup of the DL
algorithms.

Table IV contains the average training time of the proposed
DL algorithms for different preamble lengths. The training is
performed on a workstation equipped with a Nvidia GeForce
940MX GPU, an Intel(R) Core(TM) i5-7200U CPU @2.5
GHz and 8 GB of RAM.

B. DL Input Parameters Tuning

This subsection describes the adopted procedure to tune
the architectural parameters of the DL algorithms. We tune
the number of neurons in the hidden layers of the DFN
and the number of feature maps in the hidden layers of the
CNN in order to get good performance on activity detection,
while preventing overfitting. The parameters are tuned by
hand in the the ranges NV, € {80,160, 320,400,800, 1600}
and Ny € {20,40,80}. The tuning procedure consists on

Table IIT
TRAINING SETUP USED FOR THE DEEP LEARNING ALGORITHMS VIA
ADAPTIVE MOMENT ESTIMATION.

ADAM estimation
4.5-10° (90%)
0.5-10° (10%)

Training algorithm
Training samples
Validation samples
Batch size 128
Maximum epochs 10°
Epochs for early stopping | 5

Table IV
TRAINING TIME (SECONDS) OF THE DEEP LEARNING ALGORITHMS
ACCORDING TO THE PREAMBLE LENGTH.

L DFN CNN

7 | 249-102 | 1.25-103
13 | 3.88-102 | 1.72-103
17 | 3.97-102 | 1.78-103
21 | 3.82-102 | 1.38-10°




generating and assessing the learning curves of the algorithms,
which contain the loss values along the epochs, calculated by
the binary cross-entropy function in eq. (12) on the training
and validation data sets. Ideally, the loss values calculated
for the validation set must follow the values calculated for
the training one, indicating improvement on the generalization
capability of the algorithm. If the validation loss worsens, or
the gap between it and the training loss increases, there is no
more gain on increasing the parameter value.

Fig. 5 depicts the learning curves for the DL algorithms
varying their architectural parameters'. Analyzing the curves,
we observe that the minimum training loss always reduces
increasing the parameters value, as expected. Fig. 5(a) illus-
trates the learning curves of the DFN for N,, € {80, 160, 320},
while the Fig. 5(c) depicts the validation loss for N, €
{320,400, 800}. Combining these results, one can infer that
the DFN attains overfitting with N,, > 400. Furthermore,
we observe that the validation loss improves marginally from
N, = 320 to N,, = 400. So, we choose IN,, = 320 for the
DEFN algorithm. On the other hand, the validation loss of the
CNN, depicted in Fig. 5(b), always decreases with the epochs.
Despite that, the gap between the validation and training losses
becomes bigger for Ny > 40. Considering these facts, we
choose Ny = 40 for the CNN.

'We omit a few curves in order to preserve the readability of the result.
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Figure 5. Learning curves with the training and validation losses (binary

cross-entropy) versus the epochs of the deep learning algorithms varying their
architectural parameters.

C. Performance: Error rate, FA and MD rates

Numerical results for the performance of the proposed DL-
based activity detection algorithms for GF-RA protocols are
assessed and compared with two reference methods available
in the literature, the Least Absolute Shrinkage and Selection
Operator (LASSO) method [20] and the AMP algorithm [21].
The adopted AMP algorithm is implemented with the complex
soft thresholding denoising function [22], while the LASSO
method is computed via the coordinate descent optimization
(CD) algorithm [23]. Both thresholding factor of AMP and
regularization parameter of the LASSO are tuned for each
evaluated scenario in order to develop a fair comparison,
in which the reference schemes achieve good performance-
complexity tradeoffs. Three figure of merit are evaluated:
error rate, false alarm rate and miss detection rate. Table V
summarizes the setup used to produce the evaluated scenarios
and respective numerical results. All the signals are generated
by sampling random distributions following the definitions in
Section II.

Fig. 6 depicts the error rate versus the undersampling
ratio A = L/K for both DL algorithms, as well as the
reference schemes. We evaluate each DL algorithm using the
three types of sequences. The first observation is that the
detection error rate improves by increasing A, as the longer
preamble sequences provide more information to the activity
detection algorithms. The DFN algorithm using random se-
quences achieves better performance than the CNN under the
same condition. However, the CNN with the ZC sequences
achieves detection error rate values comparable to the DFN.
The CNN has a huge improvement in detection error rate with
the ZC sequences instead of the random ones. This is due the
correlator stage in the CNN combined with the good cross-
correlation properties of the ZC sequences. The error rate
performance for the CNN with random sequences are compa-
rable, while the differences on the error rate of the DFN with
each type of sequences are non-negligible. Besides, comparing

Table V
SIMULATION PARAMETERS.
Parameter [ Value
System
Number of devices K =40
Activation probability pa € [0.01,0.3]

Type of sequences
Preamble length
Undersampling ratio

Normal, Bernoulli, Zadoff-Chu
L e{7,13,17,21}
A=L/K €[0.175,0.525]

Preamble power llak|l3 = L,Vk
Signal-to-noise ratio SNR = 10 dB
Channel
Channel model Rayleigh fading
Noise power 02 =0.1
DL algorithms

Number of neurons N, = 320
Number of feature maps Ny =40

Filter length Ny =8

LASSO [20] via CD

Maximum number of iterations
Convergence criterion

Tep = 103
”ﬁt _ &t—1H2 < 10—4

AMP [21]

Denoising function
Number of iterations

Complex soft thresholding [22]
Tame = 10
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Figure 6. Detection error rate versus the preamble length of the deep learning
algorithms using the Normal, Bernoulli and Zadoff-Chu sequences. p, = 0.1.

with the reference schemes, the DFN achieves error rate levels
comparable to the AMP for A > 0.325. On the other hand,
considering low undersampling ratios, i.e., A < 0.175 the
DFN and the CNN with ZC sequences outperform significantly
the AMP scheme. The LASSO method presents the best
performance for A > 0.175 at the expense of an extremely
high computational complexity, as we demonstrate in the
subsection IV-E. Moreover, the behavior of the error curves
for the evaluated algorithms is similar for p, < 0.1, with
decreased error rates as a consequence of the reduced number
of active devices, and therefore the level of interference.

Fig. 7 depicts the receiver operating characteristic (ROC)?
curves of the DL algorithms using the Normal, Bernoulli and
ZC sequences types for two values of undersampling ratio.
For A = 0.525, the CNN using the ZC sequences has a huge
improvement on the miss detection rate, if compared with the
random sequences. Again, this is due to the correlator stage at
the CNN input and the good cross-correlation properties of the
ZC sequences. Additionally, the ROC curve of the CNN using
the ZC sequences is tight to the AMP algorithm. The LASSO
method attains the best ROC curve among the techniques. On
the other hand, for A = 0.175 the differences between the
algorithms and types of sequences vanishes, as all the ROC
curves of the DL algorithms are comparable to the LASSO. At
the same time, the AMP detection rate performance degrades
significantly with A increasing.

Fig. 8 depicts the detection error tradeoff (DET)? curves
of the proposed DL algorithms and the reference schemes
for both values of undersampling ratio. The proposed DL
algorithms cover a wide range of false alarm and miss de-
tection rates, differently from the LASSO and AMP schemes.

2The ROC curves are described by the successful detection rate, or true
positive rate, versus the false alarm rate, or false positive rate, allowing a
comparison of the detection algorithms according to the two types of error.

3The DET curves are described by the miss detection rate vs. false alarm
rate with the axis warped by the inverse of the Normal cumulative distribution
function. The DET is more suitable than the ROC to analyze the tradeoff
between the two types of error.
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Figure 7. Receiver operating characteristic curves of the DL algorithms using
the Normal, Bernoulli and Zadoff-Chu sequences, as well as the LASSO and
AMP reference schemes. p, = 0.1.

Analyzing the DET curves, we see that the activity detection
algorithms achieve lower false alarm rate values than miss
detection ones. Such fact is a consequence of the sporadic ac-
tivity of machine-type devices, which results in more inactive
devices than active ones in the random access slots.

D. Robustness of the DFN and CNN Algorithms

Fig. 9 depicts the error rate versus the activation probability
of the DL and the reference methods. We evaluate each
algorithm using the three types of sequences and two values of
preamble length. Such figure of merit demonstrates the robust-
ness of the DL-based activity detection algorithms against the
system scenario variations, since the networks are trained for
a single-fixed activation probability, p, = 0.1. As expected,
the error rate increases with the activation probability, as
high numbers of active devices incur in increased interference
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Figure 8. Detection error tradeoff curves for both proposed DL-based

algorithms under three distinct preamble sequence sets, as well as the LASSO
and AMP reference schemes.

power at the received signal. Moreover, regarding the type of
sequences, for A = 0.525, again the Zadoff-Chu set achieves
the best performance. Both DFN and CNN algorithms present
similar results using such sequence sets. Next, the Bernoulli
sequences outperform marginally the Normal sets. Specially,
the CNN results in significant improvements using the ZC
sets, achieving detection error rates close to the DFN. Lastly,
when the undersampling ratio is reduced substantially, e.g.
A = 0.175, the performance of the DFN and the CNN
algorithms operating under each one of the three types of
sequences is tight for p, > 0.1.

E. Complexity of the DL-based and Reference Algorithms

Fig. 10 depicts the run time in seconds versus the number
of users of the evaluated algorithms for two values of un-
dersampling ratio. In this result, we set L € {71,211}, and
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Figure 9. Error rate versus the activation probability of the proposed DL-
based activity detection algorithms using the Normal, Bernoulli and Zadoff-
Chu sequence sets, as well as the LASSO and AMP reference schemes.

K € {40; 400}. The DL-based algorithms present extremely-
low run time values on the order of 10 us to 100 us. The DFN
algorithm has slightly shorter run time than the CNN. Com-
pared with the reference schemes, the proposed algorithms
result in run time values at least two orders of magnitude less.
As expected, the complexity of all the algorithms increases
with the number of devices owing to the growth in the number
of inputs. Despite that, the run time changes marginally with
the undersampling ratio, except for the LASSO method. Such
fact is due to the accelerated convergence of the CD algorithm
caused by the amount of information provided by longer
preamble sequences.

V. CONCLUSIONS

In this work, we propose two DL sparse support recovery
algorithms to enable activity detection of machine-type devices
in GF-RA protocols. We propose a DFN algorithm for activity
detection based on densely connected layers and a CNN
algorithm built with 1D convolution layers. At the same time,
we analyze the impact of the type of sequences used for
preamble design on the performance of the activity detection
scheme. We evaluate the performance using random preambles
generated by a complex Normal and a Bernoulli distributions,
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Figure 10. Run time vs. the number of devices for both DL-based algorithms,
and for reference schemes (LASSO, AMP), for two undersampling ratio
values.

as well as by deploying deterministic ZC sequences. The
numerical results demonstrate that the DFN reaches the best
detection error rate values. However, the CNN with the ZC
sequences in place of random ones achieves detection error
rates comparable to the DFN, due to the good cross-correlation
properties of these sequences. On the matter of the com-
putational complexity, both proposed DL-based algorithms
present extremely low execution time, at the expense of the
training burden to determine the suitable parameter values of
the networks. Moreover, the proposed algorithms attain better
performance-complexity tradeoff than state-of-art techniques,
such as the LASSO method and the AMP algorithm.
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Abstract—The grant-free random access protocols are promis-
ing strategies to provide efficiently, connectivity to the large
population of nodes in the massive machine-type communications
(mMTC) systems. Besides, the transceiver with multiple antennas
is one of the technologies that pushed the 5G, providing benefits
like high array gain and inter-channel orthogonality. Taking this
into account, in this work we introduce four techniques for
activity detection and channel estimation for mMTC systems with
MIMO transceiver: the minimum mean-squared error (MMSE)
estimator; the group least absolute shrinkage and selection
operator (LASSO); the covariance-based estimation formulated
as a non-negative least-squares (NNLS) optimization problem;
and the vector approximate message passing (VAMP) algorithm.
Such techniques are evaluated and compared in terms of the
normalized mean-squared error (NMSE), and the detection error
rate. We demonstrate the main operation regimes in which each
technique can benefit from the multiple antennas at the base-
station.

Index Terms—Massive machine-type communications, grant-
free random access, multiple-input multiple-output (MIMO),
channel estimation

I. INTRODUCTION

The massive machine-type communications (mMTC) ser-
vice support this typical set of nodes. Numerous devices
non-controlled directly by humans that have sporadic acti-
vation patterns, transmit small packets with low data rates,
have low-complexity hardware and are battery-constrained
[1]. Addressing such group of devices with the technologies
and strategies of the previous generations is challenging, as
they were designed around on a paradigm for human-centric
applications.

Taking this into account, new strategies emerged. The grant-
free random access schemes are efficient methodologies to
deal with the sporadic activation of the mMTC nodes. In such
schemes, the active devices access the network and transmit
their payload without waiting for any permission of the base-
station (BS) [2]. Compared with the grant-based, the grant-
free random access schemes require low signaling overhead
and message exchanging. However, they are susceptible to
collisions and interference, needing sophisticated approaches
for collision resolution and interference management.

In general, the grant-free random access techniques are
classified in compressed sensing (CS)-based and covariance
(CV)-based methods [3]. On the matter of the CS-based
techniques, we can cite the least absolute shrinkage and
selection operator (LASSO) [4] and the approximate message
passing (AMP) algorithm [5]. At the same time, the CV-based

methods include the activity detection formulated as a non-
negative least-squares (NNLS) optimization [6] problem or
using maximum likelihood estimation [7].

In particular, there are techniques that exploit the advantages
of the multiple antennas at the BS to detect the set of active
devices and estimate their respective channel vectors. In this
work, we study a group of techniques of such type available
in the recent literature. The methods are the minimum mean-
square error (MMSE) estimator, the group LASSO [8], the
NNLS [7] and the vector AMP [9].

A. Contributions

In this work, we introduce and evaluate promising tech-
niques available in the literature for activity detection and
channel estimation in grant-free random access protocols for
mMTC systems with MIMO transceiver. The contributions of
our work are as follows:

o Introduction and adaptation of the techniques listed in
Table I for the activity detection and channel estimation
tasks in mMTC, pointing out their respective advantages
and weaknesses;

o Systematic evaluation of the introduced methods and a
comprehensive comparison between them in order to
identify their performance and main operation regimes.

B. Notation

Boldface small a and capital A letters represent respectively
vectors and matrices. Capital calligraphic letters A represent
finite sets. I,, denotes the identity matrix of size n. {-}7 and
{-}¥ denote, respectively, the transpose and the conjugate
transpose operators. diag(-) denote the diagonal matrix oper-
ator. CA'(u,0?) is a circularly symmetric complex Gaussian
distribution with mean p and variance 2. Bernoulli(p) is a
Bernoulli distribution with mean p. E[-] denotes the expecta-
tion operator.

Table I
SUMMARY OF THE INTRODUCED ACTIVITY DETECTION AND CHANNEL
ESTIMATION TECHNIQUES FOR MMTC SYSTEMS.

Technique Activity detection | Channel estimation
MMSE v
Group LASSO [8] v v
NNLS [7] v
VAMP [9] v v




The rest of the paper is organized as follows. In Section
IT we introduce the model for the mMTC cellular system.
After that, Section III describes the evaluated activity detection
and channel estimation techniques for mMTC systems context.
In Section IV we analyze the numerical experiments for
the introduced methods using four different figures of merit.
Lastly, Section V provides the final remarks.

II. SYSTEM MODEL

We consider the broadband mMTC cellular system in the
following. K machine-type users are served by a BS equipped
with a MIMO transceiver with M antennas. They activate
sporadically with probability p, < 1. During the uplink, in the
random access slot, each active user transmits an unique pilot
sequence followed by the payload. Since the random access
slot is less than the coherence time, the channel response is
considered flat. The pilot signals transmitted during the pilot
phase are used at the BS for activity detection and channel
estimation aiming at enabling the detection of the payload.

The pilot sequences have the length of L < K symbols,
owing to the limited coherence time and the typically high
number of users in the typical mMTC scenario. We define
the pilot sequences as the vectors a; ~ CN (0, %IL) ,VEk.
Besides, the pilots are normalized such that ||ay||3 = 1, Vk.

The channel follows the Rayleigh fading model. Let hy ~
CN (0, BxIn), Yk be the channel vectors of the users, con-
sidering [y as the large-scale fading coefficient. Additionally,
each antenna at the BS is subjected to an additive white
Gaussian noise (AWGN) of power o2.

Let x be the activity descriptor of user k, which is equal
to 1 if the user is active during the random access slot, or 0
otherwise. Considering the sporadic activation of the users, it
is reasonable to assume that v, ~ Bernoulli(p, ), Vk. Besides,
let I, € Z4 be the set with the indices of the active users.
The received pilots signal at the BS during the random access
slot is equal to

K
Y =pY warhi +Z (1
k=1

where p = Lpy., considering py; the transmitted power per
symbol, and Z = [z, zy | the AWGN such that z,, ~

Pilots Activity Channel
User 1 Vpay
User K V/Pag
lacl3=1 % ~ Bernoulli(p,)

Ka={keZy |7 =1}

CN (O7 02IL) ,Vm. The pilot phase is outlined in Fig 1. We
can rewrite the received pilots signal in the convenient matrix
form,

Y = /pATH? + Z = \/pAX + Z )
where
A= [al aK] 3)
T = diag ([ ic]") @)
H = [h, h] (5)
X = [x; xk]” = [ vihi] (6)

Considering the received pilots signal in eq. (2), we compute
the signal-to-noise ratio (SNR) as

E [llvpach|[E] _ pMBr _ pubr
E [||Z]]3] LMo? — o®

SNR;, = @)

considering that the user k is active, i.e. k € IC,.
In the sequence, we formulate the activity detection and

channel estimation problems, performed at the BS from the
signal received during the pilot phase.

Activity detection: The activity detection problem consists on
estimate the indices of the non-zero rows of the matrix X,
namely the row support of X, from the signal Y. Therefore,
considering the estimate X of the signal X, the set K, of the
estimated active users is equal to

~ -~

Ko =rowsupp(X) = {k € Z4 | X, # 0} 8)

It is worth mentioning that the sporadic activity of the users,
i.e. p, < 1, implies that the matrix X has much more null
rows than non-zero ones.

Channel estimation: The channel estimation problem consists
in determining the vectors xi; Vk € K, from the received
signal Y. Hence, the estimated channel vector of the active
users is defined as

~ ~

h, = ﬁk Vk € K, 9)

Zyp ~ CN(O,O'ZIM)

> K, = rowsupp(X)

> h, =%, Vk € K,

Activity detection and
Channel estimation

hy, ~ CN(0, By 1u)

Figure 1. Diagram of the pilot phase, in which the BS perform activity detection and channel estimation. The output of the activity detection and channel
estimation module is a set with the indices of the active users and their respective estimated channel vectors.



III. TECHNIQUES FOR ACTIVITY DETECTION AND
CHANNEL ESTIMATION

In this section, we introduce the techniques for activity
detection and channel estimation, especially those methods
suitable to operate in mMTC scenarios. We stress that part
of the discussed methods are employed only for activity de-
tection, while another part is only used for channel estimation
and the rest is employed for both tasks, as stated previously
in Table 1.

A. Minimum Mean-Squared Error Estimator

The MMSE method is a classical estimator and used for
channel estimation in grant-free protocols after the identifi-
cation of the set of tAhe active users. Hence, given the set of
known active users K., the MMSE for channel estimation is
the matrix that solve the following optimization problem:

G* = argminE[Hx—GYn% ‘r:f} (10)

GechL

The eq. (10) has a closed-form solution, computed for each
active user k € I, as

1 ~ 2. RS
gl = | — <AHFA + UFB—l) TAY (11)
\/ﬁ p k,:
Hence, the estimated channel vector of the active users ob-
tained by the MMSE estimator is defined by
(87Y)",Vk € K4

TAMMSE
hy

hyMs = (12)

We stress that the computation of is consistent only
for the users that are actually active. In the case of false
positive results of the activity detection scheme, a criterion
involving the estimated channel vector can be adopted to
eliminate these events.

B. Group LASSO

The problem of estimating X from Y, knowing that X has a
row-sparse structure, can be cast as the optimization problem

K
R0 — argmin LY — AX[2+ A [xils (13)
XE(CKXI\{ 2 k:l

which has the same form of the group LASSO [8] problem.

The first part of eq. (13) is the MSE between the received

signal Y and its reconstruction from the estimated X. At the

same time, the second part induces the sparsity of the rows of
X, with the factor A controlling the sparsity level.

The solution of the problem in eq. (13) can be computed by
the block-coordinate descent (BCD) method introduced in [8],
and used in the context of grant-free random access in [10].
The BCD method to solve the group LASSO is summarized
in Algorithm 1, where N;; is the number of iterations and the
soft threshold function is defined as
faps (allz =), ifflullz > 7

soft(u, n) = {0 (14)

otherwise

)

After the execution of the BCD algorithm, the setAof active
users is determined by subjecting the rows of the X“43%¢ to

Algorithm 1: BCD method for the group LASSO [10]
Input: A, Y, A\, N
Output: XLASSO
1 XO « o
2forn=1,...,N; do
3 for k=1,...,K do
s L X — llag 38" —aff (AX(=D —Y);
A

<(n) ( x )
X, 4+ soft ;
k laxll3” llax i3

5

6 XLASSO . )A((n);

a cut-off thresholding approach. The set of detected users is
calculated by

KEASSO = (k€ Zy | IRl > €} (15)

where ¢ is the threshold value. Finally, the estimated channel
vector is obtained by

TLASSO __ GLASSO F>LASSO
hk = X/C s Vk € /Ca

(16)

C. Covariance-based Activity Detection

The covariance-based activity detection methods are based
on the covariance matrix of the received signal Y. We intro-
duce a technique in which statistical knowledge of the channel
is assumed, performing the activity detection by minimizing
the difference between the true covariance matrix and an
estimate obtained from the received signal.

In our context, the covariance matrix of the received signal
can be defined as

1 K
Y= ME [YYH] = pZ'ykﬁkakakH + O’QIL,
k=1

a7

considering the expectation calculated w.r.t. H and Z. Letting
T . .

0= [71 51 Yi B K} , one can conveniently rewrite the

covariance matrix as:

3(0) = pAdiag (0) A + 51, (18)

The covariance matrix of the received signal can be estimated
by computing
S 1
=YY" 19
U (19)

The set of active users can be predicted by solving the
NNLS optimization problem [7]:

6" = arg min f(0) (20a)
6>0
£(0) ==(0) - =)} (20b)

The problem in (20) can be solved by gradient coordinate-
wise methods, finding the global optimizer for each component
of @ independently. Hence, computing the gradient of the
function in (20b), considering a step equal to dj in the k-th
component of 6, we get

8f(0 + dkek)

= 2p%dylanll} + 20af [£(0) - =] ay 1)
00,



Algorithm 2: CD method for the NNLS [7]
Input: A, = LYYH o2 BVk, Ny

~NNLS

3forn=1,...,N; do

4 for k=1,...,K do
s d af(E—E)ak .
pllaclly >
6 d* < min | max (d7 —@\,(:’_1)) , B — é\,(c”_m);
7 é‘;n) Hé\gnfl) +d*;
8 PR IS d*akakH;
0 /G\ENLS - /é(n);

where ey, is the standard unit vector w.r.t. the component k.
Hence, the optimal step is easily found as:

al! [f] - 2(0)} aj
pllax2

The Algorithm 2 summarizes the coordinate descent (CD)
procedure to compute the solution of the NNLS problem in
eq. (20). The algorithm operates as follows. At the line 5, the
optimal update for the k-th component is calculated following
(22). Next, at the line 6, the box constraint of [7] is applied to
ensure that each component 6, lies between 0 and (. Lastly,
at the lines 7 and 8 the estimate and the covariance matrix are
updated, respectively.

Similarly to the group LASSO, the set of active users for
NNLS is estimated using a cut-off thresholding approach after
the execution of the CD method. Therefore, the set of active
users is equal to

di(6) = (22)

KNS = (k€ Zy | O3NS > ¢} (23)
D. Vector Approximate Message Passing

The VAMP [9] is a multiple-measurement vector version of
the AMP algorithm, which can be used for joint activity detec-
tion and channel estimation. The VAMP algorithm implements
the following expressions, assuming the initial residual matrix
R(® =Y and the initial estimate matrix X(°) = 0

H
§](€n+1) =y |:(R(”)) ag + ﬁ,(cn):|

R —y - AX(TD

1 i H
+ 7R > o, [(R(”)) ag +§<§€")} (25)
k=1

(24)

where 7,, : CM*1 — CM*1 5 the denoising function, while
nl, : CM>*1 5 CMXM 5 the Jacobian matrix of it.

The AMP theory [5] states that the estimated signal after
the matched filtering phase is statistically distributed such that

H
(R(">) aj, + =" ~ CN (3, T) (26)

where T, is the covariance of the error during the n-th
iteration. As our channel model does not account the spatial
correlation between the antennas, the covariance matrix T, is
diagonal, such that:

. T
Tn = dlag <[Tn,1 7-n,M] )
Considering the statistical distribution of the estimated
signal after matched filtering of eq. (26), the MMSE denosing
function is designed by computing

27

m(w) = E[x | u] (28)

where u is the left side of (26). Hence, the expression of the
MMSE denoising function can be defined as [7]:

N (1) = b k(W) Be(BrInr + Ty) tu (29)
where
1 - VMa e + 'r%m
Gnp(1) = {1 || ﬂﬂ% (30)
a m=1 n,m

el

exp| ——r—r—n—
< 2 m(Be + 72

Also, the Jacobian matrix of the MMSE denoising function is
equal to [7]

M (W) = G k(W g + [Br k(1) = @2 1 (0)] T,y uu?’
3D
where

T B Bi: T
\I’”’k = diag Be+Ti T BetTl (32)

T ; 1 g \? 1 s V]
‘I,n’k - dlag m (ﬂk+7'3,1> T Tz,M (ﬁk+7721,M>

(33)

After the last iteration of the VAMP algorithm, the set of

active users is computed by the cut-off thresholding approach,
resulting in

KyP = {k € Z || ||2 > e} (34)
Then, the estimated channel vectors are equal to
BZAMP _ ﬁ\]g\MP7 vk € ]E(\l/AMP (35)

IV. NUMERICAL RESULTS

In this section, we present the numerical results to evalu-
ate the performance of the proposed techniques for activity
detection and channel estimation in mMTC scenarios. The
four analyzed techniques are the genie-aided MMSE, the
group LASSO and the NNLS. The VAMP technique will be
evaluated in the updated version of this manuscript.



A. Figures of Merit

Now, we present the figures of merit adopted to compare the
techniques for activity detection and channel estimation. The
performance of the activity detection techniques is measured
by the detection error probability, defined as

Peépr(:}’\k#f)/k)

where v is the activity descriptor. Also, the performance of
the activity detection techniques w.r.t. each type of error is
measured via the miss detection and false alarm probabilities,
defined respectively as

(36)

Pup 2Pr( =0| v, = 1) (37)

Pin 2Pr( = 1|9 =0) (38)

The probabilities of miss detection and false alarm are asso-
ciated with the detection error probability by the relation:

P = paPup + (1 —Pa)PpA (39)

The quality of the channel estimation is measured via the
normalized mean-squared error (NMSE), defined as

XI5

(40)
The NMSE compares the magnitude of the estimation error
w.r.t. the original signal.

B. Details on the Activity Detection Techniques

The evaluated activity detection techniques do not provide
explicitly an estimate of the activity descriptor ~y in its original
domain. For this reason, as is discussed in Section III, We
use an approach based on a cut-off threshold to compute the
estimate of the activity descriptor. Let the cut-off thresholding
operator be defined as

1, ifug > €

fluk) = {0

where uy,, Vk and e are non-negative values. For the techniques
that perform joint activity detection and channel estimation
(group LASSO and VAMP), uy, = [|hy||2. On the other hand,
for the NNLS technique, uy = 6.

Considering the cut-off threshold approach, the miss detec-
tion and false alarm probabilities can be written in terms of
the threshold € as

41
otherwise ‘4D

Pup(e) = Pr(ux < €|y =1) (42)

Pea(e) =Pr(ug > €|y =0) (43)

Hence, the threshold value that minimizes the detection error
probability can be computed by solving the optimization
problem

€* = arg min P, (¢) (44a)
€0
Pe(€) = paPun(€) + (1 — pa) Pea(€) (44b)

C. Simulation Scenario

To evaluate the presented techniques for activity detection
and channel estimation in mMTC, let’s consider the com-
munication scenario of Fig. 1. All the signals of eq. (2)
are generated by sampling random distributions according to
the definitions in Section II. The simulation scenario has the
follow configuration. The number of users is K = 100 and
the activation probability is p, = 0.1. Also, the number of
antennas at the BS is M € {4,64}, while the pilot length is
L € [10,50]. The power transmitted by the users is py. = 23
dBm, and the power spectral density (PSD) of the noise is
—169 dBm/Hz, while the system bandwidth is equal to 1
MHz. The large-scale fading coefficients in dB are defined by
Br = —128.1 — 36.71og,,(0k), Vk, where gy, is the distance
from user k to the BS in kilometers, distributed randomly
in the range (0.05,1) [9]. All the simulation parameters are
organized in Table II.

D. Performance of Channel Estimation

Fig. 2 depicts the NMSE of the channel estimate versus
the undersampling ratio, defined as L/K, of the genie-aided
MMSE and the group LASSO. We consider two values for
the number of antennas at the BS. For all the techniques,
the NMSE decreases as the undersampling ratio increases,
since the longer pilot sequences provide more information to
perform channel estimation. The evaluated techniques reach
a floor of NMSE after a certain undersampling ratio value.
Therefore, there is a limit on the performance gain provided by
increasing the pilot sequence length. The genie-aided MMSE
achieves the lowest NMSE values, outperforming significantly
the group LASSO. However, it is worth to mention that,
differently from group LASSO, this technique assumes perfect
knowledge of the set of active users and exploits information
of the large-scale fading coefficients and the noise power.

Now, we discuss the impact of the number of antennas at the
BS on the channel estimation. For the genie-aided MMSE, the
impact of the number of antennas on the NMSE is marginal.
On the other hand, if compared with 4 antennas, the NMSE
of the group LASSO with 64 antennas improves significantly

Table II
SIMULATION PARAMETERS.

Parameter | Value

System
Number of devices K =100
Activation probability pa =0.1
Pilot length L € [10,50]
Undersampling ratio A=L/K €[0.1,0.5]
Transmitted power puL = 23 dBm
Signal-to-noise ratio SNR = 10 dB

Channel
Channel model Rayleigh fading
Noise PSD —169 dBm/Hz
Bandwidth 1 MHz
Distance to the BS ok € [0.05,1],Vk

Group LASSO

Regularization parameter | A = 1.9 - 100
Number of iterations N;: = 100

NNLS
Number of iterations [ Nie =10
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Figure 2. NMSE of the estimated channel vectors of the detected users vs. the
undersampling ratio (L/K) of the genie-aided MMSE and the group LASSO.
Two values for the number of antennas at the BS are considered.

for A > 0.2. When A = 0.1, the NMSE achieved with 64
antennas is greater than the obtained with 4.

E. Performance of Activity Detection

Fig. 3 depicts the detection error rate versus the undersam-
pling ratio of the NNLS and the group LASSO. Again, we
consider two values for the number of antennas at the BS.
We stress that the cut-off threshold to generate this results
is calculated by the optimization problem in eq. (44). The
performance improves as the undersampling ratio increases.
However, the techniques reach a floor of error rate after a
certain value of undersampling ratio, which depends on the
method and the number of antennas. Except for the case
when A = 0.1 and M = 4, the group LASSO provides
remarkably lower error rates if compared with the NNLS. On

0.07 - —o— NNLS (M = 4)
’ Group LASSO (M = 4)
@ - - -NNLS (M = 64)
© 0.06 Group LASSO (M = 64) [
S
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01 015 02 025 03 035 04 045 05

Undersampling ratio

Figure 3. Detection error rate vs. the undersampling ratio (L /K) of the NNLS
and group LASSO considering two values of antennas at the BS.

the matter of the number of antennas at the BS, the NNLS
with M = 64 achieves better results than with M = 4. At
the same time, the group LASSO with M = 64 improves
significantly for A > 0.3, when compared with the case with
M = 4. Nevertheless, such behavior reverses for A < 0.3.
In the sequence, Fig. 4 depicts the receiver operating char-
acteristic (ROC) curves of the NNLS and group LASSO for
two values of number of antennas at the BS and considering
two values of undersampling ratio. The ROC illustrates the
trade-off between successful detection rate, the complement
of the miss detection rate, and the false alarm rate. Analyzing
the results, we note that, under the same conditions, the group
LASSO has better ROC curves than the NNLS. Comparing the
curves of group LASSO for A = 0.1, we see that the technique
achieves lower false alarm rates with M = 4 and higher
successful detection rates M = 64. Analyzing the remaining
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Figure 4. Receiver operating characteristic curves of the NNLS and group
LASSO for two values of antennas at the BS and considering two values of
undersampling ratio (L/K). The dotted curves represent the performance of
choosing the activity descriptors randomly.



curves, we perceive that increasing the number of antennas
increases the successful detection rate and decreases the false
alarm rate.

Lastly, Fig. 5 depicts the detection error trade-off (DET)
curves of the NNLS and the group LASSO with two number of
antennas at the BS. Two values for the undersampling ratio are
considered. The DET curves provide a better visualization of
the trade-off between the two types of error that occur during
activity detection than the ROC ones. Analyzing the result, we
see that, except for the group LASSO and A = 0.1, increasing
the number of antennas decreases both the false alarm and the
miss detection rates. Specially for A = 0.1, the group LASSO
with M = 64 degrades when compared with M = 4. Such
fact complements the analysis on the degradation of error rate
observed for the group LASSO observed when A = 0.1 in
Fig. 3.
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Figure 5. Detection error trade-off curves of the NNLS and group LASSO for
two values of antennas at the BS and considering two values of undersampling
ratio (L/K).

V. CONCLUSIONS

In this work, we explore activity detection and channel es-
timation methods for mMTC systems with MIMO transceiver.
Four different approaches are introduced and evaluated in
terms of NMSE of the estimated channel vectors and the
performance on the activity detection, including analysis of
the detection error rate, as well as the ROC and DET curves.
On the matter of the channel estimation, we demonstrate
that the group LASSO technique benefits consistently from
increasing the number of antennas, as long as it operates
with a sufficiently high pilot length. At the same time, the
group LASSO achieves good results on activity detection,
outperforming the NNLS technique when the pilot length is
high.
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