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Abstract

Massive machine-type communication (mMTC) networks will play a key role in sixth
generation wireless communication systems (6G). Thousands of devices compete for
network resources for sending packets, such as a sensor network in a farm or an automated
factory in Industry 4.0. In this scenario, the random access (RA) problem arises, in which
devices randomly select network resources and collisions occur frequently. One of the
promising ways to solve this problem is to use Q-learning (QL) algorithms. In this work,
some machine learning-based techniques available in the literature such as independent
and collaborative QL algorithms are analyzed in terms of system throughput and latency.
An improvement in the QL collaborative technique and a low-complexity distributed
packet-based algorithm are also proposed. Finally, the power disparity between devices
in a cell is analyzed using non-orthogonal multiple access (NOMA) with a central node
applying successive interference cancellation (SIC) to reduce collisions. A QL algorithm
with multi-power levels that increases throughput and reduces latency in NOMA mMTC
scenarios is proposed.

Keywords: mMTC, Q-learning, random access, NOMA, latency, successive cancellation
interference.





Resumo

As redes de comunicação do tipo máquina massiva (mMTC - massive machine-type
communication) terão um papel fundamental nos sistemas de sexta geração de comunicação
sem fio (6G). Neste modo de uso da rede, milhares de dispositivos disputam os recursos
de acesso dispońıveis para o envio de pacotes, como por exemplo uma rede de sensores no
campo ou uma fábrica automatizada da indústria 4.0. Nesse cenário, surge o problema de
acesso aleatório, no qual os dispositivos selecionam aleatoriamente os recursos da rede e
colisões ocorrem com frequência. Uma das formas promissoras de resolver esse problema é
utilizar algoritmos de aprendizado por reforço QL (Q-learning). Neste trabalho, algumas
técnicas presentes na literatura como os algoritmos QL-Independente e QL-Colaborativo
são analisadas em termos de vazão e latência. Também são propostos um algoritmo
distribúıdo baseado em pacotes de baixa complexidade, bem como melhorias na técnica
QL-Colaborativa. Finalmente, analisa-se a disparidade de potência entre dispositivos em
uma célula com a utilização de acesso múltiplo não ortogonal (NOMA - non-orthogonal
multiple access) com um nó central aplicando o cancelamento sucessivo de interferência
(SIC - successive interference cancellation) para reduzir a probabilidade de colisões. Neste
contexto, é proposto um algoritmo QL com múltiplos ńıveis de potência capaz de aumentar
a vazão enquanto reduz a latência de redes NOMA mMTC.

Palavras-chave: mMTC, Q-learning, acesso aleatório, NOMA, latência, cancelamento
sucessivo de interferência.
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1 Introduction

1.1 Motivation

1.1.1 5G and beyond

The rapid advancement in the fields of artificial intelligence (AI) and internet of
things (IoT) has caused the amount of data generated by various devices on the wireless
network to increase exponentially. It was determined that in the sixth generation of wireless
communication (6G) a rate of 1 Tbps should be reached, and the traffic volume is estimated
to be in the order of 250 GB/month per subscription, so that the global traffic volume
reaches 5000 EB/month (CHOWDHURY et al., 2020).

All this data will be used and shared by a large interconnected ecosystem of services
such as ultra smart cities, multi-dimensional reality, haptic communication, telemedicine
and tactile internet (BHAT; ALQAHTANI, 2021). Some of the technologies that will
enable all these services to operate in the same architecture are: massive multiple-input-
multiple-output (mMIMO), device-to-device communication (D2D), cell-free and vehicle-
to-everything networks (V2X).

Fig. 1.1 shows the evolution of wireless communication generations, indicating what
are the predictions of what will be implemented in 6G. The use of massive machine-type
communication (mMTC) will allow for ubiquitous communication with a massive network
of IoT devices to provide advances in healthcare, industrial machinery and transport and
logistics services.

Figure 1.1 – The evolution of wireless networks (NGUYEN et al., 2021).
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The aim of the next generations of wireless communication is to make the net-
work increasingly dense, as the large number of devices will be able to provide massive
interconnectivity (LEE et al., 2021).

1.1.2 6G services

The current wireless communications scenario encompasses several types of services
operating concurrently, such as thousands of sensors sporadically sending readings in short
packets and mobile users watching high-definition video streams. Due to the difference
between the use of resources by these services, the proposal of the fifth generation of wireless
communications (5G) was to divide into three main types of services (POPOVSKI et al.,
2018): enhanced mobile broadband (eMBB), ultra-reliable and low-latency communication
(URLLC), and mMTC.

In eMBB mode, broadband is used to provide high data rates to users, which
guarantees access to streaming services, for example. In the URLLC mode, the focus goes
out of high rates and goes to the reliability of receiving the service 99.999% of the time
with a reduced latency to less than 1 millisecond. This type of service is indispensable in
applications that involve risks such as remote surgeries and autonomous vehicles. Finally,
the mMTC mode, which is the focus of this work, allows a high connectivity of devices
accessing the network sporadically to send short blocks of data. Examples of this type
of application are a network of devices on the farm obtaining data from sensors and
agricultural machinery.

Although these services are already being implemented in the tests with 5G around
the world, there are already some works in the literature that use these cited services to
design the new services that will guide the scientific discussions until the implementation
of the 6G, foreseen for 2030. In (JIANG et al., 2021), the intersections between the three
5G services are discussed and three more are created: ultra-reliable low-latency broadband
communication (ULBC), ubiquitous mobile broadband (uMBB), and massive ultra-reliable
low-latency communication (mULC), as shown in Fig. 1.2.

ULBC combines the high data rate of eMBB with the low latency of URLLC to
enable features such as human-type communication (HTC) in immersive gaming, where
human movements are mapped to insert the player into the game’s graphics. Similarly,
uMBB combines the high availability of data at high rates of eMBB with the high
connectivity of mMTC devices to ensure ubiquitous communication, allowing machine
learning techniques on devices using data present on the Internet. Finally, mULC relies on
high device density and low latency to enable services such as the use of risk actuators in
the vertical integration of industries 4.0.
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Figure 1.2 – 6G services (JIANG et al., 2021).

1.1.3 Massive machine-type communications

The concept of a machine-type device is to rely on little or no human interaction
during its entire operation (BUI et al., 2019). In 5G systems and beyond, these devices
will play an important role in services such as unmanned aerial vehicles (UAV) and self-
driving cars. Key performance indicators (KPI) for mMTC networks are: enable massive
connectivity of 106 devices per square kilometer in urban areas and ensure a 10-year
battery lifetime (POKHREL et al., 2020).

One of the main characteristics of these networks is that devices use resources
randomly and sporadically. It is common to use the concepts of active and inactive devices.
We say that a device is active when it uses network resources to transmit data packets
or preambles at a given instant of time. Fig. 1.3 shows a typical mMTC network that
contains both active and inactive devices.

One of the main requirements for devices in a mMTC network is that they are
energy-efficient (ULLAH et al., 2021). As human interaction with the devices can be null,
then repair processes must be done autonomously. Therefore, it is extremely important
that the devices use low-complexity algorithms so that an optimization of battery life is
possible.

Examples of devices that need to be energy-efficient are a remote sensor in a farm
communicating over low-power wide-area network (LPWAN) and a marine weather station
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Figure 1.3 – mMTC network with active and inactive devices (ALAM; ZHANG, 2018).

sending data via low-earth orbit satellites (LEO). As these devices can be in hard-to-reach
places, the battery should last long enough so that no human interaction is required.

1.1.4 Random access in mMTC

The focus of this work is on the study of the effects of the high density of mMTC
devices, and the analysis can be extended with the same validity for future mULC and
uMBB scenarios. In mMTC mode, there are thousands of devices that send short data
packets sporadically to a central node or base station (BS), which we call central node
throughout this work. This sporadic access causes the problem of random access (RA), in
which two or more devices can randomly select the same network resources to transmit
their data packets, resulting in a collision. This problem is intensified when the density of
devices increases and when resources are limited in the system, such as a low number of
pilot sequences, intensive reuse of narrow frequency bands or time-slot restriction.

Figure 1.4 shows an example of a random access protocol based on preamble
selection. Before sending payload data, the device needs to send the preamble and get an
acknowledgment response from the BS. After that, the device sends a radio resource control
based on the previous preamble setting. As the orthogonality feature of this protocol is
the use of orthogonal preambles, so if two or more devices select the same preamble, a
collision occurs. It is worth noting that this protocol is grant-based, as it depends on the
permission of the BS to guarantee the device’s access to the network.

Collisions can also occur in resource blocks based on time and frequency domain, as
in the example in Figure 1.5 that shows the mMTC service intermixed with the URLLC;
the latter is represented by the virtual reality users. When the two services select the same
resource block, a collision is characterized.

There are several ways to solve the collision problem. The simplest ones are those
based on ALOHA, where the central node asks the devices to retransmit their packets. In
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Figure 1.4 – An example of RA protocol (PIAO et al., 2021).

Figure 1.5 – URLLC and mMTC collisions (QI et al., 2020).

retransmission step, the chance of the colliding devices to select the same resources again
is reduced. Although ALOHA-based techniques are not very complex to be implemented
in machine-type devices, transmission latency is greatly increased. Strongest-user collision
resolution (SUCRe), for example, is a method that uses properties of mMIMO (BJÖRNSON
et al., 2017) and extra-large mMIMO (XL-MIMO) (NISHIMURA et al., 2020) for collision
resolution in a distributed manner, with performance superior to ALOHA. In (ZHANG
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et al., 2019), it is proposed a feedback-free solution for decoding among asynchronous
transmitters, by jointly employ physical layer network coding to deal with collisions at the
receiver side and protocol sequences to define an medium access control (MAC) scheme at
the transmitter side. Authors compare the proposed method in terms of detecting delay
and the energy consumption with two schemes, one is a TDMA-based scheme and other is
a Fountain code-based scheme to solve asynchronous transmitter collisions. Fountain-based
scheme generates higher energy consumption cost when the number of transmitters grows.

Another alternative is the use of reinforcement learning (RL) techniques, in which
devices can learn what are the best resources available in the network for transmitting their
packets based on rewards sent by the central node. In RL-based techniques, the devices of
the mMTC network forcibly learn which policy causes the maximization of the obtained
rewards. Therefore, there is no dataset that is pre-provided to devices. When considering
RL, devices can use grant-free protocols, which reduce communication latency with the
central node since it is not necessary to ask permission to access network resources. Unlike
the techniques proposed in (ZHANG et al., 2019) and (NISHIMURA et al., 2020), RL
algorithms do not resolve collisions, but only make devices retransmit packets that collided
in another resource block. With this, the device can store which were the resource blocks
used that provide the greatest probability of success, in order to decrease the total latency,
which is desired in mMTC networks.

1.1.5 Reinforcement learning and Q-learning

With the increase in data rates and the amount of information available on the
networks, machine learning (ML) techniques emerged in 5G systems for process automation
based on previous experience. So far, perspectives for 6G systems follow the same trend.
Many algorithms have already been proposed to guarantee the strict requirements of
reliability and latency.

In mMTC mode, the application of RL is more common. The RL is a variant
of ML in which there is an interaction between an agent who performs an action and
receives a reward from the environment, as shown in Fig. 1.6. The agent’s goal is to
maximize the reward obtained. The RL is based on the Markov decision process (MDP).
The MDP is defined by a set of states, a set of actions, a probability of transition from
states and a reward received after the transition. Markov’s property is respected because
the probabilities of future states only depend on the current state (SUTTON; BARTO,
2018).

Fig. 1.7 shows an illustration of an agent’s state transition in an MDP. At time t,
the agent is in a state st. It can perform action at and move to state st+1 with probability
P(st+1|st, at). This process generates the reward Rt+1 with probability P(Rt+1|st, at). Vari-
ous real-life problems can be modeled as an MDP. Two examples are the modeling of a
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Figure 1.6 – RL model (MOHRI et al., 2018).

queue of customers seeking a service in a commercial store and the organization of inflows
and outflows from a company’s stock (WHITE, 1993).

Figure 1.7 – MDP transitions (MOHRI et al., 2018).

The agent needs to find the action policy λ that will guide it to take the best
actions in each state. The goal will always be to maximize the expected reward. Within the
set of possible actions A, Bellman’s optimality condition (MOHRI et al., 2018) guarantees
that an action policy is optimal when:

a ∈ arg max
a′∈A

Qλ(s, a′). (1.1)

Qλ(s, a) is called the state-action value function Q, or simply Q-function, and is defined as
the expected return from taking an action a in state s following the policy λ. As there is a
deterministic optimal policy for every MDP, then there is an optimal maximum Q-value
for the Q-function.

Within the various existing RL techniques, in this work we focus on the Q-learning
(QL) methodology, a RL-based algorithm. In QL algorithms, it is not necessary for the
agent to know the policy λ and the probability models P(st+1|st, at) and P(Rt+1|st, at)
to estimate the state transitions after performing actions. An initial Q-value is set for
all possible state-action pairs and, based on trial and error, the agent performs actions,
obtains rewards from the environment and updates the Q-values. After exploring the data
obtained from the environment for a while, the device starts using the data to make clearer
decisions, based on an exploration-exploitation philosophy.
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Because the QL is a model-free learning method, it is feasible to implement it
on machine-type devices due to its low complexity. In mMTC mode, the agents are the
devices and the environment is the BS or the central node. The action that the devices
take is to send their data packets in the uplink, and the reward is the response of the
central node in the downlink, providing information about the result of the transmission.

Based on the rewards received after each transmission attempt, the devices learn
what are the best network resources to be used to avoid collision, reducing the total latency
of the packet transmission. In (SHARMA; WANG, 2019), devices randomly select a time-
slot to transmit and the reward indicates which are the least congested time-slots resources.
In (SILVA et al., 2020), devices transmit at different powers (power domain resource) in
a non-orthogonal multiple access (NOMA) scenario. The QL algorithm indicates to the
devices what is the best power to transmit in order to avoid collision.

It is known that the Q-learning algorithm converges when state-action pairs are
visited infinitely many times (MOHRI et al., 2018). In practice, it is not necessary to wait
for complete convergence of the algorithm, as the number of packets that devices need to
transmit is finite and the access to network resources is random and sporadic.

When devices are mobile, they can enter and leave the system randomly, so it is
possible to estimate the sending of packets with a traffic model, as used in (BUI et al.,
2019) and (WEERASINGHE et al., 2021). In this scenario, collisions eventually occur.
As a result, packets can arrive late at the central node. An important metric to assess
the freshness of received packets is the average age of information (AAoI), as evaluated
in works (SAHA et al., 2021) and (YU et al., 2021). The goal is to minimize the AAoI
choosing properly the projected system parameters and the algorithms used.

The study of QL in this scenario is very promising because the more information
the the central node is able to include in the reward, the better the learning of the
devices will be, thus being able to increase throughput or reduce latency to guarantee the
requirements of 6G. Some solutions already exist in the literature for 5G systems, however
it is challenging to ensure ubiquitous communication in 6G when increasing the number
of devices. The scenario becomes even more challenging when the successive interference
cancellation (SIC) at the receiver is imperfect. The impact of more realistic scenarios on
RA problem deploying QL algorithms has not yet been discussed in the literature.

1.2 Objectives

1.2.1 General

The general objective of this work is to propose improvements and evaluate the
performance of promising QL algorithms that mitigate the deleterious effects of the RA
problem in mMTC networks with strict throughput and latency requirements in 5G/6G
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system scenarios.

1.2.2 Specific

• To propose improvements in the protocol model of the QL algorithm and discuss
the steps from the initialization of the necessary parameters until reaching the
convergence;

• Numerically evaluate the throughput and latency in terms of time-slots of the main
QL algorithms in different scenarios of system loading factor, learning rates, and
number of transmitted packets;

• Include a physical layer model with power disparity between the devices to create
a NOMA scenario. In this case, we consider SIC in the detection process and we
discuss the problems caused by the imperfect SIC process.

1.3 Organization

This work is organized as follows: in Chapter 2, the general wireless communication
system model is presented in connection with the RA protocol level description; repre-
sentative QL algorithms available in the literature are introduced, and a new QL-based
RA algorithm is proposed. In Chapter 3, a physical layer model is described considering
NOMA transmission scheme and a multi-power level QL algorithm is developed. Chapter
4 points out the main conclusions of this work, as well as the possibilities for future work.
The papers generated during the development of the work are presented in Appendices A,
B and C. Besides, in Appendix D one can find a base of the Python source code deployed
to generate the numerical simulations of our QL-based RA NOMA algorithms.

1.4 Contributions

The main contributions of this work are:

c.1. numerical evaluation of the throughput and latency of different QL-based RA NOMA
algorithms available in the literature;

c.2. improvement in the collaborative QL algorithm for RA discussed in (SHARMA;
WANG, 2019), aiming to quantify expeditiously the reward value and send a smaller
number of bits;

c.3. proposition of a distributed QL RA algorithm whose reward is based on the remainder
number of packets to be sent from each device;
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c.4. analysis of the impacts on throughput and latency when considering imperfect SIC or
even lack of information in the NOMA system model based on the previous literature
results in (SILVA et al., 2020);

c.5. proposition of a QL NOMA algorithm that uses different transmission power levels to
increase the maximum number of devices that the mMTC system is able to support.

During the development of this work, three full papers were devised, either submitted
or published.

1. G. M. F. Silva and T. Abrão. Throughput and Latency in the Distributed
Q-Learning Random Access mMTC Networks. Accepted on January 10th,
2022 in Computer Networks, Elsevier, IF = 4.474 (2020), and reproduced in Appendix
B.

2. G. M. F. Silva and T. Abrão. Multi-Power Level Q-Learning Algorithm for
Random Access in NOMA mMTC Systems. Submitted to Transactions on
Emerging Telecommunications Technologies, Wiley, IF = 2.638 (2020), and repro-
duced in Appendix C.

3. G. M. F. Silva, J. C. Marinello F. and T. Abrão. Adjustable Threshold LAS
Massive MIMO Detection Under Imperfect CSI and Spatial Correlation.
Published in Physical Communication, Elsevier, IF = 1.810 (2020), vol 38, p. 100971,
Feb. 2020. DOI:〈10.1016/j.phycom.2019.100971〉, and reproduced in Appendix A.
This work is indirectly related with the theme of the dissertation.

10.1016/j.phycom.2019.100971
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2 QL-based random access protocol
for mMTC

2.1 Introduction

One of the challenges of 5G systems and beyond is managing the number of devices
that use wireless network resources. As many devices are foreseen in smart cities, smart
agricultures and industry 4.0 networks, then techniques capable of serving all devices
with the highest reliability and lowest latency possible are needed to ensure the necessary
quality of service for AI, UAV, D2D, among others. Therefore, it is very important to
evaluate figures of merit such as throughput and latency in mMTC systems to compare
different techniques and algorithms and assess which ones are most promising for meeting
the strict requirements of 5G and beyond.

In mMTC systems with thousands of devices randomly accessing network resources,
the implemented algorithms must result in low-complexity, as they are used in machine-
type devices with low-processing power; also, such techniques must be able to manage the
available resources in such a way that the devices complete their packets transmission
with the lowest possible probability of collision.

In this chapter, QL algorithms are presented as a good low-complexity solution for
random access mMTC scenarios, as they are model-free learning techniques compared to
other ML algorithms. In this chapter, we propose and analyse a distributed packet QL-
based algorithm and perform a comparison with two representative QL-based RA methods,
the QL-Independent and QL-Collaborative algorithms discussed recently in (SHARMA;
WANG, 2019). Our proposed QL-based solution presents a good performance-complexity
trade-off in the analyzed mMTC scenarios, with high throughput and low latency.

The mMTC system model at the protocol layer is presented in Section 2.2. The
independent and collaborative QL algorithms and the proposed distributed packet-based
are presented and discussed in Section 2.3. The numerical results with throughput and
latency analyses of QL algorithms are presented in Section 2.4. Finally, the conclusions
and findings of this chapter are presented in Section 2.5.

2.2 System model

The system contains N active mMTC devices covered by a central node. The set
contains the ordered device indexes. The devices send data packets to the central node
on the uplink, and the central node sends rewards to the devices on the downlink, as the
example shown in Fig. 2.1.
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N machine-type devices Central node

Data packets

Reward

Figure 2.1 – System model.

Initially, a simplified model is considered where all devices transmit on the same
frequency, but select different time-slots to transmit. The frame consists of K time-slots
for sending uplink packets and a smaller slot for downlink, as shown in Fig. 2.2. By reason
of simplification, it is considered that the downlink time-slot is much smaller than the
uplink time-slots, approximating the total frame size to K time-slots. The central node
performs an adequate power allocation in such a way that it is able to receive the signal
and detect the symbols of all devices with the same power. The time spent on training
and power allocation does not influence the calculation of total latency. This simplification
is considered to focus on performance analysis only at the protocol level. A more realistic
model for the physical layer is used in Chapter 3.

1 2 ... K-1 K R

UL DL

Figure 2.2 – Division of the frame in uplink and downlink time-slots.

Each device has L packets to transmit and only one packet is transmitted per
time-slot. At the end of the uplink period, the central node performs a broadcast containing
a reward for each device, indicating whether the transmission was successful or not. Success
in this scenario is defined as just one device transmitting in a time-slot.

When two or more devices send their packets in the same time-slot, we consider
that there was a collision and the transmission failed. If the transmission is successful, the
device transmits its next packet. In case of failure, the same packet is retransmitted in
the next frame for the interfering devices. We define the set ψk as the set of devices that
selected the k-th time-slot. For example, if the 3rd and the 5th devices selects the second
time-slot, then ψ2 = {3, 5}.
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The focus is to use QL algorithms so that the devices learn which are the best
time-slots to transmit based on the experience of rewards received by the central node.

2.3 QL algorithms

Each device contains a table called Q-table that stores the rewards given the
feedback of the central node. The Q-table for each device has K entries, and the value
of each entry is called the Q-value. The goal of devices is to choose the best time-slot to
transmit packets to reduce collisions.

We can join all the Q-tables K × 1 to form an N ×K matrix containing the tables
for all devices in the system. The Q-value Qn,k indicates the preference of the n-th device
to transmit in the k-th time-slot. The time-slot selected for transmission κn will always
be the index of Q-table whose Q-value is maximum. If two or more values are equal to
the maximum value, then the selection between these values is random. Fig. 2.3 shows an
example with the maximum Q-values highlighted.

0.24 0.98 ... -0.76 0.52

0.65 -0.30 ... 0.02 0.34

-0.32 0.85 ... 0.85 0.58

-0.92 -0.45 ... -0.72 -0.08

Time slots

Devices

1 2 K - 1 K

1

2

N - 1

N

Figure 2.3 – Example of an N ×K matrix containing the Q-tables of N devices. The
maximum Q-values are in green color.

The Q-table can be initialized in several ways. For the scenario described in this
chapter, the Q-table is initialized with all positions equal to zero. Each device updates the
Q-value of the chosen time-slot at the end of the frame. The Q-value update from frame t
to frame t+ 1 is defined by

Q
(t+1)
n,k = (1− α)Q(t)

n,k + αR
(t)
n,k (2.1)

where Rn,k is the reward sent by the central node, and α ∈ [0, 1] is the learning rate, which
is the weight given by the devices for each reward received.

The QL algorithm converges in two different scenarios: when the N devices transmit
all their L packets; or when the N devices find a single time-slot to transmit. In this last
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scenario there will be no more collisions and it will no longer be necessary to update the
algorithm.

The QL algorithms differ in the way they send the reward to the devices, which
can contain different information about the system. Some algorithms can transmit a larger
number of header bits b in the central node, in relation to the number of payload bits p of
the devices. These numbers have an impact on the figures of merit analyzed: throughput
and latency. To measure the performance at convergence, we consider total latency, which
is the total number of time-slots T required for convergence, and normalized throughput,
defined as

T =
(

p

b+ p

)
S

T
=
(

p

b+ p

)
NL

T
. (2.2)

where S is the total number of successful transmissions. The loading factor L = N

K
will be

used to measure performance.

2.3.1 Independent QL

The simplest QL algorithm is the independent one, where the reward sent to the
n-th device at the k-th time-slot is

Rind
n,k =

+1, if transmission succeeds,

−1, otherwise.
(2.3)

The complexity is very low because only one header bit is sent (b = 1). However, as it does
not include any additional information about the state of the system, the performance is
also low, as it is shown in the numerical results in Section 2.4.

2.3.2 Collaborative QL

One of the possibilities of including information about the k-th time-slot in the
reward is to measure the congestion level. In (SHARMA; WANG, 2019), it is defined that
the congestion level can be calculated as

Ck = |ψk|
N

. (2.4)

Ck → 0 when few devices have selected the time-slot, and Ck → 1 in congested time-slots.
As the calculated value is a real number, it is necessary to quantize it in b header bits
to perform a fair performance comparison with the other QL algorithms. Therefore, the
reward sent by the central node using this algorithm is

Rcol
n,k =

+1, if transmission succeeds,

−Mb{Ck}, otherwise,
(2.5)
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whereMb{Ck} is the quantized value of Ck using b bits, e.g., if b = 2 bits and assuming that
the level of congestion varies from 0 to 1, then the reward values can be unambiguously
represented by four quantized levels: Mb{Ck} ∈ {0.25, 0.5, 0.75, 1}, regardless of the
number of devices.

The use of a high number of header bits b impacts both the complexity and the
throughput of the QL algorithm, since the ratio between payload bits p of the devices and
header bits b in the central node decreases with the increase of b.

2.3.3 Proposed distributed packet-based QL

With the increase in the number of devices and the increase in the probability of
collision in crowded mMTC mode, it becomes more difficult for central node to identify
the number of interfering devices. Therefore, the advantage of the collaborative Q-learning
technique in regions with high density of devices depends on an ideal non-feasible scenario.

In addition, independent and collaborative QL algorithms are not completely fair,
as a time-slot becomes unique for one device over the entire learning period, while the
other devices continue to collide and expect to randomly find a suitable time-slot to finish
transmitting all packets.

Therefore, in this subsection a QL algorithm is proposed that is based on the
number of packets that each device still has to transmit in such a way that the devices
that still have many pending packets have a greater reward in relation to those that have
already transmitted more packets. Defining `n as the number of packets that the n-th
device still has to transmit, then an ν factor is defined by

νn = 1− `n
L
. (2.6)

νn → 0 when the device still has many packets to transmit, and νn → 1 when the device
has already transmitted many packets. The reward model used in this algorithm is the
same as the independent one:

Rpac
n,k = Rind

n,k =

+1, if transmission succeeds,

−1, otherwise.
(2.7)

Therefore, only one header bit b = 1 is used in the transmission. The νn factor does not
need to be transmitted, as the device is aware of how many packets are still need to be
transmitted. Hence, the update of the Q-value is carried out depending on the reward
received:

Qt+1
n,k =

Q
t
n,k + α(Rpac

n,k −Qt
n,k), if Tx succeeds,

Qt
n,k + α(νnRpac

n,k −Qt
n,k), otherwise.

(2.8)

=

Q
t
n,k + α(1−Qt

n,k), if Tx succeeds,

Qt
n,k − α(νn +Qt

n,k), otherwise.
(2.9)



44 Chapter 2. QL-based random access protocol for mMTC

We call it a distributed algorithm because the calculation of the reward that goes into
updating the Q-value is transferred from the central node to the devices, based on the
number of packets in which each device has yet to transmit. The pseudo-code of the
operation of the proposed method is present in Algorithm 1. The algorithm does not rely
on any recursion. We define N = {1, 2, . . . , n, . . . , N − 1, N} as the set of device indexes,
K = {1, 2, . . . , k, . . . , K − 1, K} as the set of available time-slots, and Cn as the set for
n-th device that contains the time-slots with maximum Q-values.

Algorithm 1 Distributed Packet-Based RA
Initialize Qn,k = 0, ∀n ∈ N , ∀k ∈ K
Initialize `n = L, ∀n ∈ N ; T = 0, S = 0
while ∑N

n=1 `n > 0 do
Initialize κn = 0, ∀n ∈ N
for n = 1 : N do

if `n > 0 then
Cn = {k ∈ K | Qn,k = max

k
{Qn,k}}

Select randomly: κn ∈ Cn
for k = 1 : K do

T ← T + 1
ψk = {n ∈ N | κn = k}
if |ψk| = 1 then

S ← S + 1
Rpac
n,k = +1, ∀n ∈ ψk

Qn,k ← Qn,k + α(1−Qn,k), ∀n ∈ ψk
`n ← `n − 1, ∀n ∈ ψk

else if |ψk| > 1 then
νn = 1− `n

L
, ∀n ∈ ψk

Rpac
n,k = −1, ∀n ∈ ψk

Qn,k ← Qn,k − α(νn +Qn,k), ∀n ∈ ψk

2.4 Numerical results

In this section, the algorithms described in Subsections 2.3.1, 2.3.2 and 2.3.3
are validated numerically using the Monte-Carlo simulation method using Python. Ten
thousand realizations were considered in the Monte-Carlo simulation to obtain a good
mean of the variables with random distribution. The numerical parameters used are present
in Table 2.1. The figures of merit evaluated are the normalized throughput and the number
of time-slots spent for the convergence of the algorithm.

2.4.1 Number of bits of collaborative QL

As discussed in Subsection 2.3.2, a scalar uniform quantization for the level of
congestion is proposed in this work, because in (SHARMA; WANG, 2019) the effect of
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Table 2.1 – Numerical parameters for protocol layer QL.

Parameter Value
Monte-Carlo realizations Nreps = 10,000
Time-slots per frame K = 400
Network loading factor L = N

K
∈ [0.25; 3.00]

Packets per device L ∈ [50; 500]
Learning rate α ∈ [0.05; 0.5]
Header bits (collab.) b ∈ [1; 2; 4; 8; 16] bits
Payload bits p ∈ [1; 2; 4; 8; . . . ; 256] bits

the number of bits of the collaborative algorithm in relation to the independent one was
not discussed. Therefore, in this subsection, the effect that the quantization of the reward
causes on throughput is evaluated, for a scenario with different numbers of quantization
bits and different loading factors. The result for this analysis is shown in Fig. 2.4.
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Figure 2.4 – Throughput for collaborative QL varying the loading factor, considering p
= 64, L = 100, and α = 0.1.

When considering a very low number of bits, such as b = 1, it is observed that the
throughput falls considerably in overloaded scenarios (1 ≤ L ≤ 3). This is because in this
scenario where there are more devices than time-slots, the evaluation of the congestion
level becomes important to be include in the reward. However, with just one bit it is not
possible to accurately calculate the congestion level, so throughput is reduced.

On the other hand, in the scenario where the number of bits is very high (b = 16),
the throughput is low in scenarios where L ≤ 1, because a very large complexity is spent
in scenarios where the congestion level naturally tends to zero. Hence, it is considered
that b = 4 is a good number of bits to provide a good throughput for different loading
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scenarios. This value will be used in the results that are presented from that subsection.

2.4.2 Normalized throughput

The normalized throughput was evaluated for the three types of QL algorithms
in scenarios with different loading factors. The result is present in Fig. 2.5. For the three
techniques analyzed, the maximum throughput occurs when L = 1, because in this scenario
there is a perfect allocation of the number of time-slots required for the number of devices
present. Throughput is lower for scenarios where L 6= 1, because L < 1 indicates that the
system is overestimated and more devices could be used to take advantage of the system,
as there are more time-slots than devices; L > 1 underestimates the system, where there
are many devices colliding and disputing the existing time-slots. We will focus on the
discussion for scenarios where L > 1 because it is a realistic and typical environment of
crowded mMTC systems.
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Figure 2.5 – Normalized throughput in function of loading factor for independent, col-
laborative, and packet-based Q-Learning, considering p = 64, L = 100, K
= 400, and α = 0.1.

Among the analyzed algorithms, the independent one has the lowest throughput in
crowded scenarios. As the reward is binary and simplified, so there is not much information
that helps the process of learning the devices, causing the throughput to decrease. The
collaborative algorithm has higher throughput because, as the congestion level is informed
in the reward, the devices learn to transmit their packets in less congested time-slots,
improving the throughput.

The performance of the packet-based algorithm is superior to the other techniques
up to L = 1.6. From that point on, the collaborative algorithm is the superior between
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1.6 ≤ L ≤ 3.0, and then all the algorithms converge to the same throughput value at
L = 3.0. It is expected that the collaborative algorithm will perform better in this scenario
because the reward sent includes the level of congestion, which facilitates the devices to
learning the best time-slots to transmit. However, the packet-based algorithm proved to
be superior to the independent one and still presents a lower complexity in relation to the
collaborative one, since fewer bits are used in the calculation of the reward, distributing
the processing among the devices and facilitating the implementation of the central node,
since it does not need to know the number of devices that collided in each time-slot.

2.4.3 Asymptotic throughput

In the previous results, the number of packets was fixed at L = 100 to analyze the
effect of the loading factor on the system. However, through Eq. 2.2, it can be seen that
throughput is also a function of the number of packets. Therefore, in this subsection, the
effect of changing the number of packets on throughput was analyzed. Fig. 2.6 shows the
result obtained when measuring throughput by changing the number of packets from L =
50 to L = 500.
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Figure 2.6 – Throughput as a function of the number of packets, considering loading
factor L = 1, K = 400 time-slots, p = 64 bits, and α = 0.1.

Up to L = 400, the increase in the number of packets causes an increase in
throughput, since the number of successes obtained increases at a greater rate than the
latency to transmit them. However, for L > 400, it was observed that throughput converges
to a constant value, since from that point on, transmitting more packets causes an increase
in the number of time-slots in the same proportion. Therefore, we define asymptotic
throughput as the value of throughput when the number of packets and time-slots tend to
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infinity:

T∞(L) = lim
L,T→∞

[(
p

b+ p

)
NL

T

]
, (2.10)

In the analyzed scenario, it is observed that: T pac
∞ (1) ≈ 0.965; T ind

∞ (1) ≈ 0.940;
T col
∞ (1) ≈ 0.915. The proposed packet-based algorithm presented the best asymptotic

throughput in the result obtained.

2.4.4 Payload bits

In addition to analyzing the effect of the number of packets on throughput, we
analyzed the effect of increasing the number of payload bits p. In Fig. 2.7, the result of
the throughput changing the number of payload bits from p = 1 to p = 256 is shown.
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Figure 2.7 – Normalized throughput as as function of payload bits, considering L = 1.5,
α = 0.1, and L = 100.

Throughput increases with the increase in the number of bits up to p = 64. There
is a convergence to a ceiling throughput from that value. This value p = 64 was considered
in the other simulations present in this work. As the collaborative technique has a larger
number of header bits (b = 4), then it depends on a larger number of payload bits to
present the same throughput as the packet-based technique. For example, to achieve a
normalized throughput of T = 0.5, the collaborative technique needs 16 bits of payload,
while the packet-based one needs 4 bits in the analyzed scenario. The reduction in the
number of payload bits can be an advantage in simplifying the process in which a bunch
of devices randomly access the channel and transmit their packets.
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2.4.5 Latency

As low latency is one of the main requirements of 5G/6G systems, we analyzed the
number of time-slots needed to obtain the convergence of each QL algorithm as a figure of
merit. The result of Fig. 2.8 shows the behavior of the latency of the algorithms with the
increase of the loading factor.
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Figure 2.8 – Total number of time-slots as a function of loading factor considering L =
100, and α = 0.1.

It is clearly observed that the increase in the loading factor impacts the increase
in latency, as the probability of collision increases as the system overloads itself. Up to
L = 1, the latency is the same for all analyzed algorithms. Between 1.25 ≤ L ≤ 2.25,
the independent technique has the highest latency, as there is a greater probability of
collision since the reward is the simplest of all the algorithms. Finally, for L ≥ 2.5, the
packet-based algorithm has the same latency as the independent one.

The collaborative algorithm has the lowest latency of the analyzed scenario, however,
it must be taken into account that it is also the most complex algorithm, since the central
node needs to know which are all the devices that collided in each time-slot, in addition
to informing the value obtained in the reward with more than one bit. Therefore, it is
possible to state that, in the scenario, the algorithm presents a good trade-off between
throughput, latency and complexity compared to the other two algorithms.

2.4.6 Learning rate

The learning rate α is the weight given to the rewards when the device updates the
Q-values in the Q-table, as shown in Eq. 3.7. Here in this subsection, the adopted value
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for the learning rate α = 0.1 is justified. For that, latency was evaluated according to the
learning rate, as shown in Fig. 2.9.

4
5
6
7
8
9

Ti
m
e 
slo

ts
1e4 Loading factor = 1

Independent
Collaborative, b = 4
Packet-based

0.1 0.2 0.3 0.4 0.5
Learning rate

0.8

1.0

1.2

1.4

1.6

Ti
m
e 
slo

ts

1e5 Loading factor = 1.5

Figure 2.9 – Total number of time-slots as a function of learning rate considering L =
100.

It is observed that the increase in the learning rate impacts the increase in latency
necessary for the QL algorithms to converge. When the learning rate is high, the weight
that the devices give to the reward of the central node is greater. Hence, in more congested
scenarios, e.g. L ≥ 1.5, more negative than positive rewards can be expected from the
central node. Therefore, when devices give greater weight to negative rewards, the latency
of the technique increases. This behavior is observed when L = 1.5, as the latency
increases significantly with the increase in the learning rate. When L = 1, this behavior is
smoothed, since the increase in latency only occurs when α = 0.5 for the collaborative
and packet-based algorithms.

2.5 Conclusions

In this chapter, we analyzed the performance of QL-based random access algorithms
at the protocol layer in different loading factor mMTC scenarios, reaching L = 3, with
three devices, in average, disputing for a resource block (time-slot) in crowded mMTC
typical scenario. A distributed packet-based algorithm aided by reinforcement Q-learning
is proposed, in which the reward sent by the central node is binary and the complexity to
updating the Q-table is transferred to the devices side in a distributed way.

The proposed QL-based algorithm presented a higher throughput and a lower
latency when compared to the QL-Independent algorithm, even with both algorithms
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considering the transmission of binary reward in the central node. The superiority is
justified by the different way the calculation and updating of the Q-table in the devices,
since in the proposed algorithm the devices take into account the amount of remaining
packets, which favors the devices having delayed-packets transmission .

When comparing the distributed packet-based QL algorithm with the QL-Collaborative,
a superiority of the former method was observed in under- and slightly-crowded scenarios,
i.e., 0.25 ≤ L ≤ 1.5. The proposed algorithm uses fewer bits in the reward transmission,
which makes the throughput greater in this scenario. Under over-crowded scenarios, L ≈ 3,
the proposed and QL-Collaborative method presented the same throughput. Therefore, it
is possible to conclude that the proposed distributed packet-based algorithm revealed the
best performance-complexity trade-off among the analyzed algorithms, as the throughput
is higher and the complexity is lower when compared to the QL-collaborative one.
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3 Power domain Q-learning for ran-
dom access in NOMA mMTC sys-
tems

3.1 Introduction

In Chapter 2, the mMTC system was analyzed with a focus on the protocol layer
to evaluate the performance of different QL algorithms. In this chapter, the physical layer
model will be considered in order to use the power diversity between the devices aiding
to apply NOMA technique in the central node. Initially, this chapter is inspired in the
results of (SILVA et al., 2020).

When the signal from two devices arrives with an acceptable power disparity at
the central node, it is possible to apply the SIC to remove interference from the signal
from the strongest device and detect the signal from the weakest device. By including the
power domain, two or more devices can select the same time-slot without collision, which
impacts on a decrease in latency, which is one of the main objectives of mMTC systems.
In this scenario, it is possible to use a decentralized Q-learning algorithm in which the
devices learn what is the best transmission power to transmit their packets, exempting the
central node from spending complexity with power allocation. The fact that the technique
is decentralized is an advantage in mMTC systems where there are thousands of devices
being served by a single central node.

In this chapter, we analyze the performance of QL algorithms when added to the
physical layer with path loss and fading power loss models. This scenario is more realistic
because successful transmission is only counted at the central node when the SINR reaches
an acceptable threshold, which is what happens in practice, since the receivers have an
operating sensitivity that only correctly detects the information when the received power
is high enough.

We propose the multi-power level QL (MPL-QL) algorithm, which also performs
learning in the power domain. Considering that devices can transmit at different power
levels to generate power disparity in the transmitter, then it is possible to apply QL so that
devices find out what is the suitable power level to increase the probability of successful
packet transmission. The proposed algorithm proved to be superior to other algorithms in
the literature.

This chapter is divided as follows: the physical layer system model is described in
Section 3.2; the operation of the proposed MPL-QL algorithm is presented in Section 3.3;
the numerical results of the MPL-QL compared to other QL algorithms are presented in
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Section 3.4; in Section 3.5, the final conclusions of the chapter are presented.

3.2 System model

There are N mMTC devices sending uplink (UL) packets to a central node in a
circular cell with radius r. The frequency resources used are a carrier fc and a bandwidth
B. The n-th device is dn meters away from the central node and it transmits with power
Pt,n.

The transmit frame in the UL is divided into K time-slots, while a downlink (DL)
time-slot at the end is deployed for central node broadcast. The devices randomly select
a time-slot to transmit. The set ψk contains the indexes of all devices that selected k-th
time-slot, k ∈ {1, . . . , K}. Furthermore, each device has L packets to transmit. The end
of system transmission occurs when all devices successfully transmit all of their L packets.
At the end, we define the total latency δ as the total number of spent frames to attain
convergence, i.e., all packets transmitted successfully by all devices. Assuming that the
DL slot is much smaller than the UL slot, it is possible to approximate the length of a
frame to K time-slots and the total number of time-slots until the end is δK. Fig. 3.1
shows how transmission frames are divided.

1 2 ... K-1 K R

UL DL

1 2 ... K-1 K R

UL DL

δ frames until convergence

Frame 1 Frame δ 

1

2

3

N
1

2

3

N

Start: L packets per device to transmit End: Devices transmitted all their packets

Loading

factor: N/K

Loading

factor: N/K

Figure 3.1 – Frame in UL and DL time-slots until the end of system transmission (all
devices), namely convergence of transmission process.
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The received signal in the central node at the k-th time-slot is simply defined as:

yk =
∑
∀n∈ψk

xn,k + wk, (3.1)

where xn,k is the attenuated signal transmitted by the n-th device at the k-th time-slot,
and wk ∼ CN (0, N0B) is the additive white Gaussian noise (AWGN) at the receiver in the
k-th time-slot with power spectral density N0. The signal transmitted by the n-th device
is x̃n, and the attenuated received signal before AWGN xn,k takes into account the path
loss and short-term fading effects.

It is necessary that there is CSI in the transmitter (device) and in the receiver
(central node) to detect the information correctly in both communication directions.
However, as the most relevant information are the uplink data packets, a low-complexity
channel estimation technique is enough to detect downlinks in devices.

Let’s consider that hn,k is an independent and identically distributed zero mean
and unit variance Rayleigh fading of the n-th device at k-th time-slot. Therefore, the
instantaneous signal-to-interference-plus-noise ratio (SINR) received from the n-th device
at the k-th time-slot can be defined as

γn,k = Pn,k∑
∀j∈ψk,j 6=n Pj,k + w2

k

, (3.2)

where Pn,k = h2
n,kP̄n is the instantaneous power of the n-th device at k-th time-slot. P̄n is

calculated based on the log-distance path loss model:

P̄n = Pt,n + P̄d0 − 10η log10

(
dn
d0

)
, [dB] (3.3)

where η is the path loss exponent, d0 is a reference distance, and P̄d0 is a reference constant
power given by

P̄d0 = 20 log10

(
c

4πd0fc

)
. [dB] (3.4)

Assuming that the devices have the same quality of service (QoS) requirements, we can
set a threshold SINR γ̄ at the receiver to ensure the packet can be detected. The packet
transmitted by the n-th device at k-th time-slot can be successfully received at the central
node when γn,k ≥ γ̄.

3.3 Multi-power level Q-learning algorithm

This section describes the proposed MPL-QL grant-free RA procedure. Each device
can transmit with a maximum power Pmax. The transmitted power Pt,n of the n-th device
can assume P equidistant power levels between 0 and Pmax, e.g. for P = 4:

Pt,n ∈
{
Pmax

4 ,
Pmax

2 ,
3Pmax

4 , Pmax

}
[W ].



56 Chapter 3. Power domain Q-learning for random access in NOMA mMTC systems

The selection of which time-slot and power level the device will transmit is based
on the Q-table indices whose Q-value is maximum. When there are two or more values
equal to the maximum, the device randomly selects between them. Fig. 3.2 depicts the
structure of the power level and time-slot selection based on the Q-table.
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Figure 3.2 – Q-table for each device.

As the devices present a power disparity given by the differences in distances and
transmission powers, then the central node can apply a successive interference cancellation
(SIC) procedure to remove the interference from the devices that collided in the same
time-slot. With this, the SINR considering NOMA becomes:

γnoma
n,k = Pn,k∑|ψ|

j=n+1 Pj,k + w2
k

. (3.5)

The transmission of the n-th device is successful if

Rn,k,p =

+1, if γnoma
n,k ≥ γ̄

−1, otherwise.
(3.6)

With the reward received, the device updates its Q-table (SUTTON; BARTO, 2018):

Q
(t+1)
n,k,p = Q

(t)
n,k,p + α(Rn,k,p −Q(t)

n,k,p). (3.7)

`n is the number of packets that the n-th device still has to transmit. The devices continue
transmitting until all of their L packets are transmitted. Total latency δ is the number of
frames required for the complete transmission of packets until the algorithm converges.
Algorithm 2 indicates the pseudo-code step-by-step of the proposed MPL-QL operation.

3.4 Numerical results

In this section, the results of simulations of QL algorithms in RA mMTC scenarios
are presented. The results were obtained using the Monte-Carlo simulation method. The
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Algorithm 2 MPL-QL algorithm
Initialize Qn,k,p ∼ U [−1, 1] ∀n, k, p;
Initialize `n = L, ∀n;
Initialize δ = 0, S = 0
while ∑N

n=1 `n > 0 do
for all devices that `n > 0 do

Search k and p where
Qn,k,p = max

k,p
{Qn,k,p}

for all time-slots k = 1 : K do
if |ψk| > 0 then

Calculate γnoma
n,k using Eq. (3.5) ∀n ∈ ψk

if γnoma
n,k ≥ γ̄ then
Success: S ← S + 1, `n ← `n − 1
Rn,k,p = 1

else
Rn,k,p = -1

Update: Q(t+1)
n,k,p = Q

(t)
n,k,p + α(Rn,k,p −Q(t)

n,k,p)
Increment a frame: δ ← δ + 1

source code of the simulations was developed in Python language and is presented in a
summarized form in Appendix D.

The numerical parameters used in this section are presented in Table 3.1. The
value of the chosen parameters of frequency and cell size are typical of IoT scenarios, and
the amount of devices represents a crowded NOMA mMTC scenario. The typical SINR
threshold was selected as γ̄ = 3, considering that the outage probability is a suitable
metric for the communication system performance evaluation (SILVA et al., 2020). Hence,
if the SINR is greater than or equal to the Shannon capacity, i.e.

γnoma
n,k ≥ 2τ − 1, (3.8)

where τ is the spectral efficiency in bits/s/Hz, then a desired (adopted) spectral efficiency
of τ = 2 bits/s/Hz makes γ̄ = 3.

3.4.1 Throughput and latency of MPL-QL

The results presented in this subsection summarize a characterization of the MPL-
QL algorithm in terms of normalized throughput and latency for different power levels
P. The aim is to assess which is the suitable number of power levels that provides a
good performance-complexity trade-off. A large number of levels increases the order of the
Q-table stored in the devices, as shown in Fig. 3.2.

The normalized throughput used in this section is an approximation of the through-
put calculated by Eq. 2.2. We considered that the number of payload bits is much higher
than the number of header bits (p >> b). Because of that, the normalized throughput
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Table 3.1 – Numerical parameters for power domain NOMA QL.

Parameter Value
Monte-Carlo realizations Nreps = 10000
Time-slots per frame K = 100
Network loading factor L = N

K
∈ [0.25; 10]

Packets per device L ∈ [50; 100]
Learning rate α = 0.1
SINR threshold γ̄ = 3
Transmit power levels P ∈ [2; 4; 8; 12; 16]
Cell radius r = 200 m
Reference distance d0 = 1 m
Bandwidth B = 125 kHz
Carrier frequency fc = 915 MHz
Path loss exponent η = 3
Noise PSD N0 = −150 dBm/Hz
Maximum power Pmax = 1 mW

becomes
T ≈ S

δK
. (3.9)

This approximation is valid because the maximum number of header bits b needed to
obtain good throughput is b = 4 for the collaborative QL algorithm and b = 1 for the
others, as analyzed in Subsection 2.4.1. Considering that devices can transmit packets
with payloads of 128 or even 256 bits, then the correction term p

b+ p
in Eq. 2.2 becomes

negligible in this NOMA scenario.
In Fig. 3.3, the normalized throughput behavior as a function of the loading factor

L is shown for different values of power levels P . We considered L = 100 packets and K

= 100 time-slots to obtain this result.
We can see that increasing the number of power levels from P = 2 to P = 12

causes an increase in normalized throughput. With higher power levels, there is a greater
difference between the signal from the desired device and the signal from interfering devices,
which allows the SIC to detect more packets, increasing the SINR.

However, when increasing P from 12 to above, it is noticed that the throughput
gain becomes marginal. This indicates that there is an interference limit in the system
in which it is not possible to detect more packets in the receiver, as the power difference
between the desired signal and the interferers becomes smaller and smaller, and it is not
possible to reach the SINR threshold to ensure quality of the system.

There is a P value between 8 and 12 that ensures a good trade-off between perfor-
mance and complexity, as it ensures good throughput without increasing the complexity
of Q-table storage on devices.

The latency δ of the MPL-QL was also analyzed, being the total number of frames
needed for the convergence of the algorithm. The same simulation parameters used in the
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Figure 3.3 – MPL-QL throughput for different power levels P .

result of Fig. 3.3 were considered. The result of latency as a function of the loading factor
is shown in Fig. 3.4.
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Figure 3.4 – MPL-QL latency (total number of frames).

Latency decreases with increasing power levels. For a loading factor L = 6, the
MPL-QL with P = 8 has 30% lower latency compared to P = 2. With more transmitter
power levels, the higher the SINR, as discussed also in the throughput result of Fig. 3.3.
This causes an increase in the number of successes that occurs within a frame, which
makes the devices transmit their packets faster and the algorithm to finish in a shorter
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time.
It is also observed that the latency reaches a lower limit when P is increased from 8

to 16. As the number of levels increases, the granularity increases, which makes it difficult
for the SIC in the receiver to remove the interfering devices, decreasing the number of
successes and achieving maximum performance limited by system interference.

It is considered in the following simulations that the MPL-QL operates with P
= 8 power levels, as the results in Figures 3.3 and 3.4 indicate that it is a good value
to guarantee a good trade-off between throughput, latency and complexity, excluding
transmitter hardware complexity in providing eight power levels. This P value is used in
comparison with other QL algorithms present in the literature.

3.4.2 Convergence of MPL-QL

In this subsection, we analyze the convergence of the MPL-QL for two different
power levels: P = 2 and P = 8. The figures of merit are evaluated in function of the
number of frames. The results were obtained for the n-th device, but the behavior observed
in the average is the same for all devices in the system. The figures of merit are calculated
over M realizations.

The first figure of merit considered in the convergence analysis is the interference
that the n-th device suffers when selecting a time-slot to transmit. Interference is calculated
as

In,k =
|ψk|∑

j=n+1
Pj,k. [W ] (3.10)

The calculation is performed by the receiver after the SIC. In addition to interference,
we also evaluate the convergence factor ν, previously defined in Eq. 2.6. The convergence
factor indicates how close the n-th device is to completing the complete transmission
of its packets. At the beginning of the algorithm, ν = 0. When the device finishes the
transmission of all packets, ν = 1.

Fig. 3.5 shows the convergence of the MPL-QL algorithm in terms of interference
and convergence factor for P = 2 and P = 8 considering different loading factors L and
total number of packets per device L.

At the beginning of the algorithm, all devices are colliding in time-slots and learning
which ones are the best to transmit. That is why an interference oscillation is observed
until reaching L frames, i.e. L = 50 in Fig. 3.5a) and L = 100 in Fig. 3.5b). After L
frames, the devices that selected the best time-slots with the lowest congestion levels finish
transmitting the L packets, so they exit the algorithm. Because of that, the interference
observed in the n-th device starts to reduce steadily until it becomes zero. It can be seen
in Figures 3.5b) and Fig. 3.5c) that the instant at which the interference is zero is the
same at which the convergence factor is one, because at this point where there is no more
interference, the n-th device ends the transmission of its packets.
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Figure 3.5 – Interference and convergence factor of the MPL-QL algorithm considering
the n-th device. a) L = 50 packets; b) L = 100 packets; c) convergence
factor under L = 100 packets.

Increasing the loading factor causes more devices to compete for available time-slots
in the frame. That is why interference is higher when L = 6 compared to L = 3. Also,
convergence is slower for a higher loading factor, as with higher interference, more collisions
occur, which forces devices to retransmit the same packet more times until the successful
transmission.

Finally, the increase in the number of power levels causes the interference to decrease
between devices, as it increases the granularity of the division between the levels, which
consequently increases the probability of interfering devices to select lower power levels in
relation to the desired device. This makes the initial interference lower for P = 8 compared
to P = 2. This makes convergence also occur faster, as the interference becomes zero
quicker, which increases the SINR and more packets are successfully transmitted.
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3.4.3 Comparison with other QL algorithms

The MPL-QL algorithm with P = 8 is compared in this section with other algo-
rithms: a) slotted ALOHA (SA), in which there is no central node reward and the device
does not learn the best time-slot to transmit, always selecting randomly; b) independent
QL; c) collaborative QL; and d) distributed packet-based QL.

The MPL-QL is the only algorithm that depends on a two-dimensional learning,
being both in the domain of time-slots and in the domain of power levels. The other
techniques perform learning only in the time-slots domain, so the Q-table of these algorithms
is a (K × 1) vector, in contrast to the two-dimensional (K × P) Q-table of MPL-QL.
Besides, all devices transmit with Pmax in the other QL algorithms, as it is a simple way
to compare with the adaptive power of MPL-QL. For a broad comparison, it would be
more representative to aggregate a centralized (or distributed) power allocation policy by
determining the optimal power for the other algorithms. However, such analysis under a
specific power allocation strategy has not been carried out in the current work, being left
for future works.

Fig. 3.6 shows the result of comparing the throughput and latency of the analyzed
algorithms as a function of the loading factor L, considering K = 100 time-slots/frame
and L = 100 packets/device. The algorithm with the lowest throughput is SA, as it is the
most simplified form of sending the packets without getting feedback from the central
node. The device does not take advantage of the less congested time-slots, which means
that even when success is obtained at the receiver, a new time-slot is randomly selected
by the device. Latency was not analyzed for SA. There is no feedback from the central
node, so packet transmission always ends after L frames for all devices.

From (SHARMA; WANG, 2019) and what was discussed in Chapter 2, it is
noted that there is a difference in throughput and latency of independent, collaborative,
and packet-based QL algorithms. In some scenarios, packet-based was superior, while
collaborative was superior in others. However, in the scenario analyzed in Fig. 3.6, it
is noted that the performance of the three algorithms is quite similar. The path loss
and fading power loss effects of the realistic scenario analyzed in this chapter degrade
the performance of the algorithms and the gains that were observed previously become
marginal because of the severity of the fading.

The MPL-QL proved to be an algorithm that deals well with the effects of RA
in NOMA mMTC scenarios, as it presented the best throughput and the lowest latency
among all the discussed algorithms. As the algorithm generates extra power diversity by
allowing more than one transmit power level, then devices that may be close can transmit
at different power levels, which causes it to generate a power difference at the receiver
in such a way that the SIC can be performed, increasing the SINR and consequently the
number of successes obtained.

It can be seen in Fig. 3.6 that, considering a loading factor L = 4, which means that
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Figure 3.6 – a) Throughput, and b) Latency for the SA and four QL-based algorithms,
with P = 8 for the proposed MPL-QL. L = 100 and K = 100.

there are 4 active devices competing for a time-slot, the MPL-QL provides approximately
2.3 successes/frame, while the collaborative QL provides 1.7 successes/frame. This indicates
that MPL-QL allows more devices within the system to transmit successfully, being the
most suitable for NOMA mMTC scenarios in which the number of devices can reach tens
of thousands.

3.4.4 QL algorithms with imperfect SIC

In all the results obtained in this chapter, it was considered that the central node
is capable of performing a perfect SIC during the reception process. This scenario is ideal,
because when the loading factor increases, more devices compete for the same time-slot
and it becomes more difficult for the central node to cancel the interference perfectly,
without generating a residual error that is propagated through the devices.

To evaluate the behavior of the proposed MPL-QL algorithm in more realistic
scenarios, we consider an imperfect SIC model based on (KARA; KAYA, 2020) that
modifies the SINR calculation:

γ̃noma
n,k = Pn,k

β
∑n−1
j=0 Pj,k +∑|ψ|

j=n+1 Pj,k + w2
k

. (3.11)

β is the SIC error factor. When β = 0, the SIC is performed perfectly. On the other hand,
when β = 1, there is no SIC at the receiver. Typical values for the SIC error factor are in
the range β ∈ {0.01; 0.30}, following the values adopted in (KARA; KAYA, 2020).
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In Fig. 3.7, it is shown the effect on throughput of the MPL-QL, independent QL,
and packet-based QL algorithms by changing the SIC error factor between β = 0, β =
0.01 and β = 0.02. Collaborative QL was omitted in this scenario as it has already been
shown to be performs very similarly to independent and packet-based algorithms. K =
100 time-slots/frame and L = 100 packets/device were considered.
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Figure 3.7 – Independent QL, Packet-based QL and MPL-QL under SIC imperfection:
a) β = 0; b) β = 0.01; β = 0.02. We considered L = 100 and K = 100.

The increase in β increases the interference of the system, because for β > 0, there
is a residue of interference from devices with higher powers that was not perfectly canceled
out. Increasing interference decreases SINR, which consequently increases latency until
algorithm convergence, decreasing throughput.

For the MPL-QL algorithm, for β = 0, the maximum throughput is reached when
L = 6, that is, with 6 devices disputing a time-slot. For β = 0.01 and β = 0.02, the
maximum throughput is obtained for L = 3 and L = 2, respectively, which indicates that
the maximum number of devices that the system supports is reduced.

The algorithm that presents the best throughput among the analyzed algorithms
is the MPL-QL. As multiple power levels are considered in the transmitter, the power
is received with disparity. Even with an imperfect SIC, the central node can more easily
remove interference from devices that have selected the lower power levels. This does not
happen for the other algorithms, since the transmitted power is the same for all devices.
Therefore, it is concluded that the MPL-QL is the most suitable algorithm in the NOMA
mMTC scenario as it provides a greater power granularity and allows more devices to be
serviced using the same time-slot resources. Indeed, to further mitigate the impact of SIC
imperfection under crowded mMTC scenarios, it would be possible to use low-complexity
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unbalanced power allocation techniques. Hence, the powers could arrive at the receiver side
with pre-defined disparities, facilitating the central node’s work to cancel the interfering
signals.

3.5 Conclusions

When considering a realistic power model in QL algorithms, it was observed that
the performance of the independent, collaborative and packet-based algorithms presented
in Chapter 2 had the same performance, as time-domain learning alone is not enough to
deal with collisions that occur when two devices transmit at the same power in a given
time-slot.

Therefore, the MPL-QL algorithm was proposed, which considers power diversity
in the transmitter, making the QL algorithm perform learning both in power and time
domain. It was observed that 8 power levels present the best performance-complexity
trade-off, as the increase in throughput from that level is marginal, and with more levels,
the complexity increases as the order of the Q-table is increased.

In the other results, considering the MPL-QL with 8 power levels, the throughput
and latency were compared with the other QL algorithms, and it was observed that the
MPL-QL has the best performance, since the power diversity at the transmitter causes
the power disparity to be greater at the receiver, increasing the average SINR, which
consequently increases throughput. The superiority of the MPL-QL is maintained when the
realistic imperfect SIC model was added, in which interference is not completely eliminated
in the receiver.
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4 Conclusions

The results obtained in this work showed the performance in terms of throughput
and latency of different QL algorithms for mMTC networks. The improvement proposed
in the collaborative QL algorithm revealed that the number of reward quantization bits
cannot be too low or too high because it directly affects the accuracy of reward value, the
decision of device in access the time-slot resource, and as a consequence the final system
throughput. The trade-off value found was 4 bits.

The proposed packet-based algorithm has demonstrated be promising in terms of
(higher) throughput regarding the collaborative algorithm in some scenarios of application
and always superior to the independent QL algorithm. Although the latency of the
collaborative algorithm is lower when compared to the one proposed, its complexity is
higher because it is necessary for the central node to know the number of devices that
collided in each time-slot resource. On the other hand, the packet-based algorithm results in
a simplified reward procedure, just like the independent QL algorithm, while the processing
remains distributed among the devices, which is an crucial advantage in crowded mMTC
scenarios.

When considering the power domain in the NOMA mMTC scenario, it was noticed
that the performance of the QL algorithms was different compared to the protocol layer
scenario only. The throughput and latency of the independent, collaborative, and packet-
based algorithms were similar. Therefore, the MPL-QL random access protocol was
proposed, which uses different power levels at the transmitter side, increasing the SINR
at the receiver side and makes more successes occur in the same time-slot. The MPL-QL
with eight power levels has revealed the best trade-off between throughput, latency and
complexity among all analyzed algorithms.

4.1 Future research directions

In this section, topics for future research are presented for the discussions covered
in this Master’s Dissertation:

• Traffic models and age of information: The mMTC network can include active
and inactive devices with a typical probability of activation around 1%. This differs
from what is analyzed in this work in which all devices are active and sending
packets. Considering that devices can be activated sporadically, there are some
new challenging issues that require innovative traffic models for mMTC use mode.
Because in such scenarios, devices can enter and leave the transmission system with
different mobilities and probability of activation; besides, some devices may have
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many packets to transmit while others may enter to transmit a few packets. In
such distinct cases, modeling the input/output of devices in the system, monitoring
the number of packets to be sent, and the rate of success of transmission could
be challenging. Furthermore, age of information can be a valuable figure of merit
to evaluate the delay of arrival of packets at the receiver when there is a collision
between two or more devices considering the same block of resources;

• Low-complexity ML techniques: the QL algorithms used in this work have in-
termixed learning and testing phases, which can generate an exploration-exploitation
problem, as the device needs to decide between continuing to explore the system
or exploiting the data already collected. The same figures of merit evaluated in
this work can be applied in low-complexity ML techniques, such as linear machine
learning discussed in (MEI et al., 2021) and the two-class neural network present in
(ABDELMOUMIN et al., 2021), which already provide devices with a set of learning
data in a preliminary phase, and data testing is performed in a second stage.
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In this paper, a likelihood ascent search (LAS) detector with adjustable threshold (ρ-LAS) is pro-
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computations. In addition, ρ-LAS provided a much better performance-complexity tradeoff in scenario
with medium signal-to-noise ratio (SNR) and high number of antennas, a common operation scenario
in M-MIMO systems. Finally, the ρ-LAS M-MIMO and three representative M-MIMO detection methods,
namely the polynomial expansion (PE), the dual band Newton inversion (DBNI) and the iterative
sequential detector (ISD), are compared. The results indicate a substantial performance-complexity
tradeoff improvement for our proposed ρ-LAS detector.
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1. Introduction

Low latency, high data rates, high quality of service (QoS)
and high energy efficiency are the goals of the fifth genera-
tion (5G) of wireless communication systems [1]. One of the
proposed technologies to integrate 5G is the massive multiple-
input-multiple-output (M-MIMO) system [2], in which a large
array of antennas can guarantee the demand for high data dates
of users in 5G. M-MIMO systems provide a high gain in spec-
tral efficiency (SE) and energy efficiency (EE) using only linear
processing [3]. Improvements in SE occurs due to the high multi-
plexing gain, and EE is improved since the transmitter antennas
can concentrate power only in the receiver direction [4,5].

In [6], it is demonstrated that the fast fading and uncorre-
lated noise effects disappear as the number of antennas grows
without limit. However, other problems and effects still remain
in such systems. One of the problems in M-MIMO systems is
the uplink detection. With a large number of transmit anten-
nas, low complexity detectors such as matched filtering (MF)
have a poor performance. Detectors with matrix inversions such

∗ Corresponding author.
E-mail address: taufik@uel.br (T. Abrão).

as zero forcing (ZF) and minimum mean square error (MMSE)
become impracticable due to large matrix dimensions. Thus, de-
tectors with good performance-complexity tradeoff are needed in
M-MIMO systems.

One detector that combines low complexity with good perfor-
mance in M-MIMO systems is the likelihood ascent search (LAS)
detector [7]. LAS uses a low-complexity linear detector as a initial
solution and changes iteratively the estimated symbols aiming to
increase the likelihood function [8].

There is a wide family of LAS detectors [9–11], differing in
how they choose the symbol candidates to be changed aiming
to decrease the cost function or equivalently increase the likeli-
hood function. For example, the way to change symbols can be
sequential (SLAS), parallel (PLAS), global (GLAS) or in multistages
(MLAS). In this work, we considered SLAS for simplicity. Some
works [12–14] apply an optimization in the known LAS detector
to improve performance or to decrease complexity order. Our
focus in this work is to change the updating rule in order to
improve performance. The updating rule from LAS detector is
defined as the decision process to change a data symbol aiming
at increasing the likelihood function or equivalently decrease the
cost function. It sometimes can be more strict or smooth; hence, a
parameter ρ can be aggregated to adjust such updating rule in or-
der to decrease the bit error rate (BER) [15]. The choice of ρ value

https://doi.org/10.1016/j.phycom.2019.100971
1874-4907/© 2019 Elsevier B.V. All rights reserved.
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depends on the system and channel operation characteristics,
including signal-to-noise ratio (SNR) level, number of antennas,
modulation order, and quality of channel state information (CSI)
estimation. When the choice of ρ value reflects the best LAS bit-
error rate (BER) performance, we called this detector as adjustable
threshold LAS (ρ-LAS).

Recently, many detection techniques have emerged as low-
complexity suitable-performance alternatives for M-MIMO sys-
tems. In [16,17], a polynomial expansion (PE) is used to estimate
the inverse of channel matrix with less complexity than MMSE.
In [18], it is considered a dual band Newton inversion (DBNI)
method, where some non-diagonal elements of the channel ma-
trix are disregarded. The PE and DBNI detectors estimate the
transmitted symbol vector considering an low computational cost
approximation for the inverse channel matrix H. In this sense, the
PE detector considers a polynomial approximation with Kpe order,
whereas the DBNI detector considers a diagonal in band matrix,
where the Edbni elements neighboring the main diagonal of the
matrix H are considered. Besides, an iterative sequential detector
(ISD) approach capable of removing interference from unwanted
users in the received signal vector has been proposed in [19]. The
ISD detector is an iterative detector similar to LAS that considers
kisd iterations in its detection process.

MIMO detectors based on matrix inversion approximations
present improved BER performance in systems operating with
low antenna loading factor, i.e., when the ratio between the num-
ber of transmitter antennas1 and receiver antennas, L = nT

nR
≪ 1.

However, under boundary conditions where the number of trans-
mitting antennas becomes close to the receiving antennas, L ≈ 1,
the performance of such detectors is remarkably worsened. In
addition, the robustness of the M-MIMO detectors against spatial
correlation due to antenna array is not discussed in the literature
despite being a recurrent problem in M-MIMO.

In [20], the authors discuss an expectation propagation ap-
proximation (EPA) to reduce complexity in M-MIMO while main-
taining good performance. To accomplish this, the authors ex-
plore channel hardening by considering very low antenna loading
factor to avoid matrix inversion and reduce complexity. How-
ever, when considering channel matrix degradation by correla-
tion or estimation error, channel hardening properties vanish. The
authors do not analyze the performance of these detectors in
such M-MIMO degrading scenarios. Moreover, in [21] the authors
present a low-complexity detector that considers a reliability-
feedback ordering aiming at improving performance regarding
the linear techniques, such as ZF and MMSE, but being more
complex than these detectors. Our technique can be less complex
than linear detectors in certain scenarios because it does not
apply any matrix inversion.

The authors in [22] discuss the LAS detector performance un-
der channel estimation error scenarios. To improve bit-error-rate,
the authors propose the use of the equivalent noise covariance
matrix. However, it is still necessary to invert the covariance
matrix, which also increases the complexity, resulting in a burden
computation regarding our proposed technique.

The contribution of this work is twofold: firstly, we find a
numerical factor ρ that adjusts the exchange of symbols in dif-
ferent signal-to-noise power ratio (SNR) scenarios and number
of antennas, maximizing the M-MIMO system performance. The
proposed procedure follows a different way from what was pro-
posed in [15], where the ρ parameter was only generated for
specific SNR and number of antennas scenarios. Secondly, the
robustness of the proposed ρ-LAS detector is analyzed numeri-
cally in scenarios much more realistic, including antenna spatial

1 Or equivalently, the number of users equipped with a single transmitting
antenna.

correlation, caused by the arrangement of the antenna array, in
opposition to [15–19] that only consider an imperfect channel
state information caused by errors in the estimation process.
Moreover, the analyzed detectors’ performance takes into account
practical scenarios with low and high antenna loading factor.
Finally, we also evaluate the performance-complexity tradeoff for
the proposed detector, while comparing with recent M-MIMO
techniques proposed in [16–19].

The remainder of this paper is organized as follows. Section 2
presents the M-MIMO system model and detection techniques
used in this work. In Section 3 we describe the proposed ρ-LAS
M-MIMO detector. The numerical simulation analysis, including
performance, complexity and comparison with other representa-
tive M-MIMO detector are driven in Section 4. Final remarks and
conclusions are offered in Section 5.

2. System model

We consider a point-to-point M-MIMO uplink system with nT
antennas at the transmitter and nR antennas at the receiver. The
jth transmitter antenna transmits the symbol xj. The ith receiver
antenna receives the symbol xj multiplied by a complex Gaussian
channel gain hij with zero mean and unit variance. The received
signal is also deteriorated by an additive white Gaussian noise
(AWGN) sample ni, with zero mean and power spectral density
N0. Considering all the nT antennas, the symbol yi received on
the ith antenna is given by

yi =
nT∑
j=1

hijxj + ni. (1)

We can rewrite Eq. (1) in the matrix notation to cover all the nR
receiving antennas:

yc = Hcxc + nc, (2)

where yc is the nR×1 BS received signal complex vector, xc is the
nT×1 UE transmitted signal complex vector, Hc represents the
nR×nT complex channel gain matrix between UEs and BS and nc
is the nR×1 complex AWGN vector.

Each transmitted symbol xj can assume a complex value given
by the complex constellation set Sc . For the M-QAM modulation,
the symbol set is defined as Sc = {a + jb | a, b ∈ {−

√
M +

1,−
√
M + 3, . . . ,−3,−1,+1,+3, . . . ,

√
M − 3,

√
M − 1}}.

It is usual to transform the complex system model in Eq. (2)
into a real model to facilitate the analysis of detection tech-
niques [8]. The dimensions of the vectors and matrices are dou-
bled, separating the complex variables into their real and imag-
inary parts. The vectors yc, xc and nc are transformed into yr =
[R(yc)T I(yc)T ]T , xr = [R(xc)T I(xc)T ]T and nr = [R(nc)T I(nc)T ]T .
The matrix Hc becomes Hr given by

Hr =

[
R(Hc) −I(Hc)
I(Hc) R(Hc)

]
. (3)

Thus, the new model for the received signal vector is given by

yr = Hrxr + nr. (4)

For convenience, the subscript r of Eq. (4) is disregarded. Now,
the complex set Sc for the M-QAM modulation becomes the real
equivalent set S for

√
M-PAM modulation, given by S = {w | w ∈

{−
√
M+ 1,−

√
M+ 3, . . . ,−3,−1,+1,+3, . . . ,

√
M− 3,

√
M−

1}}.
Along this work, we have assumed a power allocation tech-

nique that reverses the effect of path-loss. Hence, we can consider
only the small-scale fading for simplicity while including the
long-term effect on the SNR variation.
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2.1. Maximum likelihood (ML) detector

The optimal detector which finds the signal vector with the
maximum probability of being transmitted based on the observed
received signal, described by Eq. (4), is the maximum likelihood
(ML) detector. The equation that represents the estimated signal
by ML is [23]

x̂ml = argmin
x ∈ S2nT

∥y− Hx∥2, (5)

where S is the real equivalent symbol set depending on the
modulation order. ML detector searches exhaustively the best
solution in the symbol set. When considering M-QAM modu-
lation, for example, it is observed that the complexity of ML,
Cml, is exponential with the number of transmitting antennas nT
regarding the modulation order M , i.e., Cml ∝ MnT [24–26], which
is very large when the number of antennas and modulation order
increase, becoming impracticable in M-MIMO systems because its
large number of antennas.

2.2. Linear detectors

Sub-optimal linear detectors with reduced complexity can be
used, such as matched filtering (MF) and minimum mean square
error (MMSE). The estimated signal by a linear detector can be
written as

x̂ = Wy, (6)

where W is the linear transformation matrix. The corresponding
transformation matrices for the MF and MMSE MIMO detectors
are given, respectively, by [8]

Wmf = HT , (7)

and

Wmmse =

(
HTH+

N0

Es
I
)−1

HT , (8)

where Es is the average symbol energy. As the MF MIMO de-
tector is not able to eliminate all the multi-antenna inter-users
interference, it presents a BER floor and a poor performance
in M-MIMO scenarios. On the other hand, the MMSE detector
applies matrix inversion, which becomes impracticable as the
number of antennas increases. Recent proposed M-MIMO detec-
tors such as PE [16,17] and DBNI [18] utilize an approximation
of the inverse matrix aiming to reduce complexity. However,
such low-complexity detection approaches have a drawback of
performance loss in comparison to the exact inversion matrix
performed by the pure MMSE.

2.3. Likelihood ascent search (LAS) detector

In M-MIMO systems, linear detectors lose performance. To
circumvent this loss, iterative detectors can be used as an alterna-
tive between linear detectors and ML. One of the most deployed
iterative detectors is the likelihood ascent search (LAS) detector.
LAS is based on ML detector. Considering the cost function de-
creasing goal in Eq. (5), and only the terms dependent of x, one
can write the likelihood function of x as the negative of the cost
function [27]:

Λ(x) = 2xTHTy− xTHTHx. (9)

Using a linear detector as the initial solution, the goal is to
increase the likelihood function at every single step m of the algo-
rithm, i.e., Λ(x(m+1))−Λ(x(m)) ≥ 0, until a fixed number of steps nf
has been performed. The selected symbols to increase likelihood
function can be chosen in a few ways, typically applying the

bit flip rule. In this work, we consider the sequential LAS (SLAS)
procedure. It is sequential because the bit flip rule is performed in
all antennas from the first one to the last one, sequentially. After a
complete sequential search is done, the search returns to the first
antenna and keeps circularly until a fixed number of steps nf is
reached. A factor k can be defined to represent the ratio between
the maximum number of steps and the number of antennas:

k =
nf

2nT
. (10)

If k > 1, the update rule will be performed more than one time
in each antenna. If k < 1, the search will stop before applying the
bit flip rule over all the antennas.

One can apply the gradient principle to verify the likelihood
function increasing values, which is a well-known method to
obtain the greatest increasing direction of the function. Hence,
defining:

yeff = 2HHy, (11)

Heff = HTH, (12)

and

Hreal = 2R(Heff) = 2Heff, (13)

we can find the gradient g(m) simply:

g(m)
=

∂(Λ(x(m)))
∂(x(m))

= yeff − Hrealx(m). (14)

The second derivative

g′(m)
=

∂2(Λ(x(m)))
∂(x(m))2

= −Hreal, (15)

indicates whether there is a local maximum or minimum in
the neighborhood of the local search. For good operation of the
LAS detector, it is necessary that the likelihood function never
decreases after a symbol update. In [28,29], it can be seen that,
if the gradient entry of the jth antenna, namely g (m)

j , exceeds a
threshold ζj in a bit flip update, it is guaranteed that the likelihood
function will increase if this symbol is updated. The threshold
value may change depending on the type of search performed. A
suitable threshold ζj value for SLAS is given by the absolute value
of the g′(m) applied to the jth antenna, as considered in [7]:

ζj = |(Hreal)j,j|. (16)

As a result, the updating bit flip rule for the symbol from the jth
antenna, xj, can be written as

x(m+1)j =

⎧⎪⎪⎨⎪⎪⎩
x(m)
j + 2, if g (m)

j > ζj,

x(m)
j − 2, if g (m)

j < −ζj,

x(m)
j , otherwise,

(17)

taking care to maintain x(m+1)j in the symbol set S. The algorithm
runs until m = nf. Then, x(nf) is the final data vector estimated by
the LAS algorithm.

The symbol exchange rule applied in Eq. (17) has been adapted
for convenience to

√
M-PAM modulations. However, as the gradi-

ent g(m) indicates the direction of highest growth of the likelihood
function given a vector of symbols defined in the complex plane,
it is possible to deploy Eq. (17) to any modulation provided that
the constellation symbols can be separated into their real and
imaginary parts.
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3. Proposed adjustable threshold LAS (ρ-LAS)

In some scenarios with variable SNR, channel conditions, num-
ber and spatial correlation of antennas, the bit flip rule needs to
be more smooth or more strict [15]. Hence, in this work, a factor ρ
is included by fitting means aiming to better adjust the threshold
factor depending on the scenario parameters such as SNR and
number of antennas. Based on (16), the new proposed threshold
factor ζ̃j is written as

ζ̃j = ρ |(Hreal)j,j|, (18)

where ρ is the factor that gives the best improvement in per-
formance. As demonstrated in Section 3.1, the optimal ρ value
fluctuates around 1.0, typically in the range ρ ∈ [0.7; . . . ; 1.3],
depending on the number of antennas n, SNR region and fading
channel condition. The LAS in [7] consider only ρ = 1; however,
we demonstrate numerically in Section 3.1 that finding the ap-
propriate ρ factor constitutes a way to improve systematically the
BER performance with no further complexity increment. Besides,
it is possible to find the optimal threshold ζ̃j using the suitable
ρ factor for the chosen scenario. A pseudo-code for the proposed
ρ-LAS detector is depicted in Algorithm 1.

Algorithm 1 ρ-LAS M-QAM M-MIMO detector

1: Input: y, H, x(0), k, ρ(2,4)
fit , M, nT , nR

2: Output: x(nF )
3: Calculate nf, Eq. (10)
4: Calculate yeff, Eq. (11)
5: Calculate Hreal, Eq. (13)
6: j = 1, m = 0
7: while m < nf do
8: if j > nT then
9: j← 1

10: else
11: Calculate g (m)

j = (yeff)j − (Hreal)(j,:)x(m), Eq. (14)
12: Calculate threshold ζ̃j, Eq. (18)
13: if g (m)

j > ζ̃j then
14: x(m+1)j ← x(m)

j + 2
15: if x(m+1)j >

√
M − 1 then

16: x(m+1)j ←
√
M − 1

17: end if
18: else if g (m)

j < −ζ̃j then
19: x(m+1)j ← x(m)

j − 2
20: if x(m+1)j < −

√
M + 1 then

21: x(m+1)j ←−
√
M + 1

22: end if
23: else
24: x(m+1)j ← x(m)

j
25: end if
26: j← j+ 1
27: m← m+ 1
28: end if
29: end while
30: Solution: x(nf)
31: End

3.1. Threshold fitting

A fitting process was carried out aiming at finding a polyno-
mial equation that approximates the optimal ρ factor values for
the ρ-LAS M-MIMO detector operating under different channel
and system scenarios. As one can see in [15], ρ depends on the

Table 1
Fit parameters.
Parameter Value

p00 0.831
p10 0.004336
p01 0.002674
p20 −0.0007697
p11 0.0001584
p02 −3.56 · 10−5

p21 1.357 · 10−5

p12 −2.49 · 10−6

p03 2.297 · 10−7

p22 −6.106 · 10−8

p13 9.971 · 10−9

p04 −5.632 · 10−10

R-square 0.7012
RMSE 0.03118

analyzed scenario, especially SNR level and number of antennas,
n. Hence, we have evaluated the BER performance for γ from
0 to 20 dB, nT = nR = n from 15 to 225, while factor ρ
was chosen in Eq. (18) in the sense that gives the smallest BER.
Although it is generally considered nR ≫ nT on Massive MIMO
systems to suppress intra-cellular interference, nR = nT has
been considered in this work for simplify of the analysis, and
at same time representing the worst case detection performance
scenario. Notice that although even the simplest detectors are
able to perform suitably with nR ≫ nT , the scenario nR = nT
requires much more advanced detection strategies. After that, we
fitted a polynomial surface to indicate the suitable ρ as a function
of SNR (γ ) and the number of antennas (n). It was chosen the
smallest polynomial fit by selecting the 2nd order dependency in
γ and 4th order in n, as an attempt to hold low-complexity imple-
mentation combined with good performance improvement. The
fitted surface is depicted in Fig. 2 and the associated polynomial
equation is given by

ρ
(2,4)
fit (γ , n) = p00 + p10γ + p01n+ p11γ n

+ p20γ 2
+ p02n2

+ p21γ 2n+ p12γ n2 (19)

+ p22γ 2n2
+ p03n3

+ p13γ n3
+ p04n4

with coefficients values given in Table 1. Although the R-squared
value resulted a little bit below the ideal value, the BER perfor-
mance of the proposed ρ-LAS detector has resulted substantially
improved by employing the fitted ρ values, as demonstrated in
Section 4. Moreover, increasing the fit order did not lead to signif-
icant improvements in the coefficient of determination (R2) and
root-mean-square error (RMSE). Therefore, we selected the 2nd
order for SNR γ and 4th order for number of antennas n, which
proved to be sufficient to hold reduced the fitting complexity and
simultaneously improve BER performance regarding the conven-
tional LAS detector. One can infer on this choice (2nd polynomial
degree for γ and 4th order for n) inspecting Fig. 1, where the
RMSE and R2 were determined for different polynomial degrees
in γ and n. Indeed, there are no substantial improvement on the
selected quality parameters beyond (2, 4) polynomial degree for
(γ , n). Therefore, this pair of degree is chosen for all numerical
simulations as the minimum degree that preserve the quality of
fitting for all data points.

In Fig. 2(a), it can be seen that ρ is between 0.7 and 0.8 for low
number of antennas n, it increases until 1.0 or 1.05 for a medium
n and start to decrease in M-MIMO scenarios. For γ , one can
confirm a similar tendency, starting with low values for low γ ,
increasing for medium γ and then decreasing for high γ , just as a
quadratic function. In the remainder numerical results presented
in this work, Eq. (19) has been deployed in simulations as the best
ρ factor values for the ρ-LAS. Besides, in Fig. 2(b) the ρ variation



G.M. Ferreira Silva, J.C. Marinello Filho and T. Abrão / Physical Communication 38 (2020) 100971 5

Fig. 1. Quality parameters of the polynomial surface fitting as a function of degrees in γ and n: (a) Coefficient of determination (R2); (b) Root-mean-square error
(RMSE).

can be examined in a typical M-MIMO scenario, where there is a
low-medium SNR on the receiver and a high number of antennas
at the transmitter. When the number of antennas tends to 200
and the SNR tends to 0 dB, it is observed that the factor ρ ≈ 0.8,
being much different than the value of 1.0 preconized in [7].

To corroborate how near the ρfit(γ , n) obtained by fitting,
Eq. (19), is from the optimum ρopt found exhaustively by numer-
ical simulation, the BER performance of both ρ-LAS detectors are
exhibited in Fig. 4 and discussed in details in the next section. To
summarize, the gap in terms of BER performance is insignificant
for high number of antennas 60 × 60 and a wide SNR range,
γ = [0 1 2 . . . , 9 10] dB in Fig. 4(a), demonstrating the effec-
tiveness of the proposed method to expeditiously find suitable
near-optimal ρ(γ , n) values.

4. Numerical results: Performance and complexity

We considered Monte-Carlo simulation (MCS) method to ana-
lyze performance and complexity of ρ-LAS compared with other
representative low-complexity MIMO detectors. The numerical
results are classified into four groups analysis:

(i) ρ-LAS convergence;
(ii) ρ-LAS BER performance analysis;
(iii) Realistic scenarios analysis, including antenna array correla-

tion and imperfect channel estimates;
(iv) BER performance-complexity tradeoff.

Extensive simulation results are provided by means of MCS
method, considering at least 500 realizations for suitable bit error
rate averages; for each realization, random information, additive
noise, and short-term fading samples are generated. The antenna
arrangement is changed by the number of receiving antennas nR
and a loading factor L = nT

nR
. When L = 1, then we denote

n = nR = nT . Besides, in the following numerical results, we set
the arrangement of the number of system antennas in the format

Table 2
MCS parameters.
Parameter Adopted value

Adjusting threshold factor ρ = [0.7 0.8 0.9 1.0 1.1 1.2 1.3]
Number of Rx antennas nR = [10 15 20 · · · 215 220 225]
Loading factor, nT

nR
L% = [6.25 12.5 25 50 100]%

Correlation index κ = [0.0 0.1 0.2]
CSI error index τ = [0.0 0.1 0.3]
BPSK/M-QAM order M = [2 4 16 64]
SNR γ = [0 1 2 · · · 18 19 20] dB

MIMO detector parameters

Steps of ρ-LAS k = [1 2 3 · · · 9 10]
Initial solution x(0) MF detector output
PE maximum order Kpe = 2
DBNI bandwidth Edbni = 2
ISD iterations kisd = 4

MCS realizations I = 5 · [102 103 104 105 106
] trials

nR × nT . To make the scenario more realistic, we considered an
uniform linear array (ULA) with correlation index κ and imperfect
CSI with estimation error index τ . Both effects and parameters are
modeled and analyzed in Section 4.3.

As a comparison to the proposed technique, some recent de-
tection schemes were considered, such as PE [16,17], DBNI [18]
and ISD [19]. In this work, we fix kisd = 4, Kpe = 2 and Edbni = 2.
Different M-QAM modulation orders, sequential LAS and a wide
range of number of antennas and loading factors have been con-
sidered in the numerical analysis. The vector for the first iteration
of LAS and ρ-LAS, x(0), is obtained from MF, Eq. (7). Table 2 sum-
marizes the main simulation parameters values adopted across
this section, considering values similar to those used in [7,25,30].

4.1. ρ-LAS convergence

To analyze the ρ-LAS convergence, we fixed the loading factor
L% = 100% for some γ values, while varying the iteration factor k
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Fig. 2. ρ polynomial surface as a function of SNR γ and number of antennas n, considering k = 5 and x(0) given by matched filter (MF) detector. (a) General scenario
covering low to high SNR regions and number of antennas; (b) Zoom in on a typical M-MIMO scenario with low SNR and high number of antennas.

from 1 to 10 to identify how many iterations the ρ-LAS needs to
achieve full convergence. Fig. 3 exhibits BER convergence results
for two scenarios: (a) γ = 5 dB and changing n for three
arrangements: 10×10, 40×40 and 70× 70 antennas; (b) 70× 70
for three SNR values, γ = [0 5 10] dB. From Fig. 3 one can infer
that, by increasing γ and n, the BER decreases asymptotically
until the full algorithm’s convergence. Also, from Fig. 3(a) one
can see that the ρ-LAS algorithm achieves full convergence after
k = 4 steps for all the three n antenna arrangements. Notice
that increasing n to 70 × 70 (M-MIMO scenario) just increases
k marginally. The same occurs changing the SNR in Fig. 3(b). It
is noted that the ρ-LAS detector outperforms conventional LAS

without requiring further steps, since both detectors converge at
k ≈ 4. Therefore, one can conclude that k = 4 steps is enough to
guarantee the ρ-LAS full convergence in all scenarios. Hence, we
have fixed k = 4 in all remainder numerical results and analysis.

4.2. BER performance vs. SNR for different number of antennas

To corroborate the performance gain of the proposed ρ-LAS M-
MIMO detector, this subsection analyzes the BER as a function of
γ and n. We split such analysis into two case scenarios. First, we
considered the BER× γ analysis fixing n. Secondly, we considered
the BER × n analysis fixing γ .
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Fig. 3. LAS and ρ-LAS convergence analysis. (a) fixing γ and changing n. (b) fixing n and changing γ . BPSK modulation and MF as the initial solution of ρ-LAS.

Fig. 4. Performance comparison between LAS and ρ-LAS in two arrangements: (a) BER×γ ; (b) BER×n. It was considered k = 4 and MF detector as the initial solution
(x(0)).

Fig. 4(a) depicts the BER performance comparison of M-MIMO
detectors with the conventional LAS and linear MF and MMSE
detectors against the proposed ρ-LAS considering n = 10 × 10,
30 × 30 and 60 × 60 antennas while changing γ from 0 to 10
dB. For reference, the ρopt-LAS detector, which hypothetically find
the ρ factor by exhaustive search in the range of ρ ∈ [0.5 : 0.1 :
1.5], is included in Fig. 4 as the achievable lower bound for BER.
Notice that linear detectors perform poorly considering a large
number of antennas due to the inter-antenna interference. For
n = 60 antennas and with increasing SNR, it is possible to observe

that the MF presents a BER floor, because it cannot eliminate
the interference between the antennas. It is observed that MMSE
outperforms MF in the high SNR region.

ρ-LAS notably provides a superior BER performance w.r.t. the
LAS detector for all considered γ range and n arrangements. As
expected, when the number of antennas increases, e.g., M-MIMO
scenarios, BER decreases. For instance, in quasi M-MIMO scenar-
ios (60 × 60), this feature becomes interesting. ρ-LAS provides a
BER of 3 ·10−5 with a moderate SNR ≈ 10 dB, representing a SNR
gain of ≈ 1 dB w.r.t conventional LAS.
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Fig. 4(b) depicts the BER scenarios for changing the number
of antennas n from 10 to 70 considering low, medium and high
SNRs, i.e. γ ∈ [1 7 15] dB. Linear detectors, even under high
SNR of γ = 15 dB, tend to perform similarly to the conventional
LAS detector operating with only γ = 1 dB under large number
of antennas, i.e., above 60 × 60 antennas. Besides, the MMSE
detector presents a BER ≈ 10−2 under 10 × 10 antennas. But
its performance worsens with the increase in the number of
antennas, reaching a BER of 5 × 10−2 under 70 × 70 antennas.

To corroborate the suitable performance gain of ρ-LAS regard-
ing conventional LAS, it can be seen on Fig. 4(b) that ρ-LAS can
provide a BER of 10−5 requiring 13 antennas less than LAS detec-
tor in a moderate-high SNR regime (γ = 15 dB). Therefore, ρ-LAS
can be considered an appropriate choice for the uplink M-MIMO
detection problem by providing a substantial BER performance
gains in such large antenna scenarios.

It is worth noticing that applying the surface fitting procedure
for ρ, Eq. (19), has resulted a performance very close to ρopt. In
Fig. 4(a), the BER curves of ρopt and ρfit for 60 × 60 antennas
are almost overlapping, presenting no significant difference in
performance. For a higher SNR (γ = 15 dB), as in Fig. 4(b), ρopt-
LAS detector performs better than the fitted one ρ-LAS. However,
since ρopt is only found by an exhaustive search, then the adjusted
factor ρfit is used to reduce the complexity of ρ-LAS detector,
while guaranteeing a substantial performance improvement over
the conventional LAS M-MIMO detector.

4.2.1. Low-complexity M-MIMO detectors comparison
The performance of ρ-LAS detector was compared to the PE,

DBNI, MMSE and ISD detectors. To enjoy the benefits of channel
hardening, where effective channel gains tend to be deterministic
as the number of receiving antennas increases [8], and to take
advantage of the favorable propagation that occurs when channel
vectors tend to be orthogonal when nR increases [31], the number
of receiving antennas was set to nR = 64 and the number of
transmitting antennas was fixed in nT = [4, 8, 16], resulting
in loading factors L ∈

[ 1
16 ,

1
8 ,

1
4

]
, respectively. Fig. 5 depicts

the BER performance in terms of SNR values. As the number of
transmitting antennas increases, the degradation of BER in all
detectors increases too. In all scenarios, it is observed that the ρ-
LAS detector presents the best performance among the analyzed
detectors, even if marginally, as observed in the scenario with
the highest load factor (1/4). With this result, it is possible to
observe that, even in scenarios with low antenna loading factors
(nR ≫ nT ), the proposed detector is able to present a satisfactory
and superior performance to the other low-complexity MIMO
detectors. Because the performance of detectors based on channel
matrix inversion (PE, DBNI and MMSE) are highly dependent
on good favorable propagation, the BER is strongly degraded in
realistic high loading factor scenarios.

The performance was also analyzed as a function of the mod-
ulation order. The antenna configuration was set at 64 × 16 and
modulation order was changed to 4, 16, and 64-QAM. Fig. 6 shows
the analyzed scenarios. Under high order modulation (64-QAM),
the MMSE detector can eliminate multi-antenna interference be-
tween users. Therefore, it can decrease BER monotonically, while
other detectors present a BER floor. However, it needs a high SNR
to exceed the iterative detectors ISD, LAS and ρ-LAS. The PE and
DBNI detectors consider an approximation of the inverse chan-
nel matrix, while the ISD detector considers only the diagonal
elements of the matrix; on the other hand, the both LAS-based de-
tectors use the MF as the initial solution. Interestingly, for low and
medium modulation order (4 and 16-QAM), it is observed that
the proposed ρ-LAS detector has resulted the best performance
regarding the other low-complexity LS MIMO detectors.

4.3. Channel estimation error and antenna correlation effects

Correlation between the antennas and errors in channel es-
timation should be considered in practical M-MIMO scenarios.
Herein, we have analyzed two arrangements that model such
impairments in M-MIMO schemes. Firstly, we included imperfect
CSI at the receiver side. Secondly, a correlation index modeling
the spatial channel correlation caused by insufficient distance
between the antennas was considered.

The channel matrix estimation can be modeled as [30]

Ĥ =
√
1− τ 2H+ τ∆H, (20)

where ∆H is the estimation error matrix whose entries are mod-
eled by a complex Gaussian variable with zero mean and unit
variance. When τ = 0, the channel gain matrix is perfectly
estimated; besides, τ in the range ]0; 0.3] has been considered
in this subsection to describe more realistic M-MIMO detection
scenarios.

The correlation between receiver and transmitter antennas has
been modeled considering a ULA in which antennas are disposed
linearly in the axis. Under the ULA, the correlation between the
ith and jth antenna-elements is modeled by [25]:

cij = κ (i−j)2 , (21)

where κ is the correlation index; when κ = 0, there is no
correlation between the two antennas.

The matrices CRx and CTx describe the correlation between the
antenna-elements at the receiver and the transmitter side, re-
spectively, being composed by matrix entries written in Eq. (21).
The overall correlated channel gain matrix H̃ is given by

H̃ =
√
CRxH

√
CTx, (22)

where H is the uncorrelated channel matrix. In the special case
of n = nT = nR, and assuming that κ is the same at both
transmitter and receiver, the correlation matrices of the receiver
and the transmitter are equal and given by [25]

C =

⎡⎢⎢⎢⎢⎢⎢⎣
1 κ κ4 . . . κ (n−1)2

κ 1 κ . . .
...

κ4 κ 1 . . . κ4

...
...

...
. . . κ

κ (n−1)2 . . . κ4 κ 1

⎤⎥⎥⎥⎥⎥⎥⎦ . (23)

Fig. 7 depicts BER performance for three uncorrelated scenar-
ios with different values for the channel estimation error index,
τ = [0, 0.1, 0.3] for Fig. 7(a), (b) and (c), respectively. Generi-
cally, the increasing in the channel error estimation causes a BER
performance deterioration in all the analyzed detectors. Specif-
ically, the PE and DBNI detectors consider a matrix inversion
approximation; hence, both detectors are not able to completely
eliminate the interference between the antennas, presenting a
strong BER deterioration w.r.t. SNR, combined to an irreducible
BER floor, which is accentuated with the τ index increasing.
However, in all analyzed scenarios of Fig. 7, the ρ-LAS M-MIMO
detector presented the best performance which indicates that,
even if the ρ factor was found for a scenario with perfect CSI
(Table 1), the same fitting procedure could be deployed to further
improve the ρ-LAS performance achieved in Fig. 7.

The scenario analyzed in Fig. 8 considers perfect CSI but with
spatial correlation between the antennas, with correlation in-
dexes κ = [0 0.1 0.2] in Fig. 8(a), (b) and (c), respectively. The PE
and DBNI detectors are quite sensitive to channel correlation, re-
sulting in a strong BER performance degradation in scenarios with
low-medium spatial correlation, since they consider an inverse



G.M. Ferreira Silva, J.C. Marinello Filho and T. Abrão / Physical Communication 38 (2020) 100971 9

Fig. 5. BER performance in three nR × nT antenna configurations: (a) 64 × 4; (b) 64 × 8; (c) 64 × 16. It was considered 16-QAM, k = 4 and MF detector as the
initial solution (x(0)) of LAS and ρ-LAS.

Fig. 6. BER performance under three modulation orders: (a) 4-QAM; (b) 16-QAM; (c) 64-QAM. It was considered 64 × 16 antennas, k = 4 and MF detector as the
initial solution (x(0)) of LAS and ρ-LAS.
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Fig. 7. BER performance for three channel error estimate scenarios (τ ): (a) τ = 0 (perfect CSI); (b) τ = 0.1 (medium channel estimation error); (c) τ = 0.3 (high
channel error condition). 64 × 32 antennas, 4-QAM, k = 4 and MF detector as the initial solution for the LAS and ρ-LAS.

Fig. 8. Performance analysis considering three correlation indexes: (a) κ = 0 (uncorrelated); (b) κ = 0.1; (c) κ = 0.2. It was considered 64 × 32 antennas, 4-QAM,
k = 4 and MF detector as the initial solution of LAS and ρ-LAS.
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approximation of the channel matrix, which is strongly affected
by correlated channel gains effect. With the increase of the cor-
relation index, the performance of the iterative LAS and ISD
detectors tend to approximate the MMSE detector performance.
However, since MMSE inverts completely the channel matrix to
proceed with the detection, its complexity tends to be larger
than the iterative ones. Therefore, in scenarios with medium-high
spatial antenna correlation, iterative LAS and ISD M-MIMO detec-
tors are a good choice in terms of BER performance-complexity
tradeoff. Among the analyzed iterative detectors, the proposed
ρ-LAS detector presents the best performance.

4.4. Point-to-point downlink performance analysis

In the downlink of an M-MIMO system, generically there is
low spatial correlation between users, since it is usual assum-
ing the terminals are sufficiently far from each other so that
the channel coefficients can be assumed independent. Therefore,
an identity correlation matrix at the receiver side (CRx = I)
can be assumed. Hence, it is possible to apply the proposed
low-complexity detection technique as long as the receiver has
multiple antennas. In addition, precoding techniques may be used
at the transmitter side to further alleviate the receiver burden
processing. As the focus of this work is to improve the LAS
detection performance, the processing at the transmitter side has
not been analyzed.

In Fig. 9, the performance of the detectors is analyzed in a
scenario where there is only spatial antenna correlation at the
transmitter side, considering κ = 0, 0.1 and 0.2 indices. Schemes
with 64 transmitter and 256 receiver antennas were examined,
as well as perfect CSI (τ = 0) and 4-QAM modulation have
been assumed. The proposed detector is still superior to the
other techniques analyzed in the downlink, presenting the best
performance even in the scenarios with spatial correlation. As
one can infer, the proposed ρ-LAS detector is more robust to the
effect of spatial correlation, since it is able to attain a BER of 10−3,
representing ≈ 3.5 dB more in SNR regarding the case with no
correlation (κ = 0), and ≈ 4.5 dB when κ = 0.2.

4.5. Complexity analysis

In this subsection we have carried out a computational com-
plexity analysis considering the number of floating-point op-
erations (flops), as well as a performance-complexity tradeoff
evaluation, given by the figure of merit ν of Eq. (24) for the
linear detectors and iterative LAS and ISD detectors in the context
of M-MIMO detection. A calculation of the number of flops is
performed for each detection process.

Without loss of generality, we analyzed the L = 1 scenario,
i.e., n = nT = nR. We also considered vectors and matrices
with lengths n × 1 and n × n, respectively. Thus we can define
that the multiplication between two real-valued vectors (inner
product), the multiplication between one real-valued vector and
one real-valued matrix and the multiplication of two real-valued
matrices requires 2n, 2n2 and 2n3 flops [32], respectively. If the
variables are complex, then a complex addition spends 2 flops
and a complex multiplication spends 6 flops. We also assume that
a matrix inversion is made by Gauss elimination, which spends
2
3n

3 flops, and we disregard some computational operations such
as allocation, memory access and permutation. Using Eq. (7) and
Eq. (8) for the linear detectors, Algorithm 1 for the LAS detector
and ρ determination in Eq. (19), the overall complexity for each
M-MIMO detection technique according to the number of flops is
summarized in Table 3, where Cmf is the complexity (flops) of a
linear detector (MF) and Cρfit is the number of flops due to the ρ

surface fitting procedure.

Table 3
Detector complexities in terms of flops, C.
Detector Complexity (Flops)

MMSE 112
3 n3 + 8n2

PE 16n3 + 8n2(Kpe + 2) + 12n
DBNI 16n3

+ 64n2
+ 32n

(
Edbni + 1

8

)
ISD 16n3

+ 16n2
+ 4n(kisd + 2)

LAS Cmf + 16n3
+ 4n2

+ 4(nf + 1)
ρ-LAS Cmf + 16n3

+ 4n2
+ 4(nf + 1)+ Cρfit

MF Cmf = 8n2

Cρfit is the number of flops needed to calculate the expression
of the polynomial fit given by Eq. (19), which is performed as
input parameter for the ρ-LAS algorithm. This number is constant
and has a lower weight than third-order terms in the complexity
of ρ-LAS.

In addition, we calculated the number of flops of PE, DBNI and
ISD detectors according to the operations presented in [17,18]
and [19], respectively. Kpe is the order of the polynomial expan-
sion of PE detector, Edbni is the number of neighboring elements
of the diagonal matrix to be considered in DBNI detection and kisd
is the number of iterations per antenna in ISD.

The matched filter (MF) procedure represents the smallest
complexity, with the number of flops in the second order of n.
The MMSE detector presents terms in the third order since it
involves matrix inversion. PE and DBNI have the same order of
complexity of the MMSE detector, but the complexity is reduced
because it does not contain matrix inversion. Instead, the maxi-
mum order of the polynomial expansion Kpe of the PE detector
and the number of elements Edbni of the bandwidth diagonal
matrix of the DBNI detector affect their complexity. Because of
that, the complexity of PE and DBNI detectors have terms de-
pending of maximum polynomial order (Kpe = 2) and bandwidth
(Edbni = 2), respectively. The ISD detector, which also has third-
order terms, presents reduced complexity regarding the MMSE
M-MIMO detector, since it requires a low-number of iterations
(kisd).

Finally, the LAS detectors have the same order of complexity
as the MMSE, only including third and second order terms de-
pendent on the number of iterations, initial detection, and the
complexity from the ρ fitting procedure. Moreover, the complex-
ity difference between LAS and ρ-LAS is due to the ρ fitting
procedure with a fixed number of flops called Cρfit . However,
the fitting procedure is counted a single time, when the physical
scenario characteristics changes. Therefore, its complexity can be
neglected; hence, the LAS and ρ-LAS M-MIMO detectors com-
plexities are practically the same. Even with the same order of
complexity of the MMSE detector, the LAS detector has a superior
performance, and it is improved with the increasing number of
antennas, which is the opposite behavior for the MMSE detec-
tor in Fig. 4(b). Therefore, a superior performance-complexity
tradeoff is attained for both LAS-based M-MIMO detectors.

To elaborate further, one can define a simple figure of merit ν

to quantify the complexity-performance tradeoff of the M-MIMO
detectors:

ν =
1

C×B
(24)

where C is the number of flops spent by the M-MIMO detector
to attain a target BER performance, B. A decrease in BER perfor-
mance provides an increase of ν. Also, the higher the complexity,
the smaller the value of ν.

To analyze the performance-complexity tradeoff of the stud-
ied low-complexity M-MIMO detectors, we start examining the
behavior of the number of flops and ν for an improving number
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Fig. 9. BER performance of detectors in a point-to-point downlink scenario with 64 transmitter antennas and 256 receiver antennas. We considered τ = 0 (perfect
CSI), 4-QAM, and considering three correlation indexes at the transmitter: (a) κ = 0 (uncorrelated); (b) κ = 0.1; (c) κ = 0.2.

Fig. 10. Complexity analysis changing the number of antennas n = nT = nR , considering γ = 10 dB, 4-QAM, k = 4 and x(0) given by MF output.
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of antennas n. Fig. 10 shows the correspondent curves related to
the PE, DBNI, MMSE, ISD, LAS and ρ-LAS detectors.

The complexity in terms of the number of flops vs. n ∈
[20; 200] antennas is presented in Fig. 10(a). It is observed that
the most complex detector is the MMSE, since it considers the
exact channel matrix inversion. Among the analyzed linear de-
tectors, the DBNI and PE M-MIMO detectors are less complex
because they consider approximations for the inverse matrix.
Furthermore, the ISD, LAS and ρ-LAS detectors are less complex
because they are iterative and do not depend on matrix inversion.
It is observed that the ρ-LAS and LAS complexity curves are
superimposed and less complex than ISD detector, since ρ-LAS
presents almost the same complexity as the LAS detector because
the calculation of ρopt factor adds a marginal complexity to the
algorithm.

To corroborate the superior performance-complexity trade-
off for the proposed ρ-LAS approach, the figure of merit ν in
Fig. 10(b) is larger for the ρ-LAS detector, which presents al-
most the same complexity as the conventional LAS detector and
superior BER performance. ISD detector also has resulted in a
suitable ν-tradeoff, but because its higher complexity regarding
the LAS detectors, its tradeoff is marginally inferior to the con-
ventional LAS detector. Finally, the linear PE, DBNI and MMSE
detectors combine high-complexity with low-performance for M-
MIMO scenarios with unitary loading factor (nT = nR). Therefore,
they resulted in the worst performance-complexity tradeoffs with
respect to the iterative ISD, LAS and ρ-LAS detectors.

5. Conclusions

The proposed ρ-LAS detector suitable for large-scale MIMO
systems outperforms the conventional LAS detector from the
literature. It was possible to generate a polynomial surface that
adjusts well the optimal points of ρ which guarantees improved
BER performance regarding the conventional LAS MIMO detector.
As the convergence of ρ-LAS M-MIMO detector occurs with the
same number of iterations as the LAS, then the marginal com-
plexity increment occurs only due to the calculation of the ρ

factor.
The BER performance of the ρ-LAS MIMO detector resulted su-

perior regarding the conventional LAS and linear low-complexity
MIMO detector with the increasing in the number of antennas
and SNR. Moreover, under spatial antenna correlation and im-
perfect CSI estimates, even with performance degradation caused
by channel array configuration, the ρ-LAS MIMO detector was
able to perform better than LAS and much better than the linear
PE, DBNI and even MMSE detectors, while continuing to con-
verge with the same number of iterations w.r.t. the uncorrelated
antenna and perfect CSI estimates scenarios. Finally, in MIMO
system scenarios with high number of antennas, medium SNRs
regime and high loading factor L ≈ 1, the proposed ρ-LAS
detector demonstrated the best complexity-performance tradeoff
among the analyzed linear and iterative MIMO detectors, being a
promising detector option for M-MIMO systems.
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Throughput and Latency in the Distributed
Q-Learning Random Access mMTC Networks

Giovanni Maciel Ferreira Silva, Taufik Abrão

Abstract—In mMTC mode, where thousands of devices try
to access network resources sporadically, the problem of random
access (RA) and collisions between devices that select the same
resources arise. A promising approach to solve the RA problem is
the use of learning mechanisms, specially Q-learning algorithm,
where the devices learn about the best time-slot periods to
transmit through rewards sent by the central node. In this work,
we propose a distributed packet-based learning method of varying
the reward given by the central node that favors devices having
a larger number of remaining packets to transmit. The numerical
results indicated that the proposed distributed packet-based Q-
learning method attains a better throughput-latency trade-off
than the independent and collaborative techniques in practical
scenarios, while the number of payload bits of the packet-based
technique is reduced regarding the collaborative Q-learning RA
technique for achieving the same normalized throughput.
Keywords – mMTC, random access, throughput, latency, Q-
learning.

I. Introduction

Since the beginning of studies on the fifth generation of
wireless communications (5G), it is known that the paradigm
is not simply to increase transmission rates [1]. With the
demand for services such as the Internet of Things (IoT),
smart cities, smart homes, among others, we seek to solve
the problem of ensuring connectivity for thousands of devices
at an access point. Because of this, 5G has been divided into
three main modes: enhanced mobile broadband (eMBB), to
guarantee high rates for mobile users; ultra reliable and low
latency communications (URLLC), to guarantee a low latency
and high reliability connection to certain services such as
remote surgery, and massive machine-type communications
(mMTC), to connect thousands of machine-type devices to
the network.

In mMTC mode, thousands or even tens of thousands
machine-type devices access network resources sporadically,
i.e., a sensor network that sends data every minute. In this
way, the transmission rate is not one of the most important
figures of merit, but throughput, which evaluates the number
of successful transmissions in a given time interval, and the
probability of collision, which is the number of collisions that
occurs at a certain time interval [2], [3].

The problem that arises in this mode is to solve the random
access (RA), since the devices randomly select the time-
slot to transmit and collisions of two or more devices may
occur, making communication impossible. Traditionally, the
slotted ALOHA (SA) is used to solve the RA problem. In
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this technique, colliding devices retransmit after a fixed time-
slot window, which reduces the probability of a new collision.
However, it has been shown [4] that SA has a high probability
of collision in highly congested scenarios, where the number
of devices is greater than or equal to the number of time-
slots in a frame. Many solutions to solve the RA problem in
mMTC are present in the literature, based on several different
techniques, such as the grant-free ALOHA [5], the unequal
access latency (UAL) [6], the sparse signal recovery [7], and
the distributed queue-based framework [8].

An alternative and promising way to solve the RA problem
is the use of machine learning (ML) techniques [9], where
the devices themselves learn to choose the best time-slots
to transmit, avoiding collisions and increasing throughput.
Q-Learning, being model-free, is a viable solution in these
scenarios since machine-type devices must carry out learning
in a simplified and not very complex way. Machine learning-
based techniques will play an important role in technologies
foreseen for the sixth generation of wireless communication
(6G) [10]–[12].

Recently, techniques based on Q-Learning are present in
many works in the field of wireless communications. Some
applications include network slicing [13], spectrum access
[14], non-orthogonal multiple access (NOMA) [15], and geo-
graphic routing for unmanned robot networks (URNs) [16].

One of the simplest ways to use Q-Learning to mitigate
the collision problem in RA protocols is the independent
technique, where central node sends a binary reward to the
devices, informing if the transmission was successful or if
there was a collision between two or more devices. Such
technique does not perform well in scenarios where the
number of devices is equal to or greater than the number
of available time-slots. In contrast to it, the collaborative Q-
Learning method is suggested, where the reward sent to the
colliding devices is the level of congestion in the time-slot.
In this case, the devices learn to choose the least disputed
time-slots, increasing the throughput of the system [4].

An alternative to the independent Q-Learning technique
is the collaborative approach, which considers the level of
congestion in the reward sent from the central node to the
devices. The throughput is higher for this technique than the
independent technique, however the reward needs to be sent
in more than one bit and the central node needs to know the
number of devices that collided in a given time-slot.

Both techniques mentioned are not fair, as the devices that
randomly select the least disputed time-slots will transmit
their packages more quickly, as the learning method will
provide them with unique time-slots. On the other hand,
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devices that collide frequently will take longer to transmit
all of their packets.

The Contribution of this work is to propose a Q-Learning
RA technique that does not detract from the devices that
select the most congested time-slots at the beginning of
the transmission, as occurs in the collaborative technique
proposed in [4]. The proposed distributed packet-based Q-
Learning technique benefits devices that still have many
packets to transmit, sending them a greater reward. The
technique in [4] sends larger rewards to devices that have
uniquely selected time-slots, causing some devices to end
transmission very quickly, while others take longer. In general,
the distributed packet-based method reduces the latency
variance. Also, we have proposed an improvement in the
collaborative Q-Learning technique aiming at establishing a
reasonable level of congestion with a finite number of bits,
and as result, reducing the header when sending the reward.

The remainder of the work is composed of the system
model in Section II, the proposed distributed packet-based
Q-Learning reward method in Section III; numerical results
are analyzed in Section IV; the main conclusions and final
remarks are presented in Section V.

II. System model

Let’s consider an mMTC network, where there are N
machine-type devices transmitting packets with p bits of
payload to a central node. A frame is made up of K time-
slots, and the N devices select one of the slots to transmit.
Each device has L packets to transmit, with only one packet
being transmitted per time-slot. The loading factor is given
by the ratio between the number of active devices and
the number of time-slots within a frame, L = N

K . The
indexes for each device and each time-slot are sorted in
sets N = {1, . . . , N} and K = {1, . . . ,K}, respectively. In
addition, we define the set ψk indicating which devices have
chosen the k-th time-slot. For example, if devices 2 and 5
selected the 3rd time-slot, then ψ3 = {2, 5}.

The transmission of a packet is considered successful when
only one device selects the k-th time-slot, i.e it results in
cardinality one, |ψk| = 1. Otherwise, if two or more devices
choose the same time-slot, |ψk| > 1, a collision occurs, and
the transmission is considered a failure.

For simplicity of analysis, the effects of physical channel
losses such as multipath fading and AWGN (high SNR
regime) are not considered. As the focus of the work is on
developing the reward sending mechanisms in Q-Learning-
based RA protocols aiming to improve the learning process
of the devices, we assume, as in [4], [9], that the signal
from all devices arrive with the same power at the central
node. The random variables are defined by the channel/slot
selection in each device. In addition, central node does not
apply any collision resolution method to decide which device
wins. When two or more devices select the same channel to
transmit, central node considers it a collision and requests
that the devices retransmit the packet.

At the end of the frame, central node sends a reward
signaling to the devices composed by b bits indicating whether

the transmission was successful or not. The devices use the
reward information to learn over the transmissions which are
the best time-slots subset to transmit. The end of transmis-
sion occurs when all devices transmit all their packets.

To illustrate the transmission process across K = 6 time-
slots, Fig. 1 depicts the RA-based network considering N =
8 devices. In this simple example, only devices 3, 4 and 7
select time-slots exclusive to them. Therefore, they are the
only ones to receive a positive reward from the central node.
On the other hand, the other devices collide with each other,
and therefore the reward sent by the central node is negative.

Device 1

Devices transmit their packets

Device 2

Device 3

Central node

Device 4 Device 5

Device 7

Device 6

4 7 2
5

1
6
8

3

Device 8

Central node transmit a reward for each device

- - + + - - + -

Time slot 1 Time slot 6

Device 1 Device 8

Figure 1. Reward-based RA network with N = 8 devices and K = 6
time-slots.

III. Random access with Q-Learning

Q-Learning is a type of machine learning (ML), which is
model-free and it can be implemented in a distributed way
and with low complexity. The advantage of using Q-Learning
to solve the RA problem is that it is easily implemented on
thousands of mMTC devices due to its low complexity, while
the devices decide in a distributed and decentralized way the
best time-slots to transmit based on previous transmissions.
The learning method of each device can be modeled as a
Markov decision process (MDP), where the change to a
future state depends on the factors: the current state, the
transition probability function and the reward value [17].

The n-th device has a Q-value, namely Qt
n,k, that indicates

the preference to transmit in the k-th time-slot and step t.
All Q-values make up a Q-table of N rows and K columns.
Initially, the entire Q-table is set to zero: Qn,k = 0,∀n ∈
1, . . . , N, ∀k ∈ 1, . . . ,K. Hence, in order to transmit a
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packet, the device selects the time-slot with the highest Q-
value from its Q-table. If there is more than one time-slot
whose Q-value is the maximum, then the choice is random
among these Q-values.

At the end of the frame, the central node sends a reward
to each device indicating whether the transmission was suc-
cessful or not in a given time-slot. Thus the Q-value in the
next step of the n-th device and k-th time-slot is updated to

Qt+1
n,k = Qt

n,k + α(Rn,k −Qt
n,k) (1)

where Rn,k is the reward transmitted by central node, and α
is the learning rate. The learning rate is a weight value in the
range α ∈ [0; 1]. In this work, α is assumed fixed and equal
for all devices in the system.

The Q-table update, and the packet transmission are
performed subsequently until each device transmits all of its
packets. The reward-based RA algorithm is considered to
have converged when all devices have transmitted all their
packets. In the convergence process, it is defined that the
total number of successes is S, the total number of failures
is F and the total number of time-slots spent is T .

A. Independent Q-Learning
The independent Q-Learning technique requires that cen-

tral node send only one bit (b = 1) for each device. The
reward sent to the n-th device that chose the k-th time-slot
is simply defined as: [4]:

Rind
n,k =

{
+1, if transmission succeeds,
−1, otherwise.

(2)

Therefore, if only the n-th device has chosen the k-th slot,
the transmission is successful and the reward is +1. If two or
more devices choose the k-th slot, a collision occurs and the
reward is -1 for all of them. Reward Rind

n,k is used to update
the Q-table for all devices and time-slots through Eq. (1).

B. Collaborative Q-Learning
Assuming that central node is aware of the number of

devices that tried to access the k-th slot, it is possible to
define a congestion level Ck in slot k, given by

Ck =
|ψk|
N

, (3)

As a result, the reward sent by central node to the n-th device
that chose the k-th time-slot is given by [4]

Rcol
n,k =

{
+1, if transmission succeeds,
−Mb{Ck}, otherwise,

(4)

where Mb{Ck} is a quantized value of Ck based on the
number of bits b available for the header, e.g., if b = 2 bits
and assuming that the level of congestion varies from 0 to 1,
then the reward values can be unambiguously represented by
four quantized levels,Mb{Ck} ∈ {0.25, 0.5, 0.75, 1}.

As Ck in this case is a real number, then the central node
should transmit a quantized version of such real number,
decreasing the spectral efficiency of transmission, and the

devices will have to use a certain number of quantization bits
b to represent this real value. Therefore, there is a trade-off
between bandwidth overhead and accuracy when quantized
version (limited number of bits) is transmitted by the central
node and the true value of the reward. Hence, the fixed
number of bit of quantization must be selected carefully.

The advantage of the collaborative method over the inde-
pendent one is that the devices learn to choose the time-slots
with lower levels of congestion to transmit their packages.
The disadvantage is that the central node needs to know
the number of interfering devices. In addition, the reward
becomes a real number and no longer a bit, as in the
independent method.

C. Distributed Packet-based RA for Crowded MTC Scenarios
With the increase in the number of devices and the increase

in the probability of collision in crowded mMTC mode,
it becomes more difficult for central node to identify the
number of interfering devices. Therefore, the advantage of
the collaborative Q-learning technique in regions with high
density of devices depends on an ideal non-feasible scenario.
In addition, independent and collaborative Q-learning tech-
niques are not completely fair, as a time-slot becomes unique
for one device over the entire learning period, while the other
devices continue to collide and expect to randomly find a
suitable time-slot to finish transmitting all packets.

Therefore, this work proposes a distributed packet-based
Q-Learning random access technique where the Q-table up-
dating takes into account the number of remaining packet
that each device still has to transmit in that frame. The
higher this number, the greater is the respective reward,
increasing the frequency of transmission attempt in that time-
slot; hence, it is expected that on average all devices finish
transmitting their packets at the same time.

Let’s define the factor εn for each device as:

εn = 1− `n
L
, (5)

where `n is the number of remaining packets to be transmit-
ted by the n-th device; hence, when the device has already
transmitted a large number of packets, εn tends to 1.

In the proposed Q-learning-based RA method, the reward
sent by central node to the n-th device at the k-th time-slot
is defined in a same way as in the independent Q-learning
method:

Rpac
n,k = Rind

n,k =

{
+1, if transmission succeeds,
−1, otherwise.

(6)

However, since the proposed method is totally distributed,
the reward processing is utterly done by the devices. Hence,
under this method, the Q-Table updating takes into account
the number of packets that the device still has to transmit
results:

Qt+1
n,k =

{
Qt

n,k + α(Rpac
n,k −Qt

n,k), if Tx succeeds,
Qt

n,k + α(εnR
pac
n,k −Qt

n,k), otherwise.
(7)

=

{
Qt

n,k + α(1−Qt
n,k), if Tx succeeds,

Qt
n,k − α(εn +Qt

n,k), otherwise.
(8)
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where eq. (8) can be obtained by substituting (6) into (7).
Notice that in the distributed packet-based RA method,

the central node does not need to know the number of
devices that has collided in a given time-slot. Therefore, the
reward to be transmitted is binary (b = 1), requiring the same
infra-structure than the independent technique. In addition,
among the devices that collided, devices that need to transmit
more packets are privileged with a more positive reward
compared to those devices with less packets remaining to be
transmitted, making the technique more appropriate to attain
improved throughput-complexity tradeoff when compared to
collaborative and independent-like methods. The pseudo code
for the proposed distributed packet-based technique is present
in Algorithm 1.

Algorithm 1 Distributed Packet-Based RA Method
Initialize Qn,k = 0, ∀n ∈ N , ∀k ∈ K
Initialize `n = L, ∀n ∈ N ; T = 0, S = 0
while

∑N
n=1 `n > 0 do

Initialize cn = 0, ∀n ∈ N
for n = 1 : N do

if `n > 0 then
Cn = {k ∈ K | Qn,k = max

k
{Qn,k}}

Select randomly: cn ∈ Cn
for k = 1 : K do

T ← T + 1
ψk = {n ∈ N | cn = k}
if |ψk| = 1 then

S ← S + 1
Rpac

n,k = +1, ∀n ∈ ψk

Qn,k ← Qn,k + α(1−Qn,k), ∀n ∈ ψk

`n ← `n − 1, ∀n ∈ ψk

else if |ψk| > 1 then
εn = 1− `n

L , ∀n ∈ ψk

Rpac
n,k = −1, ∀n ∈ ψk

Qn,k ← Qn,k−α(εn+Qn,k), ∀n ∈ ψk

IV. Numerical results

In this section, proposed Q-Learning RA technique is nu-
merically validated via computer simulations, and compared
with the independent and collaborative learning methods.
In order to guarantee an average behavior of the number
of transmissions carried out successfully, 104 realizations
for each experiment were considered. The main simulation
parameter values used are shown in Table I.

Table I
Numerical parameters.

Parameter Value
Monte-Carlo realizations Nreps = 10,000

Time-slots per frame K = 400
Network Loading factor L = N

K
∈ [0.25; 3.00]

Packets per device L ∈ [50; 500]
Learning rate α ∈ [0.05; 0.5]

Header bits (collab.) b ∈ [1; 2; 4; 8; 16] bits
Payload bits p ∈ [1; 2; 4; 8; . . . ; 256] bits

An important figure of merit is the normalized throughput,
defined as the ratio between the number of successful packet
transmissions, S, and the corresponding number of time-slots
required, T . However, as not all bits in the transmission are
data from the devices, so the ratio between the payload bits
and reward bits should be taken into account. Hence, the
normalized throughput is defined as

T =

(
p

b+ p

)
S

T
=

(
p

b+ p

)
NL

T
. (9)

The calculation of normalized throughput is performed after
the convergence of the algorithm, when all devices transmit
all their packets, and it indicates how efficiently the time-
frames have being used in each RA method.

A. Number of bits of quantized collaborative reward
To find the smallest number of bits that results in a suitable

accuracy in representing the actual number of the congestion
level in the collaborative technique without reducing the
throughput, Fig. 2 depicts the average throughput calculated
as a function of the loading factor L. The result shows that,
within the analyzed scenario, a suitable tradeoff choice for
the number of quantization bits that maximize the mean
throughput in the collaborative Q-Learning technique is b = 4
bits. By deploying four bits, it is possible to attain a good
level of quantization for the real number of the reward, but
without reducing the throughput due to the increase in header
bits; hereafter, this value was adopted in all simulations of
the collaborative technique.
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Figure 2. Throughput for collaborative method varying the loading
factor, considering p = 64, L = 100, and α = 0.1.

B. Normalized Throughput
In Fig. 3, the throughput is analyzed as a function of the

loading factor. It is observed that the maximum throughput
is obtained when L = 1 for all techniques, because in this
scenario, the frame is being used with greater efficiency,
where in average there is a time-slot for each device. Hence,
as expected, the throughput is lower in underloaded and
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overloaded scenarios, i.e., L 6= 1, where there are fewer or
many devices than time-slots and is not the ideal scenario, as
more and more devices could be allocated on the network to
increase the spectral efficiency. In particular, we are interest
in crowded MTC scenarios.
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Figure 3. Normalized throughput in function of loading factor for
independent, collaborative, and packet-based Q-Learning, considering p
= 64, L = 100, K = 400, and α = 0.1.

In the L > 1 scenario, the RA techniques start to have
a worse throughput because, when there are more devices
than time-slots, the probability of collision increases sub-
stantially and unavoidably, which consequently reduces the
success probability and throughput. The difference between
independent and collaborative Q-Learning RA techniques
stands out in this important scenario of practical interest.
The collaborative technique has greater throughput because
the central node indicates to the devices which time-slots
have the highest congestion level, through the information
sent as a reward. The devices learn to transmit in the least
congested time-slots, thus reducing the probability of collision
and, consequently, increasing throughput.

The performance of the packet-based technique is superior
to other techniques up to L = 1.6. From that point on,
the collaborative technique becomes superior in the interval
1.6 ≤ L ≤ 3.0, and then the techniques converge to the
same throughput value. It is expected that the collaborative
technique presents a higher throughput in relation to the
others in the medium-high congestion scenarios (1.75 ≤ L ≤
3.0) because the reward sent by the central node provides
more details about the level of congestion of each time-
slot. However, the packet-based technique still proves to be
superior to the independent one in this scenario, in addition
to being less complex than the collaborative one in relation
to the central node, since the reward sent is binary.

C. Asymptotic Throughput

In Fig. 4, the throughput for the three reward techniques
was analyzed with the change in the number of packets that
each device has to transmit, from L = 50 to L = 500 packets.

For this result, we consider L = 1, payload p = 64 bits, and
learning rate α = 0.1.
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Figure 4. Throughput as a function of the number of packets, consid-
ering loading factor L = 1, K = 400 time-slots, p = 64 bits, and α =
0.1.

It is possible to conclude that the throughput increases
with the increase in the number of packets. This is be-
cause the number of successes increases, without having a
significant increase in the number of time-slots needed to
transmit all packets. However, the curves begin to converge
to a constant value. This indicates that, even if the number
of packets increases, the time to transmit them in the
same proportion is increased, which makes the throughput
constant. The proposed distributed packet-based RA method
reveals a superior asymptotic normalized throughput:

T∞(L) = lim
L,T→∞

(
p

b+ p

)
NL

T
,

resulting for the specific network loading factor: T pac
∞ (1) ≈

0.965; T ind
∞ (1) ≈ 0.940; T col

∞ (1) ≈ 0.915

D. Payload bits
Fig. 5 shows the result of the throughput as a function of

the number of payload bits b. The numerical result indicates
that when the number of payload bits is small, with a value
close to the number of header bits, the throughput is low.
As the number of payload bits increases, the throughput in-
creases until it converges to a ceiling value. This convergence
occurs in our configuration setup close to p = 64, and for this
reason, this payload value was considered in the rest of the
simulations in this work.

As the collaborative technique has a larger number of
header bits (b = 4), then it depends on a larger number
of payload bits to present the same throughput as the
packet-based technique. For example, to achieve a normalized
throughput of Tp = 0.5, the collaborative technique needs
16 bits of payload, while the packet-based one needs 4 bits
in the analyzed scenario. The reduction in the number of
payload bits can be an advantage in simplifying the process
in which a bunch of devices randomly access the channel and
transmitting their packets.
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Figure 5. Normalized throughput as as function of payload bits, consid-
ering L = 1.5, α = 0.1, and L = 100.

E. Latency

Latency in this work is defined as the total amount of time-
slots T that all devices need to transmit a fixed number of
packets. In Fig. 6, there is an analysis of the total number
of time-slots required for the complete transmission of L =
100 packets/device according to an increasing in the loading
factor of the system.
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Figure 6. Total number of time-slots as a function of loading factor
considering L = 100, and α = 0.1.

As expected, latency in terms of total time-slots required
increases when the loading factor increases, as the system be-
comes more congested and the number of collisions increases,
requiring more retransmissions. The result can be analyzed
in three different scenarios. For a low-medium loading factor,
L ≤ 1.0, all techniques have the same latency. For slightly-
crowded and crowded scenarios, i.e., 1.2 ≤ L ≤ 2.5,, the
independent technique has the highest latency in relation to
the others. Finally, for high-loading over-crowded scenarios,
the Q-Learning packet-based RA technique approaches the

latency of the independent technique, while the collaborative
technique holds the lowest latency.

Hence, from Fig. 3, 4, 5, and 6, one can infer that the
proposed distributed packet-based RA method attains the
best throughput-latency trade-off for a wide range loading
factors, 0.75 ≤ L ≤ 2.5, mainly in typically (over)crowded
scenarios.

F. Learning Rate

Finally, the adopted value for the learning rate is justified.
For that, latency was evaluated according to the learning
rate, as shown in Fig. 7. The adoption of an increasing value
for the learning rate negatively affects the performance of
reward-based RA techniques in crowded scenarios, as the
latency to achieve convergence increases. When the learning
rate is high, the weight given to the reward of the central
node is greater. Hence, in more congested scenarios, more
negative than positive rewards can be expected. Therefore,
when devices give greater weight to negative rewards, the
latency of the technique increases. This behavior is observed
when L = 1.5, as the latency increases significantly with
the increase in the learning rate. When L = 1, this behavior
is smoothed, since the increase in latency only occurs when
α = 0.5 for the collaborative and packet-based techniques.
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Figure 7. Total number of time-slots as a function of learning rate
considering L = 100.

V. Conclusions

Q-Learning-based random access methods for mMTC net-
works have been investigated in terms of throughput and
latency. The numerical results and analyses presented in
this work have demonstrated that the proposed distributed
packet-based RA method attains higher throughput and lower
latency than the independent Q-Learning RA technique, even
with the central node transmitting only a bit of reward
for both techniques. In addition, the distributed packet-
based method presented the best throughput-latency trade-
off regarding the independent and collaborative techniques
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for different loading factor scenarios (0.25 ≤ L ≤ 1.5).
These results are due to the reduction in the number of bits
transmitted by the central node to one, while distributing the
processing among the devices. Finally, in highly congested
scenarios, e.g., L ≈ 3, the throughput of the proposed
technique is the same as that of the collaborative technique.
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Multi-Power Level Q-Learning Algorithm for
Random Access in NOMA mMTC Systems

Giovanni Maciel Ferreira Silva, Taufik Abrão

Abstract—The massive machine-type communications
(mMTC) service will be part of new services planned to
integrate the beyond fifth generation of wireless communi-
cation (B5G). In mMTC, thousands of devices sporadically
access available resource blocks on the network. In this
scenario, the massive random access (RA) problem arises
when two or more devices collide when selecting the same
resource block. There are several techniques to deal with
this problem. One of them deploys Q-learning (QL), in
which devices store in their Q-table the rewards sent by the
central node that indicate the quality of the transmission
performed. The device learns which are the best resource
blocks to select and transmit in order to avoid collisions.
We propose a multi-power level QL (MPL-QL) algorithm
that uses non-orthogonal multiple access (NOMA) transmit
scheme to generate transmission power diversity and allow
accommodate more than one device in the same time-slot as
long as the signal-to-interference-plus-noise ratio (SINR)
exceeds a threshold value. The numerical results reveal
that the best performance-complexity trade-off is obtained
by using a higher power levels, typically eight levels.
The proposed MPL-QL can deliver better throughput and
lower latency when compared to other recent QL-based
algorithms found in the literature.
Keywords – NOMA, mMTC, Q-Learning; random access;
power allocation.

I. INTRODUCTION

Machine-type wireless communication will be more
widely used in applications such as internet of things
(IoT), smart house, virtual reality, etc [1], [2]. The goal
of the B5G wireless communications involves achieve
ubiquitous communication in networks with ultra-dense
devices allocation [3]–[5]. A data consumption of nearly
5 zettabytes per month is estimated across 17 billion de-
vices [6]. In addition, due to the outbreak of the COVID-
19 pandemic, there has been an remarkable increase in
remote activities in work, health and education areas,
which will be much more frequent in the post-pandemic
environment [7].

Devices connected to the wireless network use differ-
ent types of service. In the fifth generation of wireless

G. Maciel and T. Abrão are with Department of Electrical En-
gineering, State University of Londrina, Parana, Brazil. E-mail:
giomaciel.fs@gmail.com, taufik@uel.br

communications (5G) systems, a clear division into
three main use modes was defined [8]: enhanced mo-
bile broadband (eMBB) for devices that require high
data rates as an augmented reality user; ultra-reliable
low-latency communications (URLLC) for applications
that require 99.999% communication reliability such
as remote surgery, while holding end-to-end latency
below 1ms; and massive machine-type communications
(mMTC), composed of thousands of devices with low
processing power that access network data sporadically.

The study of these services remains relevant for 6G
application scenarios. In the new generation of communi-
cations, new services will be generated by merging the
benefits of existing ones. In [6], massive ultra-reliable
low-latency communication (mULC) is presented as a
combination of the low latency of URLLC with the high
number of mMTC devices, a densification application
process. This new use mode can be associated with the
intelligent transport, where high reliability is required
for traffic safety and various traffic sensors and monitors
send data about the vehicle’s condition. Besides, the
ubiquitous mobile broadband (uMBB) is also suggested
as a use of high eMBB rates in mMTC devices to enable
applications such as ubiquitous networking and digital
twin.

As the mMTC scenarios studied in 5G could be
associated to the 6G systems, the analysis of the main
problems that affect this service is still relevant. One is
the random access (RA) procedure. To reduce latency in
communication with devices, it is common to use grant-
free RA techniques, in which devices do not need a
training step with pilot sequences before sending data
packets. With the increase in the number of devices
and the data rate starvation with new applications, the
problem of RA is aggravated. As the device access to
the network is sporadic but there is a crowded number
of inactive users in the network, then it is common for
two or more devices to select the same resource block
to transmit data, which is characterized as a collision.

There are several techniques that mitigate the mas-
sive RA problem [9], [10]. One of the simplest and
least complex is the performed by the slotted ALOHA
(SA) protocol, which makes the device resend the col-
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lided packet after a fixed time window. There is also
the strongest-user collision resolution (SUCRe) protocol
[11], which solves the collision problem by calculating,
in a distributed way in each user terminal (UT), the
strongest user signal. Another possibility to mitigate
the RA issue in (over)-crowded networks consists in
deploying reinforcement learning (RL) techniques. In
RL, devices take actions and receive rewards from the
central node indicating the quality of actions taken. RL
has an advantage over more traditional machine learning
(ML) techniques in such RA crowded complex scenario,
as it is not necessary to passively receive a dataset [12].

A more simplified yet effective RL model for this
scenario is the Q-Learning (QL) which is a model-free
RL [13]. The device learns which are the best resource
blocks it should transmit based on its Q-table storage of
the rewards sent by the central node. The low-complexity
of QL makes it suitable to operate in crowded RA
scenarios with many devices randomly transmitting short
packets [14], [15]. In [16], an independent QL technique
with a binary reward and a collaborative technique in
which the device receives information on the congestion
level of each time-slot are proposed. In [17], a NOMA-
based QL algorithm is proposed in which the device
can transmit at up to three different power levels to
generate power diversity at the receiver while increase
throughput. Recently, [18], proposed a packet-based QL
scheme that can benefit devices that still have many
packets to transmit, sending them a bigger reward.

The contribution of this work is twofold: first, we
propose a multi-power levels QL algorithm (MPL-QL),
evaluating the impact of increasing power levels on the
throughput and latency, differing from what was done in
[17] where only three power levels are proposed, which
does not exploit the full benefit of the power domain
of NOMA. Second, we compare performance metrics,
such as throughput, of the proposed MPL-QL protocol
with four well-established RA protocols, the SA, the
independent QL [16], the collaborative QL [16], and the
packet-based QL [18].

The remainder of the letter is composed of the system
model described in Section II; the proposed MPL-QL
algorithm is presented in Section III; numerical results
are analyzed in Section IV; the final remarks in Section
V closes the letter.

II. SYSTEM MODEL

There are N mMTC devices sending uplink (UL)
packets to a central node in a circular cell with radius
r. The frequency resources used are a carrier fc and a
bandwidth B. The n-th device is dn meters away from

the central node and it transmits with power Pt. The
distribution of devices within the circular cell is shown
in Fig. 1.

N machine-type devices Central node

Data packets

Reward

Figure 1. System model.

The transmit frame in the UL is divided into K
time-slots, while a downlink (DL) time-slot at the end
is deployed for central node broadcast. The devices
randomly select a time-slot to transmit. The set ψk
contains the indexes of all devices that selected k-th
time-slot, k ∈ {1, . . . ,K}. Furthermore, each device has
L packets to transmit. The end of system transmission
occurs when all devices successfully transmit all of their
L packets. At the end, we define the total latency δ as
the total number of spent frames to attain convergence,
i.e., all packets transmitted successfully by all devices.
Assuming that the DL slot is much smaller than the UL
slot, it is possible to approximate the length of a frame
to K time-slots and the total number of time-slots until
the end is δK. Fig. 2 shows how transmission frames
are divided.

1 2 ... K-1 K R

UL DL

1 2 ... K-1 K R

UL DL

δ frames until convergence

Frame 1 Frame δ 

1

2

3

N
1

2

3

N

Start: L packets per device to transmit End: Devices transmitted all their packets

Loading

factor: N/K

Loading

factor: N/K

Figure 2. Frame in UL and DL time-slots until the end of system
transmission (all devices), namely convergence of transmission pro-
cess.

The received signal in the central node at the k-th



3

time-slot is simply defined as:

yk =
∑

∀n∈ψk

xn,k + wk, (1)

where xn,k is the attenuated signal transmitted by the n-
th device at the k-th time-slot, and wk ∼ CN (0, N0B)
is the additive white Gaussian noise (AWGN) at the
receiver in the k-th time-slot with power spectral density
N0.

Let’s consider that hn,k is an independent and identi-
cally distributed zero mean and unit variance Rayleigh
fading of the n-th device at k-th time-slot. Therefore,
the instantaneous signal-to-interference-plus-noise ratio
(SINR) received from the n-th device at the k-th time-
slot can be defined as

γn,k =
Pn,k∑

∀j∈ψk,j ̸=n Pj,k + w2
k

, (2)

where Pn,k = h2n,kP̄n is the instantaneous power of the
n-th device at k-th time-slot. P̄n is calculated based on
the log-distance path loss model:

P̄n = Pt + P̄d0 − 10η log10

(
dn
d0

)
, [dB] (3)

where η is the path loss exponent, d0 is a reference
distance, and P̄d0 is a reference constant power given
by

P̄d0 = 20 log10

(
c

4πd0fc

)
. [dB] (4)

Assuming that the devices have the same quality of
service (QoS) requirements, we can set a threshold SINR
γ̄ at the receiver to ensure the packet can be detected.
The packet transmitted by the n-th device at k-th time-
slot can be successfully received at the central node when
γn,k ≥ γ̄.

III. MULTI-POWER LEVEL Q-LEARNING

ALGORITHM

This section describes the proposed multi-power level
Q-Learning based grant-free RA procedure. Each device
can transmit with a maximum power Pmax. The transmit-
ted symbol is then assumed to have maximum amplitude
Vmax. The symbol x̃n transmitted by the device can
assume P equidistant amplitude levels between −Vmax

and Vmax, e.g., for P = 4,

x̃ ∈ {−Vmax,−
Vmax

3
,
Vmax

3
, Vmax}.

The selection of which time-slot and power level the
device will transmit is based on the Q-table indices
whose Q-value is maximum. When there are two or
more values equal to the maximum, the device randomly

selects between them. Fig. 3 depicts the structure of the
power level and time-slot selection based on the Q-table.

0.24 0.30 ... -0.76

-0.51 -0.68 ... -0.05

... ... ... ...

0.71 0.52 ... 0.14

1

2

K

1 2 P

Time
slots

Power

Figure 3. Q-table for each device.

As the devices present a power disparity given by
the differences in distances and transmission powers,
then the central node can apply a successive interference
cancellation (SIC) procedure to remove the interference
from the devices that collided in the same time-slot. With
this, the SINR considering NOMA becomes:

γNOMA
n,k =

Pn,k∑|ψ|
j=n+1 Pj,k + w2

k

. (5)

The transmission of the n-th device is successful if

Rn,k,p =

{
+1, if γNOMA

n,k ≥ γ̄
−1, otherwise.

(6)

With the reward received, the device updates its Q-table
[19]:

Q
(t+1)
n,k,p = Q

(t)
n,k,p + α(Rn,k,p −Q(t)

n,k,p). (7)

ℓn is the number of packets that the n-th device still has
to transmit. The devices continue transmitting until all
of their L packets are transmitted. Total latency δ is the
number of frames required for the complete transmission
of packets until the algorithm converges. Algorithm 1
indicates the pseudo-code step-by-step of the proposed
MPL-QL operation.

IV. NUMERICAL RESULTS

In this section, the performance and convergence
of the MPL-QL algorithm are analyzed. Performance
is measured in terms of throughput and latency, and
convergence is analyzed by interference per device and
convergence factor. The system simulations for the QL
algorithms were coded in Python language [20], with
Table I presenting a summary of the parameter values
adopted along this section.
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Algorithm 1 MPL-QL algorithm
Initialize Qn,k,p ∼ U [−1, 1] ∀n, k, p;
Initialize ℓn = L, ∀n;
Initialize δ = 0, S = 0
while

∑N
n=1 ℓn > 0 do

for all devices that ℓn > 0 do
Search k and p where
Qn,k,p = max

k,p
{Qn,k,p}

for all time-slots k = 1 : K do
if |ψk| > 0 then

Calculate γNOMA
n,k using Eq. (5) ∀n ∈ ψk

if γNOMA
n,k ≥ γ̄ then
Success: S ← S + 1, ℓn ← ℓn − 1
Rn,k,p = 1

else
Rn,k,p = -1

Update: Q(t+1)
n,k,p = Q

(t)
n,k,p + α(Rn,k,p −

Q
(t)
n,k,p)

Increment a frame: δ ← δ + 1

Table I
NUMERICAL PARAMETERS.

Parameter Value
Monte-Carlo realizations M = 10000
Time-slots per frame K = 100
Network loading factor L = N

K
∈ [0.25; 10]

Packets per device L ∈ [50; 100]
Learning rate α = 0.1
SINR threshold γ̄ = 3
Transmit power levels P ∈ [2; 4; 8; 12; 16]
Cell radius r = 200 m
Reference distance d0 = 1 m
Bandwidth B = 125 kHz
Carrier frequency fc = 915 MHz
Path loss exponent η = 3
Noise PSD N0 = −150 dBm/Hz
Maximum power Pmax = 1 mW

A. Throughput and Latency of MPL-QL algorithm

Throughput τ is calculated as the ratio between the
total number of successes S and the total number of
time-slots required for the algorithm to converge:

τ =
S

δK
,

[ success
time-slot

]
(8)

Throughput indicates on average how many devices can
successfully transmit their packets within a time-slot.
In Fig. 4, the throughput of the MPL-QL technique is
analyzed as a function of the loading factor for different
power levels (P ∈ {2, 4, 8, 12, 16}).

Note that the higher the power levels, the higher the
throughput. With higher power levels available to the
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Figure 4. MPL-QL throughput for different power levels P .

transmitter, the greater the power difference between the
desired signal and the interferers at the receiver. This
makes the receiver’s SIC able to detect more packets
successfully.

When increasing the power levels from 12 to 16,
a marginal gain in throughput was observed. In this
scenario, there is no significant increase in the power
disparity that arrives at the receiver, so a maximum num-
ber of possible successes is reached after SIC detection.
As the increase in the number of power levels causes an
increase in the size of the Q-table that the device needs to
store, it is possible to say that a good number for power
levels is between 8 and 12, as a good performance-
complexity trade-off is guaranteed to devices.

In Fig. 5, the latency δ needed to obtain the con-
vergence of the algorithm was analyzed considering the
same power levels used in Fig. 4.

Latency decreases with increasing power levels. Con-
sidering a loading factor L = 6, the latency for P = 8 is
≈ 30% lower compared to P = 2. Analogously to what
was discussed in Fig. 4, with a higher value of P , the
disparity of power between the device of interest and
the interfering devices increase, which makes the occur-
rence of collisions smaller, consequently decreasing the
latency.

The differences (reduction) of latency for power levels
P > 8 become marginal, which again indicates that a
suitable power level guaranteeing a good performance-
complexity trade-off is close to 8. This is because, by
increasing the power levels, the granularity is increased.
As a result, two or more devices that collide in the same
time-slot will have similar power levels. Therefore, the
SINR will result higher when the granularity is improved
(more power levels), which decreases the number of
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Figure 5. MPL-QL latency (total number of frames).

successes the algorithm is able to attain. The value of
P = 8 power-levels was used in the remainder of this
section.

B. Convergence of MPL-QL algorithm

The convergence of the MPL-QL algorithm is ana-
lyzed by two figures of merit: interference per device
and convergence factor per device. The analysis was
performed only for the n-th device, but on average the
figures of merit for all devices reveal the same behavior.

The interference In,k of the n-th device at k-th time-
slot is calculated as the sum of the powers of the inter-
fering devices that selected the same time-slot, defined
by the subset ψk; after SIC detection such interference
can be calculated as

In,k =

|ψk|∑

j=n+1

Pj,k, [W ] (9)

while the convergence factor is defined as

νn =
L− ℓn
L

. (10)

At the beginning of the algorithm execution, the n-th
device transmitted only a few packets successfully, so
νn → 0. When the algorithm is close to the convergence,
the n-th device has already transmitted most of its pack-
ets, making νn → 1. Fig. 6 depicts the interference along
the frames for the n-th device considering a) L = 50, b)
L = 100 [packets/device], and c) convergence factor vs.
the frame (δ) evolution until convergence (νn = 1).

In the beginning of transmission frames, the MPL-
QL algorithm can make wrong decisions in choosing
the best time-slots and power levels to transmit. Hence,
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Figure 6. Interference and convergence factor of the MPL-QL
algorithm considering the n-th device. a) L = 50 packets; b) L =
100 packets; c) convergence factor under L = 100 packets.

there is an oscillating behaviour of the high interference
in the early frames. After a latency δ ≈ L frames, i.e.,
L = 50 and 100 frames in Fig. 6, device interference
starts to decrease steadily as devices have already passed
the initial learning phase and begin to discover better
time-slots and power levels to transmit their packets with
greater probability of success. Indeed, when the number
of frames is equal to L, a good part of the devices have
already transmitted all their packets, as they initially
selected the least congested time-slots. Therefore, more
empty time-slots start to appear for the n-th device,
which makes their interference monotonically decrease
after L frames.

Increasing the loading factor causes more devices to
collide in the same time-slot, which causes an increasing
in the average interference per device. For this reason,
in Fig. 6a) and 6b), the two scenarios with a loading
factor L = 6 have greater interference compared to L =
3. Moreover, increasing power levels makes the average
interference lower. With more power levels, the greater
the signal power disparity of the devices that collide in
the same time-slot, making the difference between the
power of interest and the interfering one greater.

By increasing the loading factor L, more devices are
transmitting in the available time-slots. This causes the



6

interference to increase, causing more collisions to hap-
pen, increasing the convergence time of the algorithm.
For this reason it is possible to observe that the curves
for L = 3 converge faster than the curves for L = 6.

Increasing the number of power levels also makes
convergence occur faster. This is because more available
power levels generate a power disparity between two or
more devices that collide in the same time-slot, making
the signal from the device with the highest power level
even greater in relation to the interfering ones. In Fig.
6c), it can be seen that the number of power levels P =
8 converged faster than the P = 2 in both loading factor
scenarios.

C. Comparison with Other RA Methods

The performance of the proposed MPL-QL algorithm
was compared with other methods available in the liter-
ature, specifically: a) Slotted Aloha (SA), where there is
no feedback from the central node to the devices. The
devices only send all their UL packets and the number
of successes is obtained when there is no collision; b)
Independent QL [16]; c) Collaborative QL [16]; and
Packet-Based QL [18].

As the aforementioned QL techniques do not consider
different transmitter power levels, then the transmitted
power is the same for all devices. This impacts on the
evolution of the QL algorithm; hence, as the Q-table
reveals in Fig. 3, it does not present the dimension
of the powers for such techniques, being considered
only the time-slots dimension. Thus, the device learning
process is performed only to find the best time-slot for
transmission with minimal probability of collision.

The difference between the three QL-based algorithms
deployed in the comparison is in the way in which
the reward is done by the central node. Hence, in the
independent QL algorithm, the reward sent by the central
node is defined as:

RIND
n,k =

{
+1, if γNOMA

n,k ≥ γ̄
−1, otherwise.

(11)

It is a binary reward, similar to the MPL-QL, but it is
performed only in the time-slot dimension. On the other
hand, for the collaborative QL, the congestion level of
the time-slot is defined as:

Ck =
|ψk|
N

; (12)

and included in the negative reward of collaborative QL:

RCOL
n,k =

{
+1, if γNOMA

n,k ≥ γ̄
−Ck, otherwise.

(13)

As a result, the collaborative QL algorithm is more
complex than independent QL, since the central node
needs to know the number of devices that collided in
each time slot. However, the performance is superior
as more information related to the system state is sent
during the execution of the algorithm [16].

The packet-based QL considers the convergence factor
of Eq. (10) and includes such factor in the its reward:

RPAC
n,k =




+1, if γNOMA

n,k ≥ γ̄
−L− ℓn

L
, otherwise.

(14)

Packet-based QL random access strategy favors de-
vices that still have a lot of packets to transmit, sending
them a greater reward w.r.t. devices that are already close
to convergence [18].

Fig. 7.a) shows the normalized throughput and Fig.
7.b) depicts the latency against loading factor L for the
proposed MPL-QL algorithm, the Slotted Aloha, and the
other three QL-based algorithms in the literature. For
these results, K = 100 time-slots/frame and L = 100
packets per device were considered. SA is the simplest
RA protocol, since devices randomly select a time-slot
with no reward sent by the central node to indicate trans-
mission quality. For this reason, the SA throughput is the
worst among all the analyzed techniques. Independent
and collaborative QL techniques have higher throughput
than SA as central node rewards are used for devices to
better select which time-slots to transmit. In [16], it is
noted that the collaborative QL has a better performance
than the independent QL. However, by adding the power
domain in NOMA scenarios, the performance of the
techniques becomes the same.

The proposed MPL-QL random access method has
presented the substantial increasing in the throughput
and simulteneously decreasing in the latency for higher
loading factors L. Such system throughput and latency
improvements can be explained by the fact that in the
realistic scenario where devices are subject to the effects
of path loss and fading, increasing the power diversity
at the transmitter allows nearby devices to transmit at
different powers, which increases the SINR after the
SIC, at the receiver side. Therefore, more successes are
expected to occur when using MPL-QL compared to
other QL algorithms, increasing the throughput.

Elaborating further, when analyzing the throughput in
Fig. 7a) and latency in Fig. 7b), one infers that the
power domain can be advantageous to allocate more
devices in a time-slot. The QL-based algorithms in the
literature exploring only the time-slot domain do not take
advantage of the power diversity in the transmitter to
avoid collisions, so they tend to converge more slowly.
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Figure 7. a) Throughput, and b) Latency for the SA and four QL-
based algorithms, with P = 8 for the proposed MPL-QL. L = 100
and K = 100.

Hence, for a loading L = 4, where there are on average
4 devices transmitting per time-slot, the SA protocol is
capable of generating little more than 1

10 success. On the
other hand, independent and collaborative QL-based RA
algorithms are able to generate 1.7 successes, while the
proposed MPL-QL generates 2.3 successes. Therefore, it
is shown that, on average, the MPL-QL is able to better
deal with the collisions between devices, mainly when
the loading factor increasing beyond 3.

D. QL-based RA Techniques with Imperfect SIC

The previous results were obtained considering that
the central node applies a perfect SIC when receiving
packets. However, error-free cancellation is difficult to
achieve in crowded mMTC scenarios due to the different
levels of interference affecting each signal device. In
this subsection, we consider an imperfect SIC model
in which there is a residue of the powers of devices
that have already passed through the SIC modeling the
imperfect signal cancelling effect. Hence, considering
NOMA, the new SINR with the imperfect SIC can be
written as:

γ̃NOMA
n,k =

Pn,k

β
∑n−1

j=0 Pj,k +
∑|ψ|

j=n+1 Pj,k + w2
k

. (15)

where β ∈ [0, 1] is the SIC error factor. β = 0 indicates
that the interference is perfectly cancelled, collapsing in
Eq. (5), while when β = 1, models the absence of SIC
procedure at the central node. Typical realistic values for
the error factor are in range β ∈ {0.01; 0.30}, depending

on the level of interference and of course the received
power disparities distribution.

Fig. 8 depicts a comparison of the throughput of
QL-based techniques considering β ∈ [0; 0.1; 0.2]. As
expected, increasing β worsens the throughput of all al-
gorithms, as interference increases, which consequently
increases collision and latency until the algorithm attain
convergence. Notice that by increasing the value of
β decreases the maximum number of devices that the
system serves. MPL-QL achieves maximum throughput
for a loading factor L = 6 operating under perfect SIC,
i.e., β = 0. For β = .01 and β = 0.02, the loading factor
to achieve maximum throughput is reduced to L = 3
and L = 2, respectively. Such decrease is also due
to increased latency due to increased interference that
can not be cancelled (β ̸= 0). The MPL-QL method
proved to be superior to the other QL-based algorithms
in all RA crowded scenarios, thanks to the greater power-
level granularity, allowing the power differences between
the desired device and the interferers larger, reducing
collisions.

V. CONCLUSIONS

The performance and convergence of the proposed
MPL-QL method for different power-levels granularity
have been characterized and compared with other QL-
based RA algorithms. It was observed that the best num-
ber of power levels that guarantee a good performance-
complexity trade-off is P = 8 levels. This value was
used to compare the throughput with other recent grant-
free RA algorithms, namely the independent, collabo-
rative, and packed-based QL-based algorithms, and the
classical SA method. The 8-levels MPL-QL technique
has revealed the best performance compared to the other
analyzed RA techniques, due to the enough power diver-
sity generated by the MPL-QL technique, improving the
SINR at the receiver side, while increasing the chance of
successful transmissions of a greater number of devices
in crowded RA scenarios.

The proposed MPL-QL method demonstrated supe-
riority in both throughput and latency regarding the
other QL-based algorithms in all RA crowded scenarios
analyzed, due to the greater power-level granularity, al-
lowing the power differences between the desired device
and the interferers larger, reducing collisions.
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APPENDIX D – Python Code for
NOMA QL

The following Python source code can be used to measure the normalized throughput
of the NOMA QL algorithm when considering a perfect SIC at the receiver:
######## import ########
import numpy as np
from numpy import random as rand
from numpy . core . f u n c t i o n b a s e import l i n s p a c e
import matp lo t l i b . pyplot as p l t
import datet ime as dt
import os

######## p a r a l l e l a l gor i thm ########
def noma algorithm ( NumDevices : int , NumTimeSlots : int , NumPackets : int , \

NumTransmitPower : int , SINR th : f loat , LearningRate : f loat , \
Pmax : int , method : str ) :

# number o f power l e v e l s needs to be even
i f ( NumTransmitPower % 2) == 1 : return 0

# check f o r v a l i d a l gor i thm
i f method != ’SA ’ and method != ’NOMA−QL ’ and method != ’ Ind−QL ’ \

and method != ’ Col−QL ’ and method != ’ Pac−QL ’ : method = ’SA ’

# i n i t v a r i a b l e s
PathLossExp = 3
Cel lRadius = 200
Gtx dB = 0
Grx dB = 0
NoisePSD dBm = −150
Freq = 915 e6
Bandwidth = 125 e3
c = 3e8
d0 = 1

# normal i zes the power to the number o f l e v e l s (NOMA−QL only )
i f method != ’NOMA−QL ’ :

NumTransmitPower = 1
PossibleTxPower = Pmax
MeanPower = Pmax

else :
Poss ib leAmpl i tudes = l i n s p a c e (−np . s q r t (Pmax) , np . s q r t (Pmax) ,\

NumTransmitPower )
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PossibleTxPower = Poss ib leAmpl i tudes ∗∗2
MeanPower = np .sum( PossibleTxPower )/ NumTransmitPower

NoisePSD = (10∗∗ ( NoisePSD dBm /10))/1 e3
NoisePower = NoisePSD∗Bandwidth
# f r i i s equa t ion
ReferencePower dB = Gtx dB + Grx dB + 20∗np . log10 ( c /(4∗ d0∗Freq∗np . p i ) )
# raondom dev i c e p o s i t i o n in a c i r c u l a r c e l l
d = Cel lRadius ∗np . s q r t ( rand . uniform ( 0 , 1 , ( NumDevices , 1 ) ) )
RemainingPackets = NumPackets∗np . ones ( ( NumDevices , 1 ) , dtype=int )
Qtable = rand . uniform ( −1 ,1 ,( NumDevices , NumTimeSlots , NumTransmitPower ) )
Reward = np . z e ro s ( ( NumDevices , NumTimeSlots , NumTransmitPower ) )
f l a g u n i q u e s l o t s = False
Succe s s e s = 0
TotalLatency = 0

# q−l e a rn ing a l gor i thm
while (np .sum( RemainingPackets ) > 0 ) :

# e x i t i f d e v i c e s have found unique time s l o t s to t ransmi t
i f ( f l a g u n i q u e s l o t s == True ) : break

i f method != ’SA ’ :
f l a g u n i q u e s l o t s = True

# genera te channel samples
ChannelSamples = ( rand . normal ( 0 , 1 , [ NumDevices , 1 ] ) +

1 j ∗ rand . normal ( 0 , 1 , [ NumDevices , 1 ] ) ) / np . s q r t (2 )
ChannelPower = abs ( ChannelSamples )∗∗2

# s e l e c t time s l o t s
Se lec tedTimeS lot s = np . z e r o s ( ( NumDevices , 1 ) )
SelectedPower = np . z e r o s ( ( NumDevices , 1 ) )
TransmitPower = np . z e ro s ( ( NumDevices , 1 ) )
for n in range (0 , NumDevices ) :

i f RemainingPackets [ n ] > 0 :
i f method == ’SA ’ :

Se l ec tedTimeS lot s [ n ] = rand . cho i c e (\
range (0 , NumTimeSlots ) ) + 1

TransmitPower [ n ] = PossibleTxPower
else :

# ge t max va l u e s from Q−Table
Qvaluemax = np . amax( Qtable [ n , : , : ] , keepdims=True )
Qvalueindexes = np . where ( Qtable [ n , : , : ] == Qvaluemax )
Se l ec tedTimeS lot s [ n ] = rand . cho i c e (\

Qvalueindexes [ 0 ] ) + 1
SelectedPower [ n ] = rand . cho i c e ( Qvalueindexes [ 1 ] )
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i f method == ’NOMA−QL ’ :
TransmitPower [ n ] = PossibleTxPower [\

int ( SelectedPower [ n ] ) ]
else :

TransmitPower [ n ] = PossibleTxPower

# c a l c u l a t e t ransmi t powers
AveragePower dB = ReferencePower dB − \

10∗ PathLossExp∗np . log10 (d/d0 )
AveragePower = 10∗∗( AveragePower dB /10)
AveragePower ∗= TransmitPower/MeanPower
Power = ChannelPower∗AveragePower

# search f o r i n t e r f e r e n t d e v i c e s among a l l t ime s l o t s
for k in range (0 , NumTimeSlots ) :

I n t e r f D e v i c e s = np . where ( Se l ec tedTimeS lot s == ( k +1) ) [ 0 ]
i f ( len ( I n t e r f D e v i c e s ) > 0 ) :

i f method != ’SA ’ :
# c a l c u l a t e SINR
SINR = np . z e r o s ( ( len ( I n t e r f D e v i c e s ) , 1 ) )
SortedPower = sorted ( Power [ I n t e r f D e v i c e s ] , r e v e r s e=True )
SortedPower Index = sorted ( range ( len (\

Power [ I n t e r f D e v i c e s ] ) ) , \
key=Power [ I n t e r f D e v i c e s ] . g e t i t e m ,\
r e v e r s e=True )

Inter fPower = np .sum( SortedPower )
for m in range (0 , len ( I n t e r f D e v i c e s ) ) :

n = I n t e r f D e v i c e s [ int ( SortedPower Index [m] ) ]
NoiseSample = ( rand . normal (0 , 1 ) +

1 j ∗ rand . normal ( 0 , 1 ) ) ∗ np . s q r t ( NoisePower /2)
InstantNoisePower = abs ( NoiseSample )∗∗2

i f method == ’NOMA−QL ’ :
p = int ( SelectedPower [ n ] )

else :
p = 0

Inter fPower −= SortedPower [m]
SINR [m] = SortedPower [m] / ( Inter fPower + \

InstantNoisePower )
# check f o r a succe s s t ransmiss ion
i f (SINR [m] > SINR th ) :

i f method == ’NOMA−QL ’ or \
method == ’ Ind−QL ’ or \
method == ’ Col−QL ’ or \
method == ’ Pac−QL ’ :
RemainingPackets [ n ] −= 1
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Succe s s e s += 1
Reward [ n , k , p ] = 1

else :
i f method == ’ Col−QL ’ :

Reward [ n , k , p ] = \
−len ( I n t e r f D e v i c e s )/ NumDevices

e l i f method == ’ Pac−QL ’ :
e p s i l o n = 1 − \

( RemainingPackets [ n ] / NumPackets )
Reward [ n , k , p ] = −e p s i l o n

else :
Reward [ n , k , p ] = −1

i f method == ’NOMA−QL ’ or method == ’ Ind−QL ’ or \
method == ’ Col−QL ’ or method == ’ Pac−QL ’ :
Qtable [ n , k , p ] = (1−\

LearningRate )∗ Qtable [ n , k , p ] \
+ LearningRate ∗Reward [ n , k , p ]

i f method == ’SA ’ :
RemainingPackets [ I n t e r f D e v i c e s ] −= 1

else :
i f len ( I n t e r f D e v i c e s ) == 1 :

Succe s s e s += 1
RemainingPackets [ I n t e r f D e v i c e s ] −= 1

i f ( len ( I n t e r f D e v i c e s ) > 1 ) :
f l a g u n i q u e s l o t s = False

# increa se l a t e n c y
TotalLatency += NumTimeSlots

# c a l c u l a t e throughput a f t e r the a l gor i thm ends
Throughput = Succe s s e s / TotalLatency
return Throughput

######## parameters ########
NumSimulations = 1
NumDevices = np . arange (100 ,600 ,100)
# Algori thms : ’SA ’ , ’ Ind−QL ’ , ’ Col−QL ’ , ’ Pac−QL ’ , and ’NOMA−QL’
QL Algorithm = ’ Ind−QL ’
NumTimeSlots = 100
NumPackets = 100
NumPowerLevels = 8
MaximumTxPower = 1e−3
LearningRate = 0 .1
SINR threshold = 3
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######## c a l c u l a t e throughput f o r each N ########
os . system ( ’ c l s ’ )
LoadingFactor = NumDevices/NumTimeSlots
MeanThroughput = np . z e r o s ( ( len ( NumDevices ) , 1 ) )
cu r r ent t ime = dt . datet ime . now ( ) . s t r f t i m e ( ”%d/%m/%Y %H:%M:%S” )
print ( cu r r ent t ime )
print ( ” S imulat ing . . . ” )
for ind in range (0 , len ( NumDevices ) ) :

Throughput = [ ]
for i r e p in range (0 , NumSimulations ) :

Throughput . append ( noma algorithm ( NumDevices [ ind ] , NumTimeSlots ,\
NumPackets , NumPowerLevels , SINR threshold , LearningRate ,\

MaximumTxPower , QL Algorithm ) )
MeanThroughput [ ind ] = np . mean( Throughput )
print ( ’ NumDevices = %d , Throughput = %.04 f ’ % ( NumDevices [ ind ] ,\

MeanThroughput [ ind ] ) )
cu r r ent t ime = dt . datet ime . now ( ) . s t r f t i m e ( ”%d/%m/%Y %H:%M:%S” )
print ( cu r r ent t ime )

######## p l o t f i g u r e ########
f i g , ax = p l t . subp lo t s ( )
ax . p l o t ( LoadingFactor , MeanThroughput , ’ bo−. ’ , l a b e l=QL Algorithm )
ax . set ( x l a b e l=’ Loading f a c t o r ’ , y l a b e l=’ Normalized throughput ’ )
ax . g r id ( )
ax . l egend ( )
p l t . show ( )
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