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Abstract

Increasing the number of antennas at the base station (BS) of a massive MIMO network is
useful to improve the throughput and the energy efficiency. However, when employing hun-
dreds or thousands of antennas, the weight of the antenna array may become a challenge,
as well as holding the antenna separation to at least half wavelength, which is opportune
to make real advantage from an array composed by thousands of antenna elements. Conse-
quently, the array length increases a lot. The main consequence is that the majority of the
energy sent by a given user achieves only a small portion of the antenna array, which is
called spatial non-stationarity. Thus, selecting the antennas that will participate in the
receive combining of the signal sent by each user, instead of using all the available antennas,
may be a very useful strategy to reduce considerably the power consumption without
degrading the throughput. In this context, there are two possible situations: the subset of
the antennas selected for a given user may be any combination of the available antennas, or
the array is previously divided into multiple subarrays, corresponding to separate hardware
entities, and one or more subarrays are assigned to each user. This work proposes three
antenna selection (AS) and two subarray selection (SS) schemes. Numerical results proved
that the selection schemes are capable of reducing the number of active antennas in low
user-density non-stationary scenario, reducing the power consumption considerably. When
assigning a small number of BS antennas per user to perform receive combining for each
user, the processing complexity and analog RF front-end power consumption are also re-
duced. The proposed algorithms select properly the subset of antennas that are designated
to each user, preferring the ones whose channel between them and the user are stronger and
also considering the potential interference from the other users. Therefore, the throughput
reduces only slightly, although zero-forcing (ZF) combiner is more efficient in mitigating
the interference when many antennas are used. As the power consumption decays much
more than the throughput, the energy-efficiency (EE) is dramatically improved. One of the
proposed algorithms, namely fair-AS, arbitrarily maintain a limited number of antennas
active. It was more efficient than the other algorithms at maximizing the EE, as it can
provide a greater reduction in the power consumption than the other schemes, while the
resulting throughput is not severely compromised. Fair-AS can provide big improvements
in the system EE even under moderate user density scenarios.

Keywords: Massive MIMO, Extremely-Large MIMO, Antenna Selection, Energy Effi-
ciency, Non-Stationarities, Near-Field Propagation





Resumo

Aumentar o número de antenas na estação rádio base de um sistema MIMO Massivo
garante uma melhoria nas taxas de dados e na eficiência energética. Entretanto, ao em-
pregar centenas ou milhares de antenas, o peso do array de antenas pode se tornar uma
dificuldade, bem como manter a separação entre antenas em no mı́nimo meio comprimento
de onda, o que é oportuno para aproveitar inteiramente a disponibilidade de um grande
número de antenas. Consequentemente, o array de antenas torna-se muito mais comprido.
A principal consequência disto é que a maior parte da energia contida no sinal enviado por
um determinado usuário atinge apenas uma pequena porção do array, o que é conhecido
como não-estacionariedade espacial. Portanto, selecionar as antenas que irão atuar na
detecção do sinal transmitido por cada usuário, ao invés de usar todas as antenas, é
uma ótima estratégia tendo em vista reduzir a complexidade computacional e o consumo
de potência, sem comprometer a taxa de dados. Nesse contexto, existem duas posśıveis
situações: o subconjunto de antenas selecionadas para cada usuário pode ser qualquer
combinação entre as antenas dispońıveis no array, ou então o array é previamente dividido
em múltiplos subarrays, que seriam entidades de hardware independentes, e um ou mais
subarrays são atribúıdos a cada usuário. Este trabalho propõe três esquemas de seleção de
antenas (AS) e de dois esquemas de seleção de subarrays (SS). Os resultados numéricos
demonstraram que os esquemas de seleção foram capazes de reduzir o número de antenas
ativas em um cenário de baixa ou média densidade de usuários, e consequentemente reduzir
consideravelmente o consumo de potência. Ao definir uma pequena quantidade de antenas
para realizar o receive combining para cada usuário, a complexidade também é reduzida
nesse cenário. Os algoritmos propostos selecionam os subconjuntos de antenas criteriosa-
mente, dando preferência àqueles(as) cujo canal até o usuário está mais forte, também
considerando a interferência potencial devido aos demais usuários. Portanto, a taxa de
dados apresenta apenas uma pequena redução, mesmo que o combinador zero-forcing
(ZF) seja mais eficiente em combater a interferência quando o número de antenas é alto.
Enfim, como o consumo de potência diminui muito mais que a taxa de dados, a eficiência
energética (EE) melhora colossalmente. Um dos algoritmos propostos, chamado fair-AS,
mantém o número de antenas ativas limitado arbitrariamente. Este algoritmo mostrou-se
mais eficiente que os demais em maximizar a eficiência energética, por garantir maior
redução de potência que os demais, sem no entanto comprometer consideravelmente a taxa
de dados do sistema. O esquema fair-AS mostrou-se capaz de aumentar consideravelmente
a EE, mesmo em cenários de moderada densidade de usuários.

Palavras-chave: MIMO Massivo, Seleção de Antenas, Eficiência Energética, Não estacio-
nariedades
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1 Introduction

Massive MIMO (M-MIMO) is considered a crucial component for fulfilling the de-
mands of the fifth generation (5G) wireless communication standard and beyond (Boccardi
et al., 2014). Specifically, equipping the BS with thousands of antennas provides extreme
spatial resolution that can be used to boost both capacity and energy efficiency (EE).
However, practical challenges appear when the array dimension is increased to the order of
thousands or more, such as the size and weight of the array (Wang et al., 2020), as current
cellular networks deploy compact and colocated antenna array, with antenna separation
in the order of the wavelength. In order to make real advantage from the deployment of
such a large number of antenna elements, a proper antenna separation is important to
achieve great spatial resolution (BJöRNSON et al., 2017). These difficulties advocate for
distributing the antennas over a substantially large area.

One potential approach is to divide the antenna array into disjoint subsets of
antennas and distributing them over a large area, coordinated by a central processing unit
(CPU), which is known as distributed M-MIMO (Wang et al., 2020). Another approach,
called extra-large-scale MIMO (XL-MIMO), is the integration of the antenna array into
large structures, such as the facades of buildings, shopping malls or stadiums (Carvalho et
al., 2020).

When a moderate number of antennas is compactly deployed in the BS, the wavefront
from a far user can be reasonably approximated as planar wavefront, while the channel is
spatially stationary, which means that the entire array receives approximately the same
amount of energy from each user (Han et al., 2020). On the other hand, an antenna
array with extreme dimensions yields different channel conditions. As the availability of
sufficiently accurate propagation channel models is of critical importance to the design and
evaluation of new wireless systems (Flordelis et al., 2020), one must take such conditions
into account in order to define a consistent channel model.

First, due to the use of large aperture arrays and the close distance between the
array and the users’ antenna, the BS antenna array will experience spherical wavefronts
instead of planar wavefronts (Yin et al., 2017), which is called near-field propagation.
Second, in large aperture arrays, different parts of the array might observe the same
propagation paths with varying power or distinct propagation paths (Carvalho et al., 2020).
Consequently, the majority of energy received from a specific user concentrates on small
portions of the antenna array (Ali et al., 2019; Amiri et al., 2018), according to recent
channel measurements (Hou et al., 2020; Li et al., 2018; Chen et al., 2017). It is called
spatial non-stationarity, and such channel property can be introduced in the M-MIMO
and XL-MIMO channel modelling by defining the concept of visibility region (VR). Section
2.1 contains a discussion on these two additional aspects on the propagation pattern and
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the concept of VR, where the traditional M-MIMO channel model is modified in order to
aggregate the spherical wavefront and the spatial non-stationarity assumptions.

When employing extremely large arrays, say thousands of antenna-elements, the
computational complexity for signal processing becomes a bottleneck if a centralized
processing architecture is implemented, specially in crowded scenarios, due to the excessively
large amounts of data being transferred between the array and the processing unit (Wang
et al., 2020). A promising solution is to divide the antenna array into subarrays, which
are disjoint units with individual processing units that accesses only its locally received
signals to estimate them (Wang et al., 2020), consequently reducing the complexity. The
number and size of subarrays may be fixed, when they correspond to separate hardware
entities, or adjustable, when they correspond to software-defined logical interconnections
between different antenna elements (Wang et al., 2020).

Numerous benefits arise from the subarray-based processing architecture, including:
a) Simplification of the channel acquisition: as the channel of each subarray individually
can be approximated as stationary, one can simply apply MMSE channel estimation,
which is known to provide very good channel estimation quality in stationary channels.
Furthermore, as the channel matrix is divided into multiple submatrices and each one
can be estimated individually, the associated computational complexity is reduced. b)
Computational complexity reduction: due to the spatial non-stationarities along the array,
the energy received from each user is mostly concentrated in small portions of the array.
Thus, the majority of the energy coming from that user can be received by using only a
few antennas, instead of the whole antenna array. Hence, the complexity associated to
computing the combining and precoding matrices, as well as the complexity associated
to the UL reception and DL transmission, decreases. c) Energy saving: the channel
estimation and signal processing power consumption decreases, due to the reduction in
the computational complexity associated to tasks such as signal processing and channel
estimation; the power consumption due to the antennas activation also reduces considerably.

By appropriately selecting a subset of BS antennas to communicate to each user,
the BS may receive almost all the energy that would be received if all the antennas were
used, while reducing the interference coming from the other users if maximum-ratio (MR)
combiner is used. If zero-forcing (ZF) combiner is employed, the interference power after the
combiner increases when less antennas are utilized. However, if the antennas are properly
selected, this increase may be attenuated.. Consequently, although less antennas participate
in the signal detection, the spectral efficiency (SE) is not significantly compromised, while
the power consumption considerably decreases. As a result, such configuration attains
higher EE. Finally, one can summarise the aforementioned benefits from the subarray-based
architecture and a judicious antenna selection as:

1. simplification of the channel acquisition;
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2. computational complexity reduction;

3. energy saving;

4. increased SE;

5. increased EE.

This work deals with XL-MIMO systems with subarray-based processing archi-
tecture, which itself is promising for providing very high spectral and energy efficiencies.
Furthermore, this work contains five novel algorithms to judiciously select the BS antennas
that communicate with each user in order to reduce the overall computational complexity
and the power consumption, consequently ensuring a considerable EE improvement, when
compared to using the whole antenna array to communicate to every user.

Aside the necessity of improving the SE, minimizing the power consumption is a
growing concern in the XL-MIMO implementation systems, including green communication
technologies issues (HUANG et al., 2018). The EE is a performance metric that can manage
both objectives. For this reason, the numerical results in Chapter 4 discuss both SE and
EE.

1.1 Literature Review

1.1.1 Near-field propagation when employing large antenna ar-
rays

In (Jeng-Shiann Jiang; Ingram, 2005), spherical wave model is empirically shown to
be more accurate than plane wave model in short-range MIMO with a line-of-sight (LoS)
component, for example, in indoor wireless local area network applications. In (Bohagen
et al., 2009), authors provide a tool that can be employed to determine the distances
for which the spherical wave model should be applied instead of the plane wave model,
in pure LoS conditions and using uniform linear MIMO arrays. In (Zhou et al., 2015),
authors propose an analytical spherical-wave channel model for large linear arrays, and
investigate how users can be spatially separated in simple LoS scenarios. The results show
that spherical wavefront models help decorrelate the channels more effectively than planar
wavefront models.

Considering a large-scale antenna array scenario, (Chen et al., 2016) proposes
a spherical wavefront signal model and an algorithm to localize the first- and last-hop
scatterers along the propagation paths between the user and the BS antennas. Particularly,
the algorithm estimates the distance between the last-hop scatterer to a reference antenna
element, as well as the angle-of-arrival (AoA) and the angle-of-departure (AoD). Simulations
and outdoor measurements with a 1600-element planar array are carried out to verify the
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estimation performance of the algorithms. A significant extension of this estimation scheme
is presented in (Yin et al., 2017), with a complete generic signal model being proposed.

1.1.2 Channel non-stationarities when employing large antenna
arrays

A generic multipath model is proposed in (Wang et al., 2020), based on spherical
wavefront, to characterize the propagation path. Some parameteres of the propagation
path are used to localize the scatterers in the first and last hops.

The spatial non-stationarity impact on the signal-to-interference-plus-noise ratio
(SINR) performance is analysed in (Ali et al., 2019). In (Carvalho et al., 2020), authors
show that, when M-MIMO systems operate in extra-large scale regime, several important
MIMO design aspects change, due to spatial non-stationarities. In (Amiri et al., 2018),
three low-complexity data detection algorithms are proposed for uplink communication
in XL-MIMO systems. Efficient detector for XL-MIMO systems based on the subarray
processing architecture is proposed in (Wang et al., 2020), by extending the application
of the expectation propagation principle to each subarray. A different approach to the
antenna selection in XL-MIMO is proposed in (AMIRI et al., 2020), which is based
on machine learning to select a small portion of the array that contains a considerable
portion of beamforming energy, aiming at overcoming the prohibitive antenna activation
consumption/complexity in conventional XL-MIMO systems.

1.2 Objectives

This Master Dissertation has the following objectives:

1. General: Systematic analysis of the deployment of antenna selection schemes in
XL-MIMO systems.

2. Specific:

a) Perform a systematic comparison between the traditional strategy of utilizing
all the antennas of the BS to perform receive combining to detect the signal
sent by each user, and the proposed strategy of selecting only a small number
of antennas or subarrays to do this task. The strategies are compared regarding
the EE, the throughput, the complexity and the power consumption resulting
from each strategy.

b) Make a systematic comparison among each of the five proposed selection
schemes, in order to define which one achieves the best results regarding the
five performance metrics above mentioned.
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1.3 Contributions

The contributions of this work are threefold:

1. Five novel antenna selection procedures are proposed to improve the EE of XL-MIMO
systems while reducing the computational complexity and the power consumption,
utilizing a detailed circuit power consumption model.

2. A simplified XL-MIMO channel model that takes into account the spatial non-
stationarity and the near-field propagation assumptions is developed.

3. A comprehensive analysis on how each proposed AS algorithm impacts on the
system performance has been carried out, highlighting the benefits arising from the
algorithms compared to the case of using the whole antenna array to communicate
to every user.

1.4 Summary of generated articles

1. G.A. Ubiali, T. Abrão. XL-MIMO energy-efficient antenna selection under
non-stationary channels. Full paper published in the journal Physical Communi-
cation (IF = 1.830, A3 - Eng. IV in QUALIS-CAPES), in August 2020. A copy of
the article is in Appendix A.

2. G.A. Ubiali, J. C. Marinello F., T. Abrão. Energy-Efficient Flexible and Fixed
Antenna Selection Methods for XL-MIMO Systems. Full paper published in
the journal International Journal of Electronics and Communications (IF = 3.510,
A2 - Eng. IV in QUALIS-CAPES), in December 2020. A copy of the article is in
Appendix B.

1.5 Organization of the Text

The remainder of this Dissertation is organized as follows:

• Chapter 2 presents the system model and develops the adopted channel model,
describing how the conventional Massive MIMO channel model was modified to
include the non-stationarity and near-field propagation scenario.

• Chapter 3 describes the UL Pilot and UL Data Transmission phases and the five
proposed strategies of antenna and subarray selection in XL-MIMO scenarios. The
computational complexity related to each algorithm and the adopted power consump-
tion model are also presented and comprehensively developed. Section 3.3 suggests a
different philosophy in antenna selection for XL-MIMO systems: the number of active
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antennas becomes an input parameter to be optimized in the AS algorithm, and all
the active antennas collaborate in detecting the signal sent by all active users. The
goal is to arbitrarily hold the number of active antennas low, even in medium system
loading, so that the energy efficiency is improved over the non antenna selection
approach.

• Chapter 4 contains extensive numerical results showing how the EE, the throughput,
the complexity and the power consumption are affected depending on which antenna
selection scheme is employed.

• Chapter 5 brings the conclusions, summarizes the main findings of this mastership’s
work and addresses some interesting future research directions in efficient antenna
selection issues in XL-MIMO scenarios.
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2 System Model

The system model adopted in this chapter involves the UL of a single-cell multiuser
XL-MIMO system with an M -antenna BS and K single-antenna users, operating over a
bandwidth of B Hz in the time-division duplex (TDD) operation mode. Due to channel
reciprocity, TDD mode does not require CSI to be sent from the user equipments (UE) to
the BS via feedback, avoiding excessive overhead (Flordelis et al., 2018; MARZETTA et al.,
2016). Channel state information (CSI) is acquired via UL synchronous pilot transmission,
and the pilot sequences are taken from the same pilot codebook. Their length is denoted
by τp and they form an orthogonal set. Herein, it is assumed that each user uses a
different pilot sequence. Then, the pilot sequences’ set is Ψ = [ψ1 . . .ψK ] ∈ Cτp×K and
the orthogonality condition states that ΨHΨ = τpIτp , i.e.:

ψH
i ψk =

τp i = k,

0 i 6= k.
(2.1)

The channel coherence block is divided into UL pilot and UL data transmission.
Being BC and TC the coherence bandwidth and the coherence time, respectively, the
number of symbols that fits in a channel coherence block is determined by τc = TCBC, in
which τp symbols are dedicated to UL pilot transmission and τu = τc − τp symbols are
dedicated to UL data transmission (MARZETTA, 2010). During the UL pilot transmission,
a different pilot sequence is assigned to each user. The number of available orthogonal
pilot sequences is equal their length (τp). As we need K sequences, we can take τp = K,
which means that the time required for pilots is proportional to K. Thus, the number of
users that can be served is limited by the coherence time, which itself depends on the
mobility of the users (MARZETTA, 2010).

We consider a BS equipped with an M -elements uniform linear array (ULA). The
distance between two adjacent ULA elements is d. Figure 2.1 shows the ULA lying along
the y-axis of an xy coordinate system and centered at its origin. Therefore, the m-th
antenna is located at

[
0,
(
m− M+1

2

)
d
]
. Users are located in the positive x-axis region,

inside the rectangular cell defined by xmin ≤ x ≤ xmax, x > 0, and ymin ≤ y ≤ ymax, being
(x, y) the coordinates of the user. The distance between any point (x, y) and the antenna
array is D0(x, y) = x and the distance to the m-th antenna is

Dm(x, y) =
√
x2 +

(
y − d

(
m− M + 1

2

))2
(2.2)



38 Chapter 2. System Model

user	or
scatterer
located	at	

x

y

(xmax,ymax)

antenna	1

antenna	

antenna	

antenna	2

Figure 2.1 – XL-MIMO system represented with an xy coordinate system, with the ULA
situated over the y-axis and the user located inside a rectangular cell positioned
in (x1, y1). D0(x, y) is the distance between the user and the array; Dm(x, y)
is the distance between the user and the m-th antenna element, while d
denotes the antenna separation.

2.1 XL-MIMO Channel

The XL-MIMO channel model adopted in this work takes into consideration the
spherical wavefront assumption and the spatial non-stationarities.

2.1.1 Near-Field Propagation

The radiation field of antennas can be divided into the near-field region and the
far-field region (KRAUS; MARHEFKA, 2002). The boundary between the two regions is
approximately the Rayleigh distance (MOLISCH, 2012):

Rayleigh distance = 2l2
λ

(2.3)

where l is the length of the antenna array and λ is the wavelength. In the far-field region,
the wavefront can be reasonably assumed as planar. Massive MIMO channel models are
usually based on the planar wavefront assumption, as the objects are far beyond the
Rayleigh distance (Zhou et al., 2015). However, in XL-MIMO systems, where the arrays
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are physically large, this assumption does not hold, as the majority of users and scatterers
are situated inside the near-field region. Therefore, the spherical wavefront assumption
over large arrays must be taken into consideration when modeling XL-MIMO channels.

The spherical wavefront causes the signal to arrive with different inclination angles
along the antenna array, and consequently with different intensities. Furthermore, the
distance between a scatterer or user located at the point (x, y) and the antenna array
varies significantly on the antenna index. Figure 2.2 illustrates this phenomenon. We can
model these properties associated with spherical wavefront assumption deploying the array
response vector a(x, y) ∈ CM×1, which is excited by a user or scatterer located at (x, y),
whose m-th entry can be expressed as (Han et al., 2020):

[a(x, y)]m = D0(x, y)
Dm(x, y)e

j2πDm(x,y)/λ (2.4)

user	or	scatterer
located	at	

x

y

antenna	

wavefront

Figure 2.2 – The spherical wavefront causes the signal to arrive with different inclination
angles along the antenna array, and consequently with different intensities.

2.1.2 Spatial Non-Stationarity

In (Flordelis et al., 2020), authors propose the notion of BS-side visibility region (BS-
VR) and UE-side visibility region (UE-VR) to model spatial non-stationarities. Throughout
this work, when the k-th user is said to ”see” the m-th antenna, it means that the m-th
antenna receives the signal transmitted by the k-th user with non-zero energy.

The transmitted signal interacts with the objects in the environment such as
building facades, trees and street furniture, in outdoor environments, or inner walls, pillars
and office equipment, in indoor settings. Interactions happen at so-called scattering points
(Flordelis et al., 2020). The signal may travel from the user to the BS or from the BS to
the user through LoS propagation or through the interactions with the scattering points,
i.e., non-LoS (NLoS) propagation configurations. If there is no obstacle in the straight line
between the k-th user and the m-th antenna, then there is a LoS propagation and we say
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that the m-th antenna is located in the k-th user’s LoS-BS-VR. The set containing the
antennas that are seen by the k-th user through LoS propagation is denoted by Ξk.

Each scatterer has an associated UE-VR and an associate BS-VR. The UE-VR
of the s-th scatterer is a circle centered in (x̄s, ȳs), whose radius is denoted by rs. The
scatterers and the associated UE-VR centers are uniformly distributed over the cell area.
The set containing the antennas that are in the BS-VR of the s-th scatterer is denoted
by Φs. If the k-th user is located inside the UE-VR of the s-th scatterer, it will see the
antennas that are inside the BS-VR of the s-th scatterer.

Figure 2.3 illustrates a scenario with one user (UE1) and two scattering points,
denoted by sc1 and sc2. The UE1 sees a portion of the array through LoS propagation.
We say that this portion of the array is inside the BS-VR associated to the line-of-sight of
UE1, which is denoted by LoS-BS-VR1. However, UE1 may also see other portions of the
array, through NLoS propagation. In the case represented by Figure 2.3, UE1 is inside the
UE-VR of sc1, namely, UE-VR1, what means that it sees the portion of the array that
is inside the BS-VR of sc1, namely, NLoS-BS-VR1. Then, the portion of the array seen
by UE1 corresponds to the union of the regions LoS-BS-VR1 and NLoS-BS-VR1. The
antennas that are not inside any of these two BS-VRs are assumed to receive zero energy
from UE1, and the signal transmitted by these antennas will not achieve UE1 as well.

Figure 2.4 illustrates a simplificated example of a XL-MIMO system, with 2 users
or scatterers and their BS-VRs. If the user or scatterer is located at (x, y), then its BS-VR
is assumed to be centered in (0, y) and to have length x, i.e., it extends from y − x/2 to
y + x/2. Thus, the farther a given user or scatterer is located relative to the array, the
longer the associated BS-VR will be. This way of modeling the extension of the BS-VRs
is proposed in this work as a simple manner of taking into consideration that there are
obstacles in the propagation environment and they prevent the signal from arriving at
many of the BS antennas, mainly the most distant ones.

The NLoS-BS-VR of the s-th scatterer has length xsc
s and is centered in (0, ysc

s ), i.e.,
it stands from the point (0, ysc

s − xsc
s /2) to the point (0, ysc

s + xsc
s /2). If the m-th antenna

is in this interval, then m ∈ Φs. The LoS-BS-VR of the k-th user has length xUE
k and

is centered in (0, yUE
k ), i.e., it stands from (0, yUE

k − xUE
k /2) to (0, yUE

k + xUE
k /2). Due to

the obstacles in the propagation environment, even antennas that are close to a given
user may sometimes not receive the signal sent by it. To make the modeling described
in the last paragraph more realistic, we can consider that the LoS-BS-VRs occur with
a probability of occurrence w, which means there is a probability 1 − w that there are
obstacles blocking the signal that comes directly from the user (i.e., via LoS propagation).
In other words, w is the probability that the signal transmitted by the user will achieve
at least one point in the y-axis. If the energy sent by a given user achieves an interval in
the y-axis, and there is at least one antenna in this interval, then the LoS-BS-VR of the
given user will contain a portion of the array, i.e., this user will see a portion of the array
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Figure 2.3 – Simplified example of a XL-MIMO system, with 1 user and two scatterers.
The user sees a portion of the array through a LoS propagation and other
portion of the linear array through a NLoS propagation via scatterer sc1.

through LoS propagation. Recall that (xsc
s , y

sc
s ) and (xUE

k , yUE
k ) represent the points where

the s-th scatterer and the k-th user are located, respectively.

2.2 Modeling the XL-MIMO Channel

The channel vector between the BS and the k-th user is defined by both LoS and
NLoS terms:

hk = hLoS
k +

S∑
s=1

hNLoS
ks αks (2.5)

with the LoS component defined as:

hLoS
k =

√
bLoS
k � a(xUE

k , yUE
k )� q(Ξk) (2.6)

and the NLoS components associated to S scatterers:

hNLoS
ks =

√
bNLoS
ks � h̄ks � a(xsc

s , y
sc
s )� q(Φs) (2.7)
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Figure 2.4 – Simplified example of a XL-MIMO system, with 2 users or scatterers and
their BS-VRs. The BS-VRs are assumed to be centered in y-axis coordinate
of the user or scatterer, and to have length equal to its x-axis coordinate.

where (xUE
k , yUE

k ) and (xsc
s , y

sc
s ) are the position of the k-th user and the s-th scatterer,

respectively; Φs is the set containing the indices of the antennas that see the s-th scatterer,
while

[q(Φ)]m =

1 if m ∈ Φ,

0 otherwise.
(2.8)

indicates whether the m-th antenna is in the BS-VR associated to the set Φ or not, and
αks indicates if the k-th user is located inside the UE-VR associated to the s-th scatterer.
Then,

αks =

1 if dks ≤ rs,

0 otherwise.
(2.9)

where dks =
√

(xUE
k − x̄s)2 + (yUE

k − ȳs)2 is the distance between the k-th user and the
center of the UE-VR associated to the s-th scatterer.

The vector bLoS
k = [βLoS

1k , . . . , βLoS
Mk ]T groups the path loss coefficients from the

k-th user to each of the M antennas, in the case of the LoS channel. Considering that
DUE
mk = Dm(xUE

k , yUE
k ) is the distance between the k-th user and the m-th antenna, according

to Eq. (2.2), the LoS propagation has a path loss determined by:

βLoS
mk = β0

(
DUE
mk

1 m

)−γ
(2.10)

where β0 defines the median channel gain for the reference distance d0 = 1 m and γ ≥ 2 is
the path-loss exponent. The parameters β0 and γ are functions of the carrier frequency,
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antenna gains, and vertical heights of the antennas, which are derived from fitting (2.10)
and (2.11) to measurements (BJöRNSON et al., 2017).

On the other side, the vector bNLoS
ks = [βNLoS

1ks , . . . , βNLoS
Mks ]T groups the path loss

coefficients in the case of NLoS propagation, when the signal travels from the user to the
scatterer and then from the scatterer to the BS. Being Dks =

√
(xUE

k − xsc
s )2 + (yUE

k − ysc
s )2

the distance between the k-th user and the s-th scatterer, and Dsc
ms = Dm(xsc

s , y
sc
s ) the

distance between the s-th scatterer and the m-th antenna, the NLoS path loss is determined
as:

βNLoS
mks = β0

(
Dsc
ms +Dks

1 m

)−γ
(2.11)

In the NLoS propagation scenarios, the transmitted signal interacts with the objects
in the environment, what changes its module and phase. This is the small-scale fading,
which can be modeled as an independent Rayleigh fading; hence, in (2.7), the vector h̄ks
can be modeled as complex Gaussian distribution with zero mean and unity variance,
h̄ks ∼ CN (0, IM).

2.3 UL Pilot Transmission and Channel Estimation

During the UL pilot transmission, the k-th user transmits the pilot sequence
ψk ∈ Cτp , with transmit power pp. The elements of ψk are scaled by √pp, forming the
signal sk = √ppψ

H
k , to be transmitted over τp UL symbols. As a result, the BS receives

the signal Yp ∈ CM×τp :

Yp =
K∑
i=1

√
pphiψH

i + Np (2.12)

where Np ∈ CM×τp is the noise matrix at the receiver of the BS with i.i.d. elements
following a complex normal distribution with zero mean and variance σ2

n.
As the information about which antennas are visible for each user is unknown, it

might be necessary to consider obtaining the channel estimates by using estimators that
require no prior statistical information, such as the Least-Squares (LS). The LS estimate
of hk is attained by (BJöRNSON et al., 2017):

ĥk = 1
τp
√
pp

Ypψk (2.13a)

= hk + 1
τp
√
pp

Npψk (2.13b)

The last term in (2.13b) is the equivalent noise vector, which adds imperfections to
the channel estimates and follows a complex normal distribution: Npψk ∼ CN (0M , τpσ

2
nIM ).

Finally, the estimated channel matrix is Ĥ = [ĥ1 . . . ĥK ], while H = [h1 · · · hK ] ∈ CM×K

is the true channel matrix.
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3 Energy Efficiency in XL-MIMO
Systems

This chapter presents the five proposed antennas and subarrays selection schemes,
as well as the computational complexity resulting from each algorithm.

The antenna selection (AS) algorithms assign the BS subset of antennas to perform
receive combining to each user. Section 3.1 presents two AS schemes, namely fixed-AS
and variable-AS. Both select the best antennas to communicate to each user, so that not
every selected antenna is used to communicate to all the users. By allowing the users to
be served by different antenna elements, this approach is particularly adequate to reduce
the interference power after the combiner when employing maximum-ratio (MR) combiner.
However, as ZF combiner usually provides much greater SE and EE than MR, all the
signal models described in this chapter attain to ZF processing only.

Section 3.2 presents two subarray selection (SS) algorithms, namely multiple-SS
and single-SS. In this approach, the antenna array is divided into a number of fixed-size
subarrays, which can be implemented in a distributed way, as separate hardware entities,
while selecting one or more subarrays to communicate with each user. It is an advantage
over the AS approach, as the implementation complexity is reduced. Thus, it is important
to test, via numerical results, for example, if this implementation complexity reduction
is sufficient to consider the SS schemes more promising than the AS schemes, or if the
resulting SE and EE are worse, as the SS schemes have less flexibity on choosing the best
antenna elements for each user because the antenna arrays was previously divided into
subarrays. Chapter 4 presents the results concerning these comparisons.

In this work, all the users are assigned different orthogonal pilot sequence, such
that there is no pilot contamination and the channel estimation is corrupted only by the
noise received in the BS antennas during the UL pilot transmission. In this scenario, the
CSI is almost perfect and the ZF is efficient at mitigating interference. Therefore, when
detecting the signal sent from the k-th user, even if the antenna m, contained in the set D,
receives much energy from other users, it is convenient to utilize this antenna to perform
the receive combining operation for the k-th user.

Considering these facts, Section 3.3 presents a AS approach different from the AS
schemes depicted in Section 3.1. In this scheme, namely fair-AS, all the selected antennas
communicate to every user. Thus, the fair-AS scheme was particularly designed for ZF
receive combining, where the more antennas are used, the more the interference is mitigated.
Employing the fair-AS scheme, it is easier to prevent the whole antenna array from being
active, saving power and increasing the overall system EE, when compared to the other
strategies. It has been demonstrated by the numerical results in Chapter 4.
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3.1 Antenna Selection (AS)

Here, two different algorithms, fixed-AS and variable-AS, are proposed for selecting
the antenna elements in the XL-MIMO system that will be used to detect the signal sent
by each of the K users during the UL data transmission. The set Dk contains the indices
of the Mk = |Dk| antennas selected for the k-th user.

One advantage of using Mk ≤M antennas instead of all the M available antennas is
the reduction of the computational complexity, as the combining vector for a given user will
be based only on the rows of the estimated channel matrix corresponding to the antennas
that the algorithm designated to be active for that user, instead of the full estimated
channel matrix. As a consequence, when the number of users is not elevated, it is possible
to maintain a portion of the array inactivated, and the complexity is reduced, resulting in
a considerable reduction in the power consumption. Besides, even ZF combiner being more
efficient at mitigating interference when more antennas are utilized, the throughput will
not be severely compromised, because the antennas are properly selected. Consequently,
the EE certainly increases.

The ZF combining vector vk is M -length, but only the elements corresponding to
the indices of the antennas selected for that user are non-zero. Thus, the m-th entry of
the combining vectors is given by:

[vk]m =


Ĥ(m,:)

([
Ĥ

H
(Dk,:)Ĥ(Dk,:)

]−1
)

(:,k)
if m ∈ Dk,

0 otherwise,
(3.1)

Notice that the rows of the combining matrix corresponding to the antennas whose
indices are not in the set Dk are set equal zero.

The vector θk = [θ1k, θ2k, . . . , θMk] ∈ CM is a quantitative indicator of the quality
of the channel between the k-th user and each of the M antennas, being defined by:

θmk = |ĥmk|2
K∑
i=1
i 6=k

|ĥmi|2
(3.2)

where ĥmk = [ĥk]m. A high signal intensity may be obtained when |ĥmk|2 is strong. On
the other hand, the terms |ĥmi|2, i 6= k, are related to the interference intensity. Higher
θmk values are therefore associated to higher SINRs on the signal detection, as defined by
(3.6), and consequently higher spectral and energy efficiencies.

Both algorithms select the Mk antennas associated to the Mk highest elements of
the vector θk to detect the signal of the k-th user. In other words, being θmikk the i-th
highest element of the vector θk, they define:

Dk = {m1k, . . . ,mMkk} (3.3)
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The condition Mk > K is necessary to guarantee that the matrix to be inverted
in (3.1) is not singular. Being D = D1 ∪ . . . ∪ DK the set containing the indices of the
antennas that are active for some user, Mact = |D| denotes the number of active antennas.

The received signal r ∈ CM at the BS during the UL data transmission is:

r =
K∑
k=1

hkxk + n (3.4)

where xk is the signal sent by the k-th user and n ∼ CN (0M , σ2
nIM) contains the noise

received at the BS antennas. The detected signal for the k-th user after the combiner is
given by:

yk = vH
k r (3.5)

where vk ∈ CM is the k-th user receive combining vector. The SINR of the k-th user
during the UL data transmission can be defined as

γk = pk|vH
k hk|2

K∑
i=1
i 6=k

pi|vH
k hi|2 + σ2

n||vk||2
(3.6)

where pk = E{|xk|2} is the k-th user UL transmit power.

3.1.1 No selection (no-S)

The no-S is the traditional processing scheme: the whole antenna array (all the M
antennas), is utilized to detect the signal sent by each user in the BS receiver through
a linear combining technique, i.e., Mk = M and Dk = {1, . . . ,M}. It means that none
of the M elements of the combining vectors of the K users are intentionally set to zero.
Consequently, the k-th user ZF receive combining vector in (3.1) can be rewritten as:

vk = [Ĥ(ĤH
Ĥ)−1](:,k) (3.7)

3.1.2 Fixed number of antennas per user (fixed-AS)

In the fixed-AS scheme, described by Algorithm 3.1, the number of antennas to
be selected for each user is fixed, i.e., it is an input parameter of the algorithm, and
is the same for all users, denoted by L, so that Mk = L, k ∈ {1, . . . , K}. Therefore,
Dk = {m1k, . . . ,mLk}. Lines 1-3 attend the condition Mk ≥ K.

Figure 3.1 shows an example of the XL-MIMO system user spatial distribution,
where the number of users and BS antennas are low, for simplicity: K = 4 and M = 16.
Each triangle represents one of the 16 BS antennas, while the colored circles represents
the mobile users, which are randomly distributed over a rectangular cell. Taking a random
channel realization, the portion of the array that each user sees is indicated by the
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Algorithm 3.1 Fixed-AS for receive combining in XL-MIMO systems
Input: M , L, K, Ĥ

1: if L ≤ K then
2: L = K
3: end if
4: for k = 1 to K do
5: Reinitialize the set containing the indices of the M antennas: M = {1, . . . ,M}
6: Initialize the set containing the indices of the antennas that will communicate with

the user k: Dk = ∅
7: Compute θk, according to (3.2)
8: for l = 1 to L do
9: find m∗ = argmax

m∈M
θmk

10: M =M\{m∗}
11: Dk = Dk ∪ {m∗}
12: end for
13: end for

Output: Dk, k = 1, . . . , K

horizontal line with its correspondent color. User 1, for example, sees the antennas 1 to 10,
while user 2 sees the antennas 9 to 15, excepting the antenna 13. This fragmentation of
the VR into two parts may occur if any object is blocking the signal in that region.

1 2 3 4 13 14 15 169 10 11 125 6 7 8

user 1

user 2

user 4

user 3

Figure 3.1 – Example of a XL-MIMO system, with 4 users being served by a BS equipped
with a 16-antenna linear antenna array. The figure illustrates each user’s VR
and the antennas that the proposed algorithm designates to communicate
with each user.

In this example, the fixed-AS algorithm was set up to define L = 4 antennas to
communicate with each user. In the figure, the triangle that represents a given antenna
m is painted with the color of the k-th user if the k-th user is being served by the m-th
antenna. For example, antennas 1, 2, 3 and 9, which are in blue, were designated by to
communicate with user 1. Notice that all these 4 antennas are part of the VR of user 1.
Although the signal from user 1 probably achieves the antennas 4 to 8 with higher intensity
than antenna 9, choosing one of these antennas would increase the received interference
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power, mainly due to user 3. Observe that antenna 4 is not active, while antenna 14 serves
users 2 and 4, simultaneously. Therefore, considering that only one antenna was designated
to communicate with 2 users at the same time, we can say that , if MR combining is
employed, the algorithm will be successful in avoiding the interference from other users to
affect the SINR, while simultaneously reducing the computational complexity.

However, the fair-AS scheme would be much more promising when employing ZF
combining, specially when there is not pilot contamination, as all the selected antennas
would be used to estimate the signal sent by all the users. Furthermore, we could maintain
more antennas inactive, achieving higher energy efficiency.

3.1.3 Variable number of antennas per user (variable-AS)

In the variable-AS scheme, described by Algorithm 3.2, the number of antennas
to be selected for each user is not fixed and is not the same for all users. Therefore,
variable-AS scheme may select only a few antennas if the energy coming from an individual
user signal is concentrated over a small portion of the array, for example. On the other
hand, it may select more antennas if the energy is more uniformly distributed over the
array. Thus, the objective is to verify via numerical results if the flexibilizing the number of
selected antennas per user is advantageous or not for improving the EE over the fixed-AS
scheme. In this approach, Mk is the minimum number of antennas that satisfies

Mk∑
i=1
|ĥmikk|2 ≥ z0Zk (3.8)

where 0 ≤ z0 ≤ 1, and Zk is the total cumulative power associated to the k-th user, defined
as:

Zk =
M∑
m=1
|ĥmk|2 (3.9)

Indeed, z0Zk represents a fraction of the total cumulative power for the kth user.
For instance, setting z0 = 0.9 represents 90% of the total cumulative power. Hence, setting
z0 = 1 corresponds to using all the M antennas to process the signal of the k-th user. In
practice, it is the same as not applying antenna selection procedure for that user. On the
other hand, setting z0 = 0 will simply force the BS to ignore that user. Finally, setting z0

as low values implies that the main concern is reduce the power consumption.
Line 13 of Algorithm 3.2 attends the condition Mk ≥ K.
In the example given in Figure 3.1, the variable-AS scheme would probably select a

different number of antennas for each user, depending on the amount of antennas that are
necessary to receive a fraction z0 of the total energy coming from each user.
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Algorithm 3.2 Variable-AS for receive combining in XL-MIMO systems
Input: M , K, Ĥ, z0

1: for k = 1 to K do
2: Reinitialize the set containing the indices of the M antennas: M = {1, . . . ,M}
3: Initialize the set containing the indices of the antennas that will communicate with

the user k: Dk = ∅
4: Compute θk, according to (3.2)
5: Compute Zk, according to (3.9)
6: Initialize zk = 0
7: while zk < z0Zk do
8: m∗ = argmax

m∈M
θmk

9: zk = zk + |ĥm∗k|2
10: Dk = Dk ∪ {m∗}
11: M =M\{m∗}
12: end while
13: Repeat lines 8–11 until |Dk| ≥ K.
14: end for

Output: Dk, k = 1, . . . , K

3.2 Subarray Selection (SS)

In the subarray selection (SS) approach, the antenna array is divided into subarrays,
which can be implemented as separate hardware entities. It is an advantage over the AS
approach, as the implementation complexity is reduced. The number of subarrays (N)
is fixed, as well as their size. We consider the specific case where all subarrays have the
same length, i.e., M/N , antennas. Then, the antennas in the n-th subarray form the
set Mn = {M

N
(n − 1) + 1 , . . . , M

N
n}. For instance, considering a ULA with M = 100

antennas, if we want to divide it into N = 10 subarrays of the same size, then each one
will have 10 antennas, and subarray 1 will correspond to the antennas 1 to 10.

In this section, two SS schemes are proposed, namely multiple-SS and single-SS,
which defines the sets F1, . . . ,FN containing the indices of the users that will be served
by each of the N subarrays. The set Dk contains the indices of the subarrays designated
to perform receive combining for the k-th user. The number of users served by the n-th
subarray is Kn = |Fn|, and the number of subarrays serving the k-th user is Nk = |Dk|. If
k ∈ Fn, then n ∈ Dk, and vice-versa.

If Nact denotes the number of non-empty Fn sets, and consequently the number of
subarrays that serve at least one user, then Mact = M ·Nact/N is the number of active
antennas.

During the UL, the received signal rn ∈ CM/N at the n-th subarray is:

rn =
K∑
k=1

hknxk + nn (3.10)
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where hkn = H(Mn,k) and ĥkn = Ĥ(Mn,k) are respectively the channel vector and
the estimated channel vector between the n-th subarray and the k-th user and nn ∼
CN (0M/N , σ

2
nIM/N ). The estimated channel matrix of the n-th subarray is Ĥn = Ĥ(Mn,:) =

[ĥ1n, . . . , ĥKn] ∈ CM/N×K , which contains only the rows corresponding to its antennas. If
k ∈ Fn, the n-th subarray will detect the signal transmitted by the k-th user:

ykn = vH
knrn (3.11)

where the ZF combining vector vkn ∈ CM/N is given by:

vkn =

[Ĥn(ĤH
n Ĥn)−1](:,k) if k ∈ Fn,

0M/N otherwise.
(3.12)

The matrix Vn = [v1n . . .vKn] is the collection of the combining vectors used by
the n-th subarray. As defined in (3.12), if k /∈ Fn, then vkn is an all-zero vector. Thus,
there is a complexity reduction, as only ∑N

n=1Kn vectors will be computed, instead of
NK if there was no subarray selection. Notice that each subarray computes its receive
combining matrix independently, based on the matrix Ĥn, which contains only the rows
of the matrix Ĥ that corresponds to the antennas that are part of the n-th subarray.

Both multiple-SS and single-SS assign the Nk subarrays associated to the highest
θnk values to communicate with the k-th user. In other words, they define the set Dk as:

Dk = {n1k, . . . , nNkk} (3.13)

being θnikk the i-th highest element of the vector θk. The condition M/N > K is necessary
to guarantee that the matrix to be inverted in (3.12) is not singular. The n-th entry of
the vector θk ∈ CN is defined as

θnk = Zkn
K∑
i=1
i 6=k

Zin

(3.14)

where Zkn is the cumulative power associated to the k-th user in the n-th subarray, given
by:

Zkn =
∑

m∈Mn

|ĥmk|2 (3.15)

Notice that θnk in (3.14) is a metric that indicates the quality of the channel
between the k-th user and the n-th subarray, while in (3.2) it indicates the quality of the
channel between the user and each antenna individually.

The CPU will then combine the detected signals ykn, n ∈ Dk, in each of the Nk

subarrays, featuring a precision detector:

yk = 1
δk

∑
n∈Dk

θnkykn (3.16)
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Thus, after the receive combining at the BS, during the UL data transmission, the
average desired signal power and the average interference power for the k-th user are given
by

Sk = pk
tkk
δ2
k

(3.17)

and
Ik =

K∑
k′=1
k′ 6=k

pk′
tkk′

δ2
k

(3.18)

respectively, where

tkk′ =
∣∣∣∣∣
N∑
n=1

θnkvH
knhk′n

∣∣∣∣∣
2

(3.19)

In order to normalize the received signal power in (3.17), so that Sk = pk, δk is
defined as:

δk =
∑
n∈Dk

θnk (3.20)

The average noise power for the k-th user after the combining is:

Nk = σ2
n

N∑
n=1

θ2
nk

δ2
k

||vkn||2 (3.21)

Thus, analogously to (3.6), the resulting SINR is given by:

γk = pktkk
K∑
k′=1
k′ 6=k

pk′tkk′ + σ2
n

N∑
n=1

θ2
nk||vkn||2

(3.22)

3.2.1 Multiple number of subarrays per user (multiple-SS)

In the multiple-SS scheme, described by Algorithm 3.3, the number of subarrays to
be selected for each user is not fixed and is not the same for all users. Nk is the minimum
number of subarrays that satisfies

Nk∑
i=1

Zknik
≥ z0Zk (3.23)

where Zk is the cumulative power associated to the k-th user, given by:

Zk =
N∑
n=1

Zkn (3.24)

The condition M/N > K is attended in lines 1-3 of Algorithm 3.3.
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Algorithm 3.3 Multiple-SS for receive combining in XL-MIMO systems
Input: M , N , K, Ĥ, z0

1: if M/N ≤ K then
2: N = M/(K + 1)
3: end if
4: Initialize the set of the users that will be served by each subarray: Fn = ∅, for
n = 1, . . . , N .

5: Initialize the sets Mn = {M
N

(n− 1) + 1 , . . . , M
N
n}, which will be used to compute

Zkn in line 9.
6: for k = 1 to K do
7: Reinitialize the set containing the indices of the N subarrays: N = {1, . . . , N}.
8: Initialize the set containing the indices of the subarrays that will communicate with

the k-th user: Dk = ∅.
9: Compute Zkn, n = 1, . . . , N , according to (3.15).

10: Compute Zk, according to (3.24).
11: Compute θk, according to (3.14).
12: Initialize zk = 0.
13: while zk < z0Zk do
14: n∗ = argmax

n∈N
θnk

15: zk = zk + Zkn∗
16: Dk = Dk ∪ {n∗}
17: Fn∗ = Fn∗ ∪ {k}
18: N = N\{n∗}
19: end while
20: end for

Output: Fn, n = 1, . . . , N , and Dk, k = 1, . . . , K

3.2.2 Only one subarray per user (single-SS)

Multiple-SS may select multiple subarrays to detect the signal sent by each user
during the UL data transmission, which means that 1 ≤ Nk ≤ N . Single-SS, described by
Algorithm 3.4, is a variant of multiple-SS where only one subarray is selected per user, i.e.,
Nk = 1. Thus, Dk = {n1k}, which means that the selected subarray is the one associated
with the highest element of the vector θk, and yk is simply the detected symbol in the
n1k-th subarray. The objective of single-SS is to obtain a larger complexity reduction than
with the former methods (fixed-AS, variable-AS and multiple-SS), as less antennas are
likely to be active, while not deteriorating considerably the SE. By replacing Dk with
{n1k} in (3.16) and (3.20), (3.16) can be rewritten as:

yk = ykn1k
(3.25)

The SINR in (3.22) can be rewritten as:

γk =
pk
∣∣∣vH
kn1k

hkn1k

∣∣∣2
K∑
k′=1
k′ 6=k

pk′
∣∣∣vH
kn1k

hk′n1k

∣∣∣2 + σ2
n||vkn1k

||2
(3.26)
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The condition M/N > K is attended in lines 1-3 of Algorithm 3.4.

Algorithm 3.4 Single-SS for receive combining in XL-MIMO systems
Input: M , N , K, Ĥ

1: if M/N ≤ K then
2: N = M/(K + 1)
3: end if
4: Initialize the set containing the indices of the N subarrays: N = {1, . . . , N}.
5: Initialize the set of the users that will be served by each subarray: Fn = ∅, for
n = 1, . . . , N .

6: Compute Zkn, n = 1, . . . , N , k = 1, . . . , K, according to (3.15).
7: Compute θk, k = 1, . . . , K, according to (3.14).
8: for k = 1 to K do
9: n∗ = argmax

n∈N
θnk

10: Dk = {n∗}
11: Fn∗ = Fn∗ ∪ {k}
12: end for

Output: Fn, n = 1, . . . , N , and Dk, k = 1, . . . , K

3.3 Arbitrary Low Number of Antennas Selection –
Fair-AS Scheme

The schemes proposed in Section 3.1 select the best antennas for each user, so that
when the number of users is relatively large, the number of active antennas is almost the
total number of available antennas. This section defines another selection scheme, based
on (Marinello et al., 2020), with a different philosophy: the number of active antennas is
an input of the algorithm and all the active antennas collaborate on detecting the signal
sent from all the K users. The objective is to arbitrarily maintain the number of active
antennas low, even when K = 100, for instance, so that the energy efficiency is improved
over the no-S approach even in the HUD scenario.

The ZF combining vector vk is M -length, but only the elements corresponding
to the indices of the Ms selected antennas are non-zero. Thus, the m-th entry of the
combining vectors is given by:

[vk]m =


Ĥ(m,:)

([
Ĥ

H
(D,:)Ĥ(D,:)

]−1
)

(:,k)
if m ∈ D,

0 otherwise.
(3.27)

where the set D contains the indices of the antennas that the algorithm designates to
be active. Notice that this strategy requires just one matrix inversion to obtain the ZF
combining matrix, unlike fixed-AS and variable-AS, which requires K matrix inversions,
one for each of the K users.



3.4. Computational Complexity 55

3.3.1 Fairness criterion antenna selection (fair-AS)

The fair-AS scheme gives attention to the strength of the channel of all the K users
when selecting the active antennas, in order to try to provide good rates for all the users
while simultaneously improving the EE.

The vector θk = [θ1k, θ2k, . . . , θMk] ∈ CM indicates the strength of the channel
between the k-th user and each of the M antennas, being defined by:

θmk = |ĥmk|2 (3.28)

Similarly to the schemes described in Chapter 3, this selection scheme chooses the
Mk = bMs/Kc antennas associated to the Mk highest elements of the vector θk. In other
words, being θmikk the i-th highest element of the vector θk:

Dk = {m1k, . . . ,mMkk} (3.29)

This process is done for the K users, so that ∑k=1Mk antennas are chosen. This
is the stage A of the algorithm, when Ms,A = |DA| antennas are selected, being DA =
D1 ∪ . . . ∪ DK . If Ms,A 6= Ms, the algorithm will select other Ms,B = Ms−Ms,A antennas,
in the stage B of the algorithm. If Ms,A = Ms, the stage B will not be executed and,
consequently, Ms,B = 0.

During the stage B, the fair-AS algorithm obtains the set DB, which defines other
Ms,B = |DB| antennas to be activated. The selected antennas during stage B are the ones
associated to the Ms,B highest elements of the vector ρ, whose m-th entry is defined as:

ρm =
K∑
k=1
|ĥmk|2 (3.30)

Notice that all the Ms selected antennas will be used to perform the receive
combining for the k-th user, although only Mk antennas had been chosen considering the
strength of the channel of this user. The selection procedure is depicted in Algorithm 3.5.
Lines 5-14 and lines 15-28 correspond to the stages A and B, respectively. The condition
Ms > K is necessary to guarantee that the matrix to be inverted in (3.27) is not singular.

3.4 Computational Complexity

This section develops the computational complexity resulting from employing each
of the antenna/subarray selection strategies. The complexity may be discriminated in five
parts: channel estimation, computation of the ZF combining vectors, signal reception at
the BS during the UL data transmission, antenna or subarray selection (only on fixed-AS,
variable-AS, multiple-SS, single-SS and fair-AS strategies) and precision detection (only
on multiple-SS strategy). Table 3.1 gathers all these complexities, while Table 3.2 contains
the total complexity associated to each selection scheme.
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Algorithm 3.5 Fair-AS for receive combining in XL-MIMO systems
Input: M , Ms, K, Ĥ

1: if Ms ≤ K then
2: Ms = K + 1
3: end if
4: Initialize Muser = bMs/Kc.
5: Initialize DA = ∅.
6: for k = 1 to K do
7: Reinitialize the set containing the indices of the M antennas: M = {1, . . . ,M}.
8: Compute θk, according to (3.28)
9: for l = 1 to Muser do

10: Find m∗ = argmax
m∈M

θmk

11: M =M\{m∗}
12: DA = DA ∪ {m∗}
13: end for
14: end for
15: if |DA| 6= Ms then
16: Reinitialize M = {1, . . . ,M}.
17: Initialize the set containing the indices of the antennas that have not been selected

already: N =M\DA.
18: Initialize DB = ∅.
19: Compute ρ, as in (3.30).
20: for l = 1 to Ms − |DA| do
21: Find m∗ = argmax

m∈N
ρm

22: N = N\{m∗}
23: DB = DB ∪ {m∗}
24: end for
25: D = DA ∪ DB
26: else
27: D = DA
28: end if

Output: D

Notice that the complexity reduction provided by the selection schemes over the
no-selection strategy comes from utilizing fewer antennas to perform receive combining
for each user, which considerably reduces the number of complex multiplications when
applying the ZF combiner over the received signal, as well as the size of the channel matrix
to be inverted in order to compute the ZF vectors. However, the AS schemes performs
one matrix inversion for each of the K users, which will possibly make the complexity
scale when K is high. Numerical results addressing complexity comparisons among the
proposed schemes are presented in Chapter 4.
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3.4.1 Channel estimation

According to (2.13a), the channel estimation process corresponds to the inner
product of M complex vectors of length τp, requiring Mτp multiplications between complex
numbers (or 3Mτp multiplications between real numbers1) to estimate the channel vector
of each of the K UEs. Herein, both multiplication and division between real numbers
correspond to 1 floating-point operation (flop). As the channel estimation (CE) process is
performed once per coherence block, its computational complexity, defined in number of
flops per coherence block [fpcb], is:

CCE = 3τpMK [fpcb] (3.31)

3.4.2 Computation of the ZF combining vectors

• no-S: Multiplying Ĥ
H by Ĥ, following (3.7), requires K2+K

2 M complex multiplica-
tions2, using the Hermitian symmetry. According to (BJöRNSON et al., 2017), when
the inverse of a matrix is multiplied by another matrix, the LDLH decomposition can
be used to achieve an efficient hardware implementation. The decomposition of Ĥ

H
Ĥ

requires K3−K
3 complex multiplications (BJöRNSON et al., 2017). Finally, we need to

multiply Ĥ by the matrix (ĤH
Ĥ)−1, which requires K2M complex multiplications

plus K complex divisions to compute D−1 (BJöRNSON et al., 2017; BOYD; VAN-
DENBERGHE, 2004). Considering complex multiplications and complex divisions to
correspond to 3 and 7 flops3, respectively, the computation of the combining matrix
V has a complexity of 3

(
K2+K

2 M + K3−K
3 +K2M

)
+ 7K flops per coherence block,

which is the same as:

Cno-S
C-UL = K3 + 9

2MK2 + 3
2(M + 4)K [fpcb] (3.32)

• variable-AS: Multiplying Ĥ
H
(Dk,:) by Ĥ(Dk,:), according to (3.1), requires K2+K

2 Mk

complex multiplications. The decomposition of Ĥ
H
(Dk,:)Ĥ(Dk,:) requires K3−K

3 complex
multiplications. Finally, we need to multiply the matrix Ĥ(Dk,:) by the k-th column of

the matrix
[
Ĥ

H
(Dk,:)Ĥ(Dk,:)

]−1
, which requires KMk complex multiplications plus K

complex divisions to compute D−1. Then, the computation of the combining vector
1Consider x = a + jb and y = c + jd. The hardware implementation of the complex multiplication

xy = ac− bd + j[(a + b)(c + d)− ac− bd] involves 3 real multiplications and 5 real sums. Only those will
be considered, due to their very greater hardware complexity compared to the real sum operation.

2Being A ∈ Ca×b and B ∈ Cb×c, the multiplication A ·B requires ac inner products between b-length
vector, what corresponds to abc complex multiplications. However, if B = AH, the Hermitian symmetry
is utilized. Thus, only the a diagonal elements of A ·B and half of the a2 − a off-diagonal elements need
to be computed, resulting in a2+a

2 b complex multiplications(BJöRNSON et al., 2017).
3Considering x = a + jb and y = c + jd, then x

y = xy∗

yy∗ = xy∗

|y|2 . The computation of xy∗ requires 3 real
multiplications. The computation of |y|2 = c2 + d2 requires 2 real multiplications. Finally, the complex
division xy∗

|y|2 corresponds to 2 real divisions, making a total of 7 real operations.
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vk has a complexity of 3
(
K2+K

2 Mk + K3−K
3 +KMk

)
+ 7K flops per coherence block,

and the computational complexity to obtain the whole combining matrix V is given
by:

Cvariable-AS
C-UL = K4 + 6K2 + 3

2(K + 3)K
K∑
k=1

Mk [fpcb] (3.33)

• fixed-AS: The complexity of computing the ZF combining vectors, when employing
the fixed-AS scheme, can be obtained from (3.33) by replacing Mk with L:

Cfixed-AS
C-UL = K4 + 3

2LK
3 + 3

2 (3L+ 4)K2 [fpcb] (3.34)

• multiple-SS: The multiplication of Ĥ
H
n by Ĥn, according to (3.12), has a complexity

of K2+K
2

M
N

flops per coherence block, using the Hermitian symmetry. The LDLH de-
composition of the matrix Ĥ

H
n Ĥn requires K3−K

3 complex multiplications. Multiplying
Ĥn by the k-th column of (ĤH

n Ĥn)−1, in order to obtain vkn, k ∈ Fn, requires KM
N

complex multiplications plus K complex divisions to compute D−1. Recalling that
|Fn| = Kn, the n-th subarray needs to compute the combining vectors of Kn users,
and the complexity of obtaining the matrix Vn is 3

(
K2+K

2
M
N

+ K3−K
3 +KnK

M
N

)
+7K

flops per coherence block. Finally, the complexity to compute the combining matrix
of the N subarrays, when employing ZF combining, is given by:

Cmultiple-SS
C-UL = NK3 + 3

2MK2 + 3
2(M + 4N)K +MK

N∑
n=1

Kn [fpcb] (3.35)

• single-SS: In this case, each user is served by only one subarray. Thus, ∑N
n=1Kn = K.

As a consequence, (3.35) can be rewritten as:

Csingle-SS
C-UL = NK3 + 5

2MK2 + 3
2(M + 4N)K [fpcb] (3.36)

and there is a complexity reduction over the multiple-SS strategy.

• fair-AS: Multiplying Ĥ
H
(D,:) by Ĥ(D,:), following (3.27), requires K2+K

2 Ms com-
plex multiplications, using the Hermitian symmetry. The LDLH decomposition
of Ĥ

H
(D,:)Ĥ(D,:) requires K3−K

3 complex multiplications. Finally, we need to multi-

ply Ĥ(D,:) by
[
Ĥ

H
(D,:)Ĥ(D,:)

]−1
, which requires K2Ms complex multiplications plus

K complex divisions. Finally, the computation of the combining matrix V has a
complexity of 3

(
K2+K

2 Ms + K3−K
3 +K2Ms

)
+ 7K flops per coherence block, which

is the same as:

C fair-AS
C-UL = K3 + 9

2MsK
2 + 3

2(Ms + 4)K [fpcb] (3.37)
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When the number of users is small, Mk may be considerably smaller than M ,
as ZF combiner may be efficient at mitigating interference with less antennas in this
scenario. When there are more users, on the other hand, the selection schemes complexity
at computing the ZF combining vector increases, because Mk and the term K4 both
increase.

3.4.3 Signal reception

• variable-AS: Notice that the rows of the k-th user combining vector that correspond
to the antennas whose indices are not in the set Dk are set equal zero. It reduces the
complexity to obtain yk, as described in (3.5), because the BS will use Mk elements
of the vectors vk and r, instead of M elements, resulting in 3Mk flops. As this process
is done τu times per coherence block, the computational complexity associated to
the reception of the information is:

Cvariable-AS
SR = 3τu

K∑
k=1

Mk [fpcb] (3.38)

• fixed-AS: The complexity associated with the signal reception, when employing the
fixed-AS scheme, can be obtained from (3.38) by simply replacing Mk with L:

Cfixed-AS
SR = 3τuLK [fpcb] (3.39)

• no-S: The complexity associated with the signal reception, when employing the no-S
scheme, can be obtained from (3.38) by simply replacing Mk with M :

Cno-S
SR = 3τuMK [fpcb] (3.40)

• multiple-SS: As vkn and rn are (M/N)-length vectors, obtaining ykn, as described
in (3.11), requires M/N complex multiplications. This process is done τu times per
coherence block. As the n-th subarray serves Kn users, the resulting complexity is
3τuMKn/N [fpcb]. Recalling that there are N subarrays, the total computational
complexity is:

Cmultiple-SS
SR = 3τu

M

N

N∑
n=1

Kn [fpcb] (3.41)

Notice that ∑N
n=1Kn ≥ K.

• single-SS: In the single-SS scheme, each user is attended by only one subarray.
Then, ∑N

n=1Kn = K, and (3.41) can be rewritten as:

Csingle-SS
SR = 3τu

M

N
K [fpcb] (3.42)

Notice that there is a further complexity reduction when compared to the multiple-SS
scheme.
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• fair-AS: Notice that the rows of the combining matrix that correspond to the
inactive antennas are set equal zero. It reduces the complexity to obtain yk, because
the BS will use Ms elements of the vectors vk and r, instead of M elements, resulting
in 3Ms flops. As this process is done τu times per coherence block, the computational
complexity associated to the reception of the information is:

C fair-AS
SR = 3τuMsK [fpcb] (3.43)

3.4.4 Antenna/subarray selection

• fixed-AS: Obtaining θmk in (3.2) requires MK complex multiplications, to compute
all the terms |ĥmk|2, m = 1, . . . ,M , k = 1, . . . , K, plus MK real divisions, summing
4MK [fpcb]. The vector θk must then be sorted, so that the antennas corresponding
to the first L antennas of the sorted vector are selected for each user. As θk has
length M and there are K users, the associated complexity is MKlog(M) [fpcb].
Thus, the complexity associated to the antenna selection itself is:

Cfixed-AS
sel = MK(log(M) + 4) [fpcb] (3.44)

• variable-AS: Obtaining Zk, given by (3.9), requires M complex multiplications to
obtain {|ĥ1k|2, . . . , |ĥMk|2}. Considering that there are K users, the total complexity
is 3MK [fpcb]. Then, obtaining {θ1, . . . ,θK} requires only MK real divisions, as all
the modulus have already been computed. Sorting the vector θk has a complexity of
MKlog(M) [fpcb]. Finally,

Cvariable-AS
sel = MK(log(M) + 4) [fpcb] (3.45)

• multiple-SS: To obtain Zkn, given by (3.15), the BS does M/N complex multiplica-
tions to obtain |ĥmk|2, m ∈Mn. As there are N subarrays and K users, it results in
a complexity of 3MK [fpcb]. Given the values of Zkn, obtaining Zk (when employing
multiple-SS scheme) according to (3.24) does not involve any further multiplication
or division. Finally, obtaining θk, k ∈ {1, . . . , K}, according to (3.14), requires only
NK real divisions, while sorting this vector requires M

N
Klog(M

N
) [fpcb]. Thus,

Cmultiple-SS
sel =

(
M

N
log

(
M

N

)
+ 3M +N

)
K [fpcb] (3.46)

• single-SS: The difference from the selection complexity of multiple-SS is that just
the first iteration of the sorting algorithm must be executed. Thus, sorting the vectors
θk, k ∈ {1, . . . , K} requires M

N
K [fpcb], so that,

Csingle-SS
sel =

(
M

N
+ 3M +N

)
K [fpcb] (3.47)
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• fair-AS: Obtaining θmk in (3.28) requires MK complex multiplications, to compute
all the terms |ĥmk|2, m = 1, . . . ,M , k = 1, . . . , K, corresponding to 3MK [fpcb]. In
the stage A of the algorithm, the vector θk must then be sorted, so that the antennas
corresponding to the first bMs/Kc antennas of the sorted vector are selected for
each user. As θk has length M and there are K users, the associated complexity
is MKlog(M) [fpcb]. During the stage B, in order to sort the vector ρ, M log(M)
[fpcb] will be required, in the worst case. Thus, the complexity associated to the
antenna selection itself is:

C fair-AS
sel = M(K + 1)log(M) + 3MK [fpcb] (3.48)

3.4.5 Precision detection

• multiple-SS: To obtain δk, as in (3.20), Nk real multiplications are required. As
there are K users, the resulting complexity, in [fpcb], is

K∑
k=1

Nk, which is equal to
N∑
n=1

Kn. Multiplying θnk by ykn, as in (3.16), costs 1 complex multiplication. It is
done for the Nk subarrays that serve k-th user. Then, the sum obtained in (3.16) is
divided by δk, which costs 1 complex division. It is done for the K users, τu times
per coherence block, resulting in τu

K∑
k=1

(3Nk + 7) = 7τuK + 3τu
K∑
k=1

Nk [fpcb]. Thus,
the total precision detector additional complexity is:

Cmultiple-SS
PD = 7τuK + (1 + 3τu)

N∑
n=1

Kn [fpcb] (3.49)

3.5 SE and EE Definitions and Power Consumption
Model

The ergodic spectral efficiency is defined by (BJöRNSON et al., 2017):

SE = τu

τc

K∑
k=1

E{log2(1 + γk)} (3.50)

where γk is the SINR of the k-th user, given by (3.6), when employing no-S, fixed-AS
or variable-AS strategies, or given by (3.22) or (3.26) when employing multiple-SS or
single-SS, respectively.

The energy efficiency of a cellular network is defined in (BJöRNSON et al., 2017)
as the number of bits that can be reliably transmitted per unit of energy. Thus, its unit is[

bit
J

]
, which is the same as the throughput per unit of power

[
bit/s
W

]
:

EE = B · SE
Ptot

= B · SE
PUL

TX + P tr
TX + PCP

(3.51)
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Table 3.1 – Complexity of the proposed selection schemes

Channel estimation [fpcb]:

CCE 3τpMK

Computation of the ZF combining vectors [fpcb]:

Cno-S
C-UL K3 + 9

2MK2 + 3
2(M + 4)K

Cfixed-AS
C-UL K4 + 3

2LK
3 + 3

2 (3L+ 4)K2

Cvariable-AS
C-UL K4 + 6K2 + 3

2(K + 3)K∑K
k=1Mk

Cmultiple-SS
C-UL NK3 + 3

2MK2 + 3
2(M + 4N)K +MK

∑N
n=1Kn

Csingle-SS
C-UL NK3 + 5

2MK2 + 3
2(M + 4N)K

C fair-AS
C-UL K3 + 9

2MsK
2 + 3

2(Ms + 4)K

Signal reception [fpcb]:

Cno-S
SR 3τuMK

Cfixed-AS
SR 3τuLK

Cvariable-AS
SR 3τu

∑K
k=1 Mk

Cmultiple-SS
SR 3τu

M
N

∑N
n=1Kn

Csingle-SS
SR 3τu

M
N
K

C fair-AS
SR 3τuMsK

Antenna or subarray selection [fpcb]:

Cfixed-AS
sel MK(log(M) + 4)

Cvariable-AS
sel MK(log(M) + 4)

Cmultiple-SS
sel

(
M
N

log
(
M
N

)
+ 3M +N

)
K

Csingle-SS
sel

(
M
N

log
(
M
N

)
+ 3M +N

)
K

C fair-AS
sel M(K + 1)log(M) + 3MK

Precision detector [fpcb]:

Cmultiple-SS
PD 7τuK + (1 + 3τu)

N∑
n=1

Kn
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Table 3.2 – Total complexity associated to each of the proposed selection schemes

Total complexity [fps]:

Cno-S
tot

B
τc

(CCE + Cno-S
C-UL + Cno-S

SR )

Cfixed-AS
tot

B
τc

(CCE + Cfixed-AS
C-UL + Cfixed-AS

SR + Cfixed-AS
sel )

Cvariable-AS
tot

B
τc

(CCE + Cvariable-AS
C-UL + Cvariable-AS

SR + Cvariable-AS
sel )

Cmultiple-SS
tot

B
τc

(CCE + Cmultiple-SS
C-UL + Cmultiple-SS

SR + Cmultiple-SS
sel + Cmultiple-SS

PD )

Csingle-SS
tot

B
τc

(CCE + Csingle-SS
C-UL + Csingle-SS

SR + Csingle-SS
sel )

C fair-AS
tot

B
τc

(CCE + C fair-AS
C-UL + C fair-AS

SR + C fair-AS
sel )

where the denominator contains the total power consumption (Ptot), including all power
consumption terms required to make the wireless communication system operational. Being
ηUL the power amplifier efficiency at the BS, the term

PUL
TX = τu

τc

1
ηUL

K∑
k=1

pk (3.52)

refers to the UL power consumed for data transmission, while

P tr
TX = τp

τc

1
ηULKpp (3.53)

accounts for the total power consumed by the power amplifiers during the UL pilot
transmission. Based on (UBIALI; ABRÃO, 2020; BJöRNSON et al., 2017), a detailed
model for the circuit power consumption is:

PCP = PFIX + PTC + PCE/SP + PC/D + PBH (3.54)

The fixed power consumption (PFIX) is a constant quantity that accounts for the
power consumption required for site-cooling, control signaling and load-independent power
of backhaul infrastructure and baseband processors (BJöRNSON et al., 2017; Marinello et
al., 2019). The transceiver chains power consumption (PTC) involves the power consumed
by the BS local oscillator (PLO), the circuit components (converters, mixers and filters)
of each BS antenna (PBS) and the the circuit components (mixers, filters, amplifiers and
oscillator) of each single-antenna user (PUE), as described by:

PTC = PLO +MactPBS +KPUE (3.55)

The channel estimation and signal processing power consumption (PCE/SP) can
be obtained by simply dividing the total complexity in flops per second [fps] by the
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computational efficiency at the BS (LBS), which represents the number of flops per Joule
of energy4.

Finally, being PCOD, PDEC and PBT the coding, decoding and backhaul traffic
power densities, respectively, given in

[
watt
bit/s

]
, the channel coding and decoding power

consumption can be expressed as:

PC/D = B · SE · (PCOD + PDEC) (3.56)

The load-dependent backhaul power consumption, necessary for the data transmis-
sion between the BS and the core network, is modeled as

PBH = B · SE · PBT (3.57)

4A complexity of C flops per coherence block results in a power consumption of BC
τcLBS

, where LBS is
the computational efficiency, representing the number of flops per Joule of energy, and consequently C

LBS
represents the energy consumption per coherence block.
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4 Energy Efficiency in XL-MIMO
Systems: Numerical Results

This chapter presents numerical results based on Monte-Carlo simulations (MCS)
in order to demonstrate that the antenna and subarray selection algorithms proposed
in Chapter 3 provide an EE increase while reducing considerably the computational
complexity and the power consumption in XL-MIMO systems. From these results, we can
see the advantages of appropriately selecting the antennas subset (fixed-AS, variable-AS,
multiple-SS and single-SS schemes) against utilizing the whole antenna array to serve
all users at the same time (no-S scheme). All UEs utilize the same transmit power, i.e.,
p1, . . . , pK = pUL. Table 4.1 contains a list of the main deployed parameter values, similar
to those adopted in (BJöRNSON et al., 2017; UBIALI; ABRÃO, 2020; Marinello et al.,
2019) and (Björnson et al., 2015).

In the MCS, the antenna array contains M = 1000 antenna elements and the
distance between the antennas is d = λ/2, where λ is the wavelength. The borders of the
cell are defined by xmin = 20λ, xmax = 200λ, ymin = −600λ and ymax = 600λ. Although the
position of the users (and consequently the pathloss), the short-scale fading and the VRs
are random variables, the numerical results represent an average over 1000 independent
realizations, therefore they are statistically relevant.

In all simulations, S = 50 scatterers and rs = 5 m (radium for all scatterers) have
been adopted. Under these conditions, one can obtain information about the length of the
visibility regions associated to the users and the scatterers, via numerical simulation. For
example, the BS-VR of a scatterer contains, on average, 259.9 antennas; each antenna is
inside the BS-VR of 12.9 scatterers, on average; and each user is inside the UE-VR of 2.0
scatterers, on average. Further information is presented in Table 4.2.

4.1 Influence of the algorithm parameters on the en-
ergy efficiency

In this section, numerical results are presented to show how the parameters L, z0

and N influence the number of active antennas, the power consumption, the complexity,
the throughput and the energy efficiency. All results refer to an example scenario of K =
32 users. Subsection 4.1.1 compares the performance of fixed-AS and the no-S strategies,
as a function of the number of antennas selected per user L, which is the parameter of
Algorithm 3.1. Subsection 4.1.2 compares the performance of variable-AS and multiple-SS
to the performance of no-S, and the effect of the z0 choices, which are parameters of the



66 Chapter 4. Energy Efficiency in XL-MIMO Systems: Numerical Results

Table 4.1 – System and Channel Parameter Values

Parameter Value
Pathloss attenuation exponent: γ 2.5
Median channel gain at a distance of 1 m: β0 2.95 · 10−4

[xmin,xmax] [20λ, 200λ]
[ymin,ymax] [−600λ, 600λ]
Wavelength: λ 5 cm
Antenna separation: d λ/2
Number of BS antennas (ULA): M 1000
Number of scatterers: S 50
Radium of the UE-VRs: rs 5 m
Probability of occurance of the LoS-BS-VRs: w 0.75
Number of mobile users: K {4; 8; 16; 32; 64; 100}
Transmission bandwidth: B 20 MHz
Channel coherence bandwidth: BC 100 kHz
Channel coherence time: TC 2 ms
Total UL noise power: σ2

n − 100 dBm
UL pilot transmit power per user (EPA): pp 0.1 W
UL data transmit power per user (EPA): pUL 0.1 W
Power amplifier efficiency at the BSs: ηUL 0.5
Computational efficiency at the BS: LBS 75

[
Gflop/s

W

]
Fixed power consumption: PFIX 10 W
Power consumed by local oscillators at BS: PLO 1.0 W
Power consumed by circuit components at BS: PBS 0.5 W
Power consumed by circuit components at UE: PUE 0.2 W
Power density for coding of data signals: PCOD 0.1

[
W

Gbit/s

]
Power density for decoding of data signals: PDEC 0.8

[
W

Gbit/s

]
Power density for backhaul traffic: PBT 0.25

[
W

Gbit/s

]
Number of Monte-Carlo realizations: T 1000

algorithms 3.2 and 3.3, on the performance metrics. Finally, subsection 4.1.3 compares no-S,
multiple-SS and single-SS, and the effect of the N choices, while subsection 4.1.4 shows
the performance of the fair-AS scheme as a function on the number of active antennas,
which is an entry of Algorithm 3.5.

4.1.1 no-S x fixed-AS

Figure 4.1 compares the no-S and fixed-AS strategies in terms of the average
number of selected antennas per user (E{Mk} = Mk = L) and the average number
of active antennas (E{Mact}), as a function of the value adopted for the parameter
L of Algorithm 3.1. To avoid problems with the matrix inversion when obtaining the
ZF combining vectors, L must be at least 32 antennas. When fixed-AS is set to select
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Table 4.2 – Average VR size conditions resulting from the adopted XL-MIMO channel
parameters

# antennas inside the BS-VR of a scatterer: 259.9

# antennas seen by each user via LoS propagation: 193.9

# antennas seen by each user via NLoS propagation: 406.2

# antennas seen by each user via LoS or NLoS propagation: 520.1

% users that don’t see any antenna via LoS propagation: 49.5%

% users that don’t see any antenna via NLoS propagation: 25.9%

% users don’t see any antenna via neither LoS nor NLoS: 13.6%

less than one hundred antennas to detect the signal sent by each user through receive
combining, the number of active antennas can be considerably reduced. As a consequence,
the computational complexity and the total power consumption decrease, as Figures 4.4
and 4.5 show.

0 100 200 300 400 500 600 700 800 900 1000

0

100

200

300

400

500

600

700

800

900

1000

Figure 4.1 – Comparison between no-S and fixed-AS, regarding the average number of
selected antennas per user and the average number of active antennas, as a
function of the parameter L of Algorithm 3.1; K = 32; ZF combiner

Figure 4.2 shows the behavior of the average signal, interference and noise power
after the combiner, according to the value of L. The average desired signal power (after
the combiner) is close to 20 dBm, which is the UL transmit power of each user (0.1 W).
The little difference is due to the channel estimation error. Conservating the signal power
is a feature of the ZF combiner. The ZF combiner is more effective at mitigating the
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interference and noise power when the number of antennas is high. Thus, when selecting less
than 300 antennas for each user (L < 300), the interference and noise powers considerably
increase. However, as long as the antennas are selected properly, the throughput does not
deteriorate at all, as Figure 4.3 shows.
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Figure 4.2 – Comparison between no-S and fixed-AS, regarding the average signal, inter-
ference and noise power, after the combiner, as a function of parameter L of
Algorithm 3.1; K = 32; ZF combiner
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Figure 4.3 – Comparison between no-S and fixed-AS, regarding the throughput, as a
function of the parameter L of Algorithm 3.1; K = 32; ZF combiner.

The most significant term in the total complexity is CC-UL, which designates the
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complexity of computing the ZF combining vectors. When employing fixed-AS or variable-
AS, the matrix to be inverted is smaller than when employing no-S (Mk ×K instead of
M ×K). However, K different matrices need to be inverted to compute the combining
vector of the K users. As a consequence, the total complexity behaves as shown in Figure
4.4: depending on the number of antennas that will be selected (L), the resulting complexity
may be lower or higher than when not employing any selection scheme (no-S strategy). The
complexity increase is the reason why the power consumption may also increase depending
on the value of L (Figure 4.5).
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Figure 4.4 – Comparison between no-S and fixed-AS, regarding the complexity, as a
function of the parameter L of Algorithm 3.1; K = 32; ZF combiner.

Finally, Figure 4.6 shows the dependency of the EE on L. Notice that, for K = 32
users, the EE can be improved by choosing an appropriate number of antennas to detect
the signal sent by each user. From the left side graphic, among the different tested values
of L, L = 50 is the best choice regarding the EE: when compared to the no-S strategy, the
EE raises from 19.9 Mbit/J to 21.9 Mbit/J (an increase of 10.2%). On the other side, the
throughput drops from 11.3 Gbit/s to 9.0 Gbit/s (a decrease of 20.4%). However, there
is a huge complexity reduction of 67.6% (from 2389 Gfps to 775 Gfps), and the power
consumption also decreases considerably: from 57.5 dBm to 56.1 dBm (27.6%). According
to the right side graphic of Figure 4.6 we can see that the optimal value for L is not
necessarily K. For K = 32, for example, the EE is maximized when L = 38.

4.1.2 no-S x variable-AS x multiple-SS

When employing the variable-AS or the multiple-SS schemes, the number of selected
antennas is not the same for all the users, unlike the fixed-AS scheme. Thus, variable-AS



70 Chapter 4. Energy Efficiency in XL-MIMO Systems: Numerical Results

0 100 200 300 400 500 600 700 800 900 1000

54.5

55

55.5

56

56.5

57

57.5

58

58.5

Figure 4.5 – Comparison between no-S and fixed-AS, regarding the power consumption,
as a function of the parameter L of Algorithm 3.1; K = 32; ZF combiner.
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Figure 4.6 – Comparison between no-S and fixed-AS, regarding the energy efficiency, as a
function of the parameter L of Algorithm 3.1; K = 32; ZF combiner.

and multiple-SS can personalize the number of selected antennas for a given user according
to its channel profile. For example, if the energy coming from an individual user signal
is concentrated over a small portion of the array, the schemes are capable of selecting
only a few antennas, being more effective at reducing the number of active antennas while
not considerably compromising the throughput. Consequently, they are expected to bring
higher EE improvements than fixed-AS.

Figure 4.7 shows the relation between the parameter z0 and E{Mk}, as well as
E{Mact}, considering four different cases: no-S, variable-AS, multiple-SS with N = 5
subarrays and multiple-SS with N = 25 subarrays. The bigger the number of subarrays
(N), the smaller the number of active antennas. The maximum possible number of subarrays
is N = M , where the multiple-SS scheme converges to the variable-AS solution. On the
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other side, dividing the antenna array into many subarrays (for example, N = 25) is more
likely to deteriorate the throughput than if it was divided into only a few subarrays (for
example, N = 5), as the lower number of antennas per subarray compromises the ZF
signal detection as in (3.12) (see Figure 4.8).
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Figure 4.7 – Comparison among no-S, variable-AS and multiple-SS, regarding the average
number of selected antennas per user and the average number of active
antennas, as a function of the parameter z0 of the algorithms 3.2 and 3.3; K
= 32; ZF combiner.
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Figure 4.8 – Comparison among no-S, variable-AS and multiple-SS, regarding the through-
put, as a function of the parameter z0 of the algorithms 3.2 and 3.3; K = 32;
ZF combiner.

Intuitively, increasing z0 causes both algorithms to select more antennas to par-
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ticipate in the signal detection of each user. Consequently, the total number of active
antennas and the power consumption also increase with z0, as depicted in Figures 4.7 and
4.10, respectively, as well as the total complexity (Figure 4.9) and the throughput (Figure
4.8).
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Figure 4.9 – Comparison among no-S, variable-AS and multiple-SS, regarding the com-
plexity, as a function of the parameter z0 of the algorithms 3.2 and 3.3; K =
32; ZF combiner.
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Figure 4.10 – Comparison among no-S, variable-AS and multiple-SS, regarding the total
power consumption, as a function of the parameter z0 of the algorithms 3.2
and 3.3; K = 32; ZF combiner.
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Figure 4.11 shows the signal, interference and noise power as a function of z0. See
that, when employing multiple-SS, the ZF is more efficient at mitigating the interference if
N = 5 than if N = 25, because the number of antennas per subarray is higher (200 instead
of 40). Figure 4.8 shows that one can obtain a higher throughput when Mk is high, i.e.,
when N is low (multiple-SS scheme) or z0 > 0.5 (variable-AS scheme). However, choosing
z0 < 0.5 or a higher number of subarrays leads to a reduction in the number of active
antennas without a big throughput decrease, saving energy and consequently improving
the EE, according to Figure 4.12.
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Figure 4.11 – Comparison among no-S, variable-AS and multiple-SS, regarding the average
signal, interference and noise power, after the combiner, as a function of the
parameter z0 of the algorithms 3.2 and 3.3; K = 32; ZF combiner.

Finally, Figure 4.12 shows the dependency of the EE on z0. Notice that, for K
= 32 users, the EE can be improved by choosing an appropriate value for z0 and N .
Among the set of tested values for z0, z0 = 0.1 is the best choice regarding the EE when
employing the variable-AS scheme: comparing to the no-S strategy, the EE raises from
19.9 Mbit/J to 22.9 Mbit/J (an increase of 15.2%). On the other side, the throughput
drops from 11.3 Gbit/s to 8.6 Gbit/s (a decrease of 23.9%). However, there is a huge
complexity reduction of 71.0% (from 2389 Gfps to 692 Gfps), and the power consumption
also decreases considerably: from 57.5 dBm to 55.5 dBm (37.9%).

Among the set of tested values for z0 and N , z0 = 0.1 and N = 25 are the best
choice regarding the EE when employing the multiple-SS scheme: when compared to the
no-S strategy, the EE raises from 19.9 Mbit/J to 20.6 Mbit/J (an increase of 3.7%). On
the other side, the throughput drops from 11.3 Gbit/s to 7.4 Gbit/s (a decrease of 34.4%).
However, there is a huge complexity reduction of 64.4% (from 2389 Gfps to 851 Gfps), and
the power consumption also decreases considerably: from 57.5 dBm to 55.6 dBm (36.1%).
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Figure 4.12 – Comparison among no-S, variable-AS and multiple-SS, regarding the energy
efficiency, as a function of the parameter z0 of the algorithms 3.2 and 3.3;
K = 32; ZF combiner.

4.1.3 no-S x multiple-SS x single-SS

Single-SS scheme is a particular case of multiple-SS where only one subarray is
selected for each user. Thus, its results are expected to be similar to the multiple-SS results
when taking z0 ≤ 0.1. Figure 4.13 shows the influence of N in the average number of
selected antennas per user and in the average number of active antennas. Four scenarios
are considered: no-S, multiple-SS with z0 = 0.1, multiple-SS with z0 = 0.5 and single-SS.

As we already noticed in Figure 4.7, dividing the antenna array into as much as
possible subarrays (recall the limitation M/N ≥ K associated to the ZF combining) is
important to reduce the number of active antennas and consequently the complexity
and the total power consumption, as shown in Figures 4.14 and 4.15, respectively. When
employing the multiple-SS scheme, in particular, there is a value of N that minimizes the
complexity. Notice that the single-SS scheme is specially good at reducing the complexity
and the power consumption. The multiple-SS scheme has similar results when z0 = 0.1.

Figure 4.16 shows the dependency of the average signal, interference and noise power
on N . See that increasing the number of subarrays will diminish the number of antennas
per subarray, reducing the efficiency of the ZF combining at mitigating the interference,
and consequently reducing the throughput, according to Figure 4.17. When employing the
multiple-SS scheme, the signals detected at each subarray are combined (with different
weights), performining a precision detection, according to (3.16), and consequently the
interference and noise powers are smaller than when employing single-SS. However, the
throughput gain of multiple-SS compared to single-SS is very slight.
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Figure 4.13 – Comparison among no-S, multiple-SS and single-SS, regarding the average
number of selected antennas per user and the average number of active
antennas, as a function of the parameter N of the algorithms 3.2 and 3.3;
K = 32; ZF combiner.
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Figure 4.14 – Comparison among no-S, multiple-SS and single-SS, regarding the complexity,
as a function of the parameter N of the algorithms 3.2 and 3.3; K = 32; ZF
combiner.
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Figure 4.15 – Comparison among no-S, multiple-SS and single-SS, regarding the power
consumption, as a function of the parameter N of the algorithms 3.2 and
3.3; K = 32; ZF combiner.
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Figure 4.16 – Comparison among no-S, multiple-SS and single-SS, regarding the average
signal, interference and noise power, after the combiner, as a function of the
parameter N of the algorithms 3.2 and 3.3; K = 32; ZF combiner.
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Figure 4.17 – Comparison among no-S, multiple-SS and single-SS, regarding the through-
put, as a function of the parameter N of the algorithms 3.2 and 3.3; K =
32; ZF combiner.

Finally, Figure 4.18 shows the dependency of the EE on N . Notice that, for K =
32 users, the EE can be improved by choosing an appropriate value for z0 and N . Among
the set of tested values for N , N = 25 is the best choice regarding the EE when employing
single-SS: comparing to the no-S strategy, the EE raises from 19.9 Mbit/J to 24.0 Mbit/J
(an increase of 20.9%). On the other side, the throughput drops from 11.3 Gbit/s to 7.3
Gbit/s (a decrease of 35.3%). However, there is a huge complexity reduction of 69.7%
(from 2389 Gfps to 725 Gfps), and the power consumption also decreases considerably:
from 57.5 dBm to 54.9 dBm (45.8%).

Among the set of tested values for z0 and N , z0 = 0.1 and N = 20 are the best
choice regarding the EE when employing the multiple-SS scheme: when compared to the
no-S strategy, the EE raises from 19.9 Mbit/J to 21.2 Mbit/J (an increase of 7.1%). On
the other side, the throughput drops from 11.3 Gbit/s to 8.0 Gbit/s (a decrease of 29.2%).
However, there is a huge complexity reduction of 65.8% (from 2389 Gfps to 817 Gfps), and
the power consumption also decreases considerably: from 57.5 dBm to 55.8 dBm (33.1%).

4.1.4 Fair-AS

Here, numerical results are presented to show how the arbitrarily defined number
of active antennas (Ms) influences the system performance in terms of complexity, power
consumption, throughput and energy efficiency. All results refer to example scenarios of
K = {8, 32, 100} users. Figure 4.19 shows the dependency of the throughput on Ms and
confirms that the higher the number of active antennas, the higher the throughput. On
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Figure 4.18 – Comparison among no-S, multiple-SS and single-SS, regarding the energy
efficiency, as a function of the parameter N of the algorithms 3.2 and 3.3;
K = 32; ZF combiner.

the other hand, the complexity and the power consumption also increases with Ms, as
exposed by Figures 4.20 and 4.21. As a consequence, we can see in Figure 4.22 that there
is an optimal value for Ms concerning the EE maximization, and that this value varies
depending on the number of users.
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Figure 4.19 – Throughput as a function of the number of active antennas (the values of
Ms that were tested are 8, 16, 32, 64, 100, 200, 400, 600, 800 and 1000), for
different number of users. ZF combiner is employed.
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Figure 4.20 – Computational complexity as a function of the number of active antennas
(the values of Ms that were tested are 8, 16, 32, 64, 100, 200, 400, 600, 800
and 1000), for different number of users. ZF combiner is employed.
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Figure 4.21 – Power consumption as a function of the number of active antennas (the
values of Ms that were tested are 8, 16, 32, 64, 100, 200, 400, 600, 800 and
1000), for different number of users. ZF combiner is employed.
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Figure 4.22 – Energy efficiency as a function of the number of active antennas (the values
of Ms that were tested are 8, 16, 32, 64, 100, 200, 400, 600, 800 and 1000),
for different number of users. ZF combiner is employed.

4.2 Optimizing the algorithm parameters to maxi-
mize the energy efficiency

In this section, the algorithm parameters are optimized in order to obtain the
maximum energy efficiency that each selection scheme can provide in six different scenarios:
K = {4, 8, 16, 32, 64, 100}. Table 4.3 shows: the optimal value of L that maximizes the EE
in each scenario when employing fixed-AS; the optimal z0 that maximizes the EE when
employing variable-AS; the optimal pair (z0, N) that maximizes the EE when employing
multiple-SS; and the optimal N to maximize the EE with single-SS scheme. The table also
shows the average number of selected antennas per user (E{Mk}) resulting from setting
L = L∗, z0 = z∗0 and N = N∗, as well as the average number of selected subarrays per user
(E{Nk}) when employing an SS scheme (multiple-SS or single-SS). The optimal inputs of
the algorithms were found empirically, by varying incrementally their values and testing
the resulting EE.

Figure 4.23 compares the average number of antennas selected per user and the
average number of active antennas when employing each of the selection schemes, for
different numbers of users, when using the optimal algorithm parameters (L, z0 and N) in
terms of maximizing the EE. Figures 4.24 and 4.25 show the average signal, interference
(interf.) and noise power and the total power consumption, resulting from setting L = L∗,
z0 = z∗0 and N = N∗. Figures 4.26a, 4.26b, 4.27a and 4.27b contain two graphics each:
the left one refers to absolute values of the results of each selection scheme, while the
right one refers to the absolute values normalized by the no-S results. These figures show,
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Table 4.3 – Optimal values of L, z0 and N for maximizing the EE when employing the
proposed antennas/subarrays selection schemes, for different number of users,
with M = 1000 antennas. The resulting E{Mk} and E{Mact}, when setting
L = L∗, z0 = z∗0 and N = N∗, are also presented.

fixed-AS variable-AS multiple-SS single-SS
K L∗ E{Mk} z∗0 E{Mk} z∗0 N∗ E{Nk} E{Mk} N∗ E{Nk} E{Mk}

4 4 4 0.001 5.3 0.001 250 1.61 6.4 250 1 4
8 9 9 0.001 9.1 0.001 125 1.05 8.4 125 1 8

16 17 17 0.020 17.1 0.010 50 1.01 20.1 50 1 20
32 38 38 0.110 37.6 0.010 25 1.00 40.0 25 1 40
64 174 174 0.480 157.5 0.430 2 1.05 526.0 2 1 500

100 155 155 0.440 153.1 0.170 2 1.00 500.2 2 1 500

respectively, the behavior of the throughput, the average per user rate, the complexity
and the EE depending on the number of users, when the algorithm parameters are set to
maximize the EE.
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Figure 4.23 – Comparison between the five selection schemes (no-S, fixed-AS, variable-
AS, multiple-SS and single-SS) in terms of the average number of selected
antennas per user and average number of active antennas, as a function
of the number of users (K), when the optimal values of L, z0 and N are
adopted to maximize the EE. ZF combiner is employed.

It is noticiable that the tested numbers of users can be divided in two groups, which
we will call low user density (LUD) and high user density (HUD) scenarios, corresponding
to K = {4, 8, 16, 32} and K = {64, 100}, respectively.

In the LUD scenario, the average number of selected antennas per user resulting
from setting L = L∗, z0 = z∗0 and N = N∗ is very low, nearly the minimum number of
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antennas necessary to attend the constraint Mk ≥ K of the ZF combiner. In this scenario,
all the proposed selection schemes (fixed-AS, variable-AS, multiple-SS and single-SS) cause
a considerable reduction on the average number of active antennas, over the no-S scheme,
according to Figure 4.23. Consequently, the transceiver chains power consumption (PTC),
which is proportional to Mact, gets quite lower (Figure 4.25). As Mk << M , there is also
a very consistent complexity reduction, according to the results shown in Figure 4.27a.
For instance, when K = 4 (K = 32), the complexity of the AS and SS schemes is about
only 5% (30%) of the no-S complexity. As a consequence, the power consumption due to
the signal processing (PCE/SP) also faces a huge reduction.
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Figure 4.24 – Comparison between the five selection schemes (no-S, fixed-AS, variable-AS,
multiple-SS and single-SS) in terms of the average signal, interference and
noise power, after the receiver, as a function of the number of users (K),
when the optimal values of L, z0 and N are adopted to maximize the EE.
ZF combiner is employed.

On the other side, as few antennas are used to perform ZF receive combining for
each user, the interference and noise powers after the combiner increase when compared
to the traditional strategy of using the whole antenna array (no-S scheme), according to
Figure 4.24. Hence, the throughput is smaller, but it does not deteriorate as the antennas
or subarrays are selected properly, following the criteria in (3.3) or (3.13), respectively.
According to Figure 4.26a, the throughput is about 70% of the no-S throughput in the
LUD scenario. Finally, as the power reduction is much more strong than the throughput
reduction, the energy efficiency faces a huge increase: as Figure 4.27b shows, it about
1400% (250%) of the no-S EE when K = 4 (K = 16).

In the HUD scenario, the values of L, z0 and N that maximize the EE leads to
an increase in the number of selected antennas per user, in order to avoid a throughput
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Figure 4.25 – Comparison between the five selection schemes (no-S, fixed-AS, variable-AS,
multiple-SS and single-SS) in terms of power consumption, as a function
of the number of users (K), when the optimal values of L, z0 and N are
adopted to maximize the EE. ZF combiner is employed.

deterioration as there is much more interference and ZF efficiency in mitigating interference
depends on a great number of antennas. As a result, the computational complexity and the
number of active antennas under fixed-AS, variable-AS, multiple-SS or single-SS increase
when compared to the LUD scenario, causing the total power consumption also to increase.

Notice that, in the HUD scenario, E{Mact} ∼= M , which means that there will
not be any power saving compared to no-S, as the most important portion of the power
consumption comes from the activation of the BS antennas. Consequently, the selection
schemes cannot provide an EE improvement when K = 64 or K = 100. Furthermore, with
respect to fixed-AS and variable-AS, particularly, the EE decreases, because the complexity
scales1 and consequently the power consumption increases. In the LUD scenario, on the
other hand, fixed-AS and variable-AS provide a complexity reduction in relation to no-S
because the matrix to be inverted to compute the ZF combining vectors is Mk×K instead
of M ×K, and in this scenario Mk << M .

As it selects only one subarray per user, single-SS was designed to provide lower
complexity and power consumption than multiple-SS, in contrast to its possibly smaller
throughput, as multiple-SS combines the signals received in each subarray after ZF
combining to perform a precision detection. However, when optimizing the algorithm
parameters to maximize the EE, we observed that multiple-SS and single-SS performed
similarly. The reason is that the value of N that maximizes the EE is the same for both

1Cfixed-AS
C-UL and Cvariable-AS

C-UL are proportional to K4, while Cno-S
C-UL, Cmultiple-SS

C-UL and Csingle-SS
C-UL are propor-

tional to K3 (see Table 3.1).
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(a) Throughput
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Figure 4.26 – Comparison between the five selection schemes (no-S, fixed-AS, variable-AS,
multiple-SS and single-SS) regarding the throughput and the average per
user rate, as a function of the number of users (K), when the optimal values
of L, z0 and N are adopted to maximize the EE. The left figures correspond
to absolute values, while the data in the right figures are normalized by the
results of the no-S scheme. ZF combiner is employed.
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Figure 4.27 – Comparison between the five selection schemes (no-S, fixed-AS, variable-
AS, multiple-SS and single-SS) regarding the complexity and the energy
efficiency, as a function of the number of users (K), when the optimal values
of L, z0 and N are adopted to maximize the EE. The left figures correspond
to absolute values, while the data in the right figures are normalized by the
results of the no-S scheme. ZF combiner is employed.



86 Chapter 4. Energy Efficiency in XL-MIMO Systems: Numerical Results

schemes in all tested number of users, while z∗0 of multiple-SS guarantees that most times
only 1 subarray will be selected for each user.

With respect to fixed-AS and variable-AS, they provide similar perfomances, except
regarding the throughput when K = 32, 64 or 100. One possible justificative for this result
is the fact that variable-AS may select different number of antennas for each user, as long
as the selected antennas contemplates at least a fraction z0 of the total cumulative power
of each user. Thus, some users may be given only K or a few more antennas (the minimum
possible, due to ZF), and these users will have a lower throughput than if fixed-AS is
utilized. Due to the relatively high number of users, the reduction in the number of selected
antennas for some of these users will not prevent the whole antenna array to be activated.
Consequently, EE is slightly worse when employing variable-AS than when employing
fixed-AS if K ≥ 64. However, the variable-AS philosophy of taking different number
of antennas for each user has not necessarily been invalidated, as an antenna selection
criterion other than the one described in Section 3.1 could be adopted in order to provide
greater EE improvements than fixed-AS.

Finally, when K ≤ 32, the four proposed selection schemes that were analyzed so
far were successful at improving the EE and reducing the computational complexity and
the power consumption, without considerably compromising the throughput. On the other
hand, when K ≥ 64, they could not improve the EE, as they could not prevent the whole
antenna array from being active. Simultaneously, there is still a throughput reduction
in relation to the no-S scheme, because each user is served by only some of the antenna
elements. As the combining vectors of the K users are computed separately, the complexity
scales in the HUD scenario, and consequently also does the power consumption. As a
result, in this scenario, there is not benefit from employing fixed-AS or variable-AS, while
multiple-SS and single-SS can still provide a complexity reduction. Thus, as multiple-SS
and single-SS provided very similar performance, and single-SS has a simpler algorithm
than multiple-SS, as only one subarray must be selected for each user, single-SS has
demonstrated to be the most promising of all the four strategies that were proposed in
Sections 3.1 and 3.2.

In the following, the results of fair-AS are compared to the ones obtained with
single-SS (which has been demonstrated to be the most advantageous among the schemes
proposed in Sections 3.1 and 3.2 and the no-S strategy. The algorithm inputs are optimized
in order to obtain the maximum energy efficiency that each selection scheme can provide
in six different scenarios: K = {4, 8, 16, 32, 64, 100}. Table 4.4 shows the optimal values of
N and Ms that maximize the EE in each scenario when employing single-SS and fair-AS,
respectively, as well as the energy efficiency resulting from adopting the optimized values
of these inputs.

Table 4.4 shows that the optimal number of active antennas grows as the number
of users grow. However, while single-SS achieves its highest EE when the whole array
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Table 4.4 – Optimal values of N (single-SS) and Ms (fair-AS) for maximizing the EE, for
different number of users, with M = 1000 antennas. The resulting EE is also
presented.

no-S single-SS fair-AS
K Ms EE [Mbit/J] N∗ E{Ms} EE [Mbit/J] M∗

s EE [Mbit/J]
4 1000 3.2 250 16 47.8 7 62.2
8 1000 6.3 125 61 40.6 12 86.1

16 1000 11.7 50 240 28.7 25 109.8
32 1000 19.9 25 531 24.1 46 118.5
64 1000 28.3 2 1000 28.8 92 103.1

100 1000 28.4 2 1000 29.0 141 75.8

is active, for K=64 or 100, fair-AS still maintain most part of the array inactive. As a
consequence, it achieves the lowest throughput among no-S, single-SS and fair-AS schemes,
according to results in Figure 4.28. On the other hand, it provides the lowest complexity
and power consumption among the three schemes, according Figures 4.29 and 4.30. Finally,
results in Figure 4.31 demonstrate that the fair-AS scheme attains much higher EE levels
than single-SS. Furthermore, it improves the EE even when K = 64 or 100.
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Figure 4.28 – Comparison between the no-S, single-SS and fair-AS schemes in terms of
throughput, as a function of the number of users (K), when the optimal
values of Ms and N are adopted to maximize the EE. ZF combiner is
employed.
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Figure 4.29 – Comparison between the no-S, single-SS and fair-AS schemes in terms of
complexity, as a function of the number of users (K), when the optimal values
of Ms and N are adopted to maximize the EE. ZF combiner is employed.
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Figure 4.30 – Comparison between the no-S, single-SS and fair-AS schemes in terms of
power consumption, as a function of the number of users (K), when the
optimal values of Ms and N are adopted to maximize the EE. ZF combiner
is employed.
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Figure 4.31 – Comparison between the no-S, single-SS and fair-AS schemes in terms of
energy efficiency, as a function of the number of users (K), when the optimal
values of Ms and N are adopted to maximize the EE. ZF combiner is
employed.

4.3 Summary of the chapter

This chapter presents numerical results based on Monte-Carlo simulations demon-
strating the performance of the selection schemes in the UL of an extra-large MIMO
system using ZF receiver.

Section 4.1 shows how each of the five proposed selection schemes (fixed-AS, variable-
AS, multiple-SS, single-SS and fair-AS) impacts the computational complexity, the power
consumption, the throughput and the energy efficiency, depending on the algorithm inputs
L (fixed-AS), z0 (variable-AS and multiple-SS) and N (multiple-SS and single-SS), when
K = 32. Results have demonstrated that, by choosing appropriate values of L, z0, N
and Ms, all the proposed schemes are successful at improving the EE and reducing the
power consumption and the computational complexity over the no-S strategy, due to the
considerable reduction in the number of antennas that are activated. As a counterpart,
there is a little reduction in the system throughput.

In Section 4.2, the algorithm parameters are optimized in order to obtain the
maximum energy efficiency that each selection scheme can provide in six different scenarios:
K = {4, 8, 16, 32, 64, 100}. Results have demonstrated that, for K = {4, 8, 16, 32}, the
selection schemes are efficient at reducing the number of active antennas. Consequently,
the complexity and the power consumption decrease considerably while the throughput
is only slightly affected, resulting in a great EE improvement. On the other hand, for
K = {64, 100}, none of the proposed schemes is capable of reducing the number of active
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antennas. As a result, there is no EE improvement. Furthermore, in this scenario, the
subarray selection schemes (multiple-SS and single-SS) perform better than the first two
AS schemes (fixed-AS and variable-AS), as their complexity does not scale so fast with K
as when employing fixed-AS or variable-AS. Thus, as multiple-SS and single-SS provided
very similar performance, and single-SS has a simpler algorithm than multiple-SS, as only
one subarray must be selected for each user, single-SS has demonstrated to be the most
promising of the four strategies that were proposed in Sections 3.1 and 3.2.

Finally, results demonstrate that fair-AS attains much higher EE levels than single-
SS, as it is capable of maintaing the number of active antennas arbitrarily low without
compromising the SE severely. Furthermore, it improves the EE even when K = 64 or 100.
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5 Conclusions and Remarks

Increasing the number of antennas at the BS of a massive MIMO network is useful
to provide higher data rates and energy efficiency. However, maintaining the antenna
separation to at least half of the wavelength is fundamental to make real advantage from
an array dimension of the order of hundreds or thousands of antennas. Consequently, the
array length increases a lot and the channel spatial non-stationary properties appear, which
means that the majority of the energy sent by a given user achieves only a small portion
of the antenna array. Thus, selecting the antennas that will participate in the receive
combining of the signal sent by each user, instead of using all the available antennas, may
be a very useful strategy to reduce considerably the power consumption without degrading
the throughput.

Numerical results shown that the selection schemes were capable of reducing the
number of active antennas in the LUD scenario, therefore reducing the power consumption
considerably. When assigning a small number of antennas to perform receive combining for
each user, the complexity is also reduced in this scenario. The proposed algorithms select
properly the antennas that are designated to each user, preferring the ones whose channel
between them and the user is stronger and also considering the potential interference
from the other users. Therefore, the throughput reduces only slightly, although ZF is
more efficient at mitigating the interference when many antennas are used. As the power
consumption decays much more than the throughput, the EE is dramatically improved in
the LUD scenario.

On the other hand, in the HUD scenario, ZF needs more antennas being selected
per user so that the throughput does not deteriorate. Consequently, it is not possible
anymore to reduce the complexity and the number of active antennas when compared to
the traditional strategy (no-S), and the power consumption is not reduced. Thus, the EE
cannot be improved in this scenario.

The fair-AS scheme, on the side, was conceived to select just a predefined number
of antennas to be active, which is a input of the algorithm. All the active antennas
perform receive combining for all the users, which does not increase the interference levels
significantly because ZF processing is used and because the adopted system model was
assumed to have no pilot contamination. Results have shown that fair-AS improves the
EE much further than the other methods, being able to increase the EE even in the HUD
scenario.

Lastly, the XL-MIMO system, which itself is promising to achieve very high spectral
and energy efficiencies, was demonstrated in this work to be even more energetically
efficient in low or medium user-density scenarios, by utilizing an appropriate method for
designating which antennas or subarrays will perform receive combining for each user,
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instead of utilizing the whole antenna array.

5.1 Future Research Directions in AS XL-MIMO

Open research, solutions and hot issues in efficient antenna selection techniques
and methods for XL-MIMO systems include:

1. Algorithm(s) to find analytically the optimal value of Ms in terms of maximizing the
EE. For that propose, a procedure similar to the adopted in (Marinello et al., 2020)
may be developed, considering the channel model described in this Dissertation text.

2. (Semi-)distributed processing techniques in massive MIMO antennas considering
subarray switching aiming to improve energy efficiency of XL-MIMO systems.

3. Resource allocation procedures to perform joint antenna selection and power alloca-
tion aiming at maximizing the spectral efficiency of the XL-MIMO system.

4. Use of evolutionary meta-heuristic and machine learning procedures, such as genetic
algorithm (GA), particle swarm optimization (PSO), ant colony optimization (ACO),
deep learning for selecting antennas following some optimization criterion, such as
EE or SE system maximization and so forth. In general quasi-distributed meta-
heuristic-based procedures can result in excellent trade-off between performance,
complexity and exchanged coordination data.

5. Extend the investigations on XL-MIMO systems to scenarios with higher number
of users, where the number of orthogonal sequences is not sufficient to avoid pilot
contamination. In this case, it may be convenient to consider combining/precoding
schemes other than ZF, such as MMSE. A possible linear processing technique to
improve the system performance in this scenario that could be implemented is based
on the multicell-MMSE (M-MMSE) combiner described in (BJöRNSON et al., 2017).
Other possible direction is to incorporate a pilot assignment scheme to minimize the
coherent interference between users that were assigned the same pilot sequence.
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a b s t r a c t

Massive multiple-input-multiple-output (M-MIMO) is a key technology for 5G networks. Within this
research area, new types of deployment are arising, such as the extremely-large regime (XL-MIMO),
where the antenna array at the base station (BS) has extreme dimensions. As a consequence, spatial
non-stationary properties appear as the users see only a portion of the antenna array, which is
called visibility region (VR). In this challenging transmission–reception scenario, an algorithm to select
the appropriate antenna-elements for processing the received signal of a given user in the uplink
(UL), as well as to transmit the signal of this user during downlink (DL) is proposed. The advantage
of not using all the available antenna-elements at the BS is the computational burden and circuit
power consumption reduction, improving the energy efficiency (EE) substantially. Numerical results
demonstrate that one can increase the EE without compromising considerably the spectral efficiency
(SE). Under few active users scenario, the performance of the XL-MIMO system shows that the EE is
maximized using less than 20% of the antenna-elements of the array, without compromising the SE
severely.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Massive multiple-input-multiple-output (M-MIMO) is one of
the key technologies for 5G networks [1], which permits that
more than one single user transmits simultaneously with high
spectral and energy efficiencies and using the same spectrum, i.e.,
many antennas simultaneously serve many users using the same
time–frequency resource [2]. In MIMO networks, the base station
(BS) estimates the channel coefficients and employs a transmit
precoding scheme in the downlink (DL) and a receive combining
scheme in the uplink (UL), giving each user a different spatial
signature [3,4]. M-MIMO wireless communication is a special
case of MIMO systems using hundreds of antennas at the BS,
providing sufficient spatial dimensions to uncover the fundamen-
tal properties of M-MIMO: channel hardening, large array gain
and asymptotic inter-terminal channel orthogonality (favorable
propagation) [5]. Thus, it can provide large improvements over
traditional systems in both energy and spectral efficiencies.

As the number of BS antennas increases, it is possible to focus
the transmission and reception of signal energy into ever-smaller
regions of space, which brings huge improvements in throughput
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Universitário, Po. Box 10.011 86057-970, Londrina, PR, Brazil.
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and EE. However, it may come with the computational complex-
ity increasing, as well as with the increasing of implementation
cost and power consumption, what advocates for new deploy-
ments that take real advantage from increasing the number of BS
antennas to the order of hundreds or thousands, without severe
problems due to the holdbacks above cited. Moreover, in order to
make real advantage from the deployment of such a large number
of antenna elements, it is desirable to distribute them over a sub-
stantially large area in order to increase the antenna separation
and coverage [6]. One potential approach is the extremely-large
MIMO (XL-MIMO) regime, where the antenna array is integrated
into large building structures [5].

When a moderate number of (several tens of) antennas is
compactly deployed in the BS, the entire array will receive ap-
proximately the same amount of energy from each user, i.e., the
channel is spatially stationary [7]. On the other hand, in the XL-
MIMO regime, different parts of the array may observe the same
propagation paths with varying power and phases or distinct
propagation paths. Then, the majority of energy received from a
specific user concentrates on small portions of the entire array,
which is a channel property called spatial non-stationarity, which
has been observed by recent channel measurements [8–10] and
can be introduced in the channel model by using the concept
of visibility region (VR) [5,11–13]. However, it is worth saying
that the density of VRs influences on the size of the portion of
the array that the user can see. For instance, if the VR density is

https://doi.org/10.1016/j.phycom.2020.101189
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sufficiently high, all portions of the array are able to receive some
signal energy.

The conventional M-MIMO signal processing architecture is
centralized at the BS, what means that the signals are received
at the BS (UL) and transmitted by the BS (DL) deploying all
elements of antennas. Then, the associated computational com-
plexity becomes a challenge when employing extremely large
arrays, specially in crowded scenarios, due to the need to trans-
fer excessively large amounts of data received by the array to
the processing unit [7]. A promising solution is to use only a
portion of the whole element-antennas array to perform receive
combining as well as the transmit precoding to each user.

Hence, by appropriately selecting a subset of BS antennas
to communicate with each user, the receiver is able to cap-
ture almost the totality of the energy transmitted by that user,
while reducing the interference coming from the other users and
therefore potentially increasing the spectral efficiency (SE). Fur-
thermore, by having higher SE and reduced power consumption,
one can obtain higher EE. It is important to highlight that there
is a growing concern about how to improve the EE in wireless
communications, as the increasing data rates and the increasing
number of users connected to the network increase substantially
the overall energy consumption [14]. For this reason, in this work
we take both SE and EE as performance metrics to be analyzed in
Section 5. Finally, on can summarize the benefits of the VR-based
subarray antenna selection architecture as: (a) computational
complexity reduction; (b) overall energy saving by activating
a reduced number of antenna-elements; (c) as a result an EE
increasing; (d) while potentially improving the overall system SE
by selecting appropriate antenna-elements associated to the each
user VR.

Considering that the antenna array experiences spatial non-
stationarities when using large-aperture arrays, in [15], authors
propose two new channel estimation methods that, besides esti-
mating the channel vector, obtains the position of the scatterers
and the visibility regions, which may be useful for transceiver de-
sign. In [11], authors study the impact of spatial non-stationarity
where the channel energy is concentrated on a portion of the ar-
ray, i.e., the VR, in terms of signal-to-interference-plus-noise ratio
(SINR) performance. In [5], authors show that, when M-MIMO
systems operate in extra-large scale regime, several important
MIMO design aspects change, due to spatial non-stationarities,
where the users see only a portion of the array and, inside
the VR, different parts of the array see different propagation
paths. Moreover, three low-complexity data detection algorithms
are proposed in [12] as candidates for uplink communication in
XL-MIMO systems.

In [7], authors designed an efficient detector for extra-large-
scale massive MIMO systems with the subarray-based process-
ing architecture, by extending the application of the expectation
propagation principle. Their analysis is based on bit error rate
(BER) performance. A different approach to the antenna selection
methodology proposed herein, in [16], authors propose a design
based on machine learning to select a small portion of the array
that contains the beamforming energy to the user, aiming to
overcome the prohibitive complexity of XL-MIMO systems. They
provide numerical results in terms of sum-rate performance. To
the best of author’s knowledge, this is the first work address-
ing the subarray-based processing architecture, which remark-
ably provides huge reduction in the computational complexity,
through the point of view of improving the overall system EE.

Contribution. We deal with an XL-MIMO system equipped
with a subarray-based processing architecture, in order to reduce
the overall system computational complexity. In such scenario,
we propose a novel algorithm to judiciously select the antenna-
elements subarray that will communicate with each user, aiming

Fig. 1. Each coherence block is divided into the UL pilot transmission for channel
estimation purpose, the UL data transmission, and the DL data transmission.

at obtaining higher EE while reducing the power consumption,
when compared to the whole antenna array activation to com-
municate with every user. Thus, the contribution of this work
can be summarized as: (i) we propose an antenna selection
procedure to improve simultaneously the overall system EE by
reducing the power consumption, taking into account the spatial
non-stationarity assumption while taking advantage of the VRs
features; (ii) the proposed algorithm also provides a considerable
computational complexity reduction; (iii) a comprehensive anal-
ysis development on how the proposed procedure impacts the
system performance is developed, highlighting and characterizing
its benefits when comparing to the condition of using the entire
antenna array to communicate with every user.

The remainder of the paper is organized as follows. The
adopted XL-MIMO channel model and the channel estimation
procedure is developed in Section 2; this section also provides
the ergodic UL and DL spectral efficiencies expressions, based
on the signal-to-interference-plus-noise ratio (SINR). Section 3
focuses on the proposed antenna selection procedure, as well as
on the computational complexity aspects. The EE definition and a
detailed circuit power model are discussed in Section 4. Section 5
examines numerical results corroborating our findings, while the
main conclusions are presented in Section 6.

2. System model

We consider the UL and the DL of a single-cell multiuser XL-
MIMO system with an M-antenna BS and K single-antenna users
at each cell, operating over a bandwidth of B Hz. The channel
estimates are acquired via UL synchronous pilot transmission. The
time–division duplex (TDD) operation mode was chosen because
of its advantages over the frequency–division duplex (FDD) mode.
TDD does not require quantized channel state information (CSI)
to be sent by the BS to the user via feedback, because of channel
reciprocity, avoiding excessive overhead [3,17].

The channel coherence time (TC) is divided into UL pilot, UL
data and DL data transmission, as Fig. 1 shows. The number of
symbols that fits in a channel coherence block is τc = TCBC, being
BC the coherence bandwidth [2]. In order to estimate the channel,
each of the K users of a given cell is assigned a different pilot
sequence. There are τc symbols per coherence block, of which τp
are dedicated to UL pilot transmission, τu = ϵu

(
τc − τp

)
symbols

are dedicated to UL data transmission and τd = ϵd
(
τc − τp

)
symbols are dedicated to DL data transmission, where ϵu+ϵd = 1.
The number of available orthogonal pilot sequences is equal to its
length (τp). As we need K sequences, we can take τp = K . Thus,
the time required for pilots is proportional to the number of users
served. The number of users that can be served is therefore lim-
ited by the coherence time, which itself depends on the mobility
of the users [2].

The antenna-elements are uniformly spaced over a uniform
linear L-length array containing M elements (M-ULA). The coor-
dinates of the first and the Mth antennas are (0, 0) and (L, 0),
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Fig. 2. Typical system spatial configuration.

respectively, which means that, when M ≥ 1, the spacing be-
tween the antennas is L

M−1 . The users are placed over a rectangle
that extends along the antenna array in one dimension and be-
tween a minimum (dmin) and a maximum distance (dmax) in the
other dimension, following a uniform distribution over this area.
The coordinates of the mth antenna are denoted by (am, 0), and
its distance to the kth user is denoted by dmk. A typical system
configuration is represented by Fig. 2.

2.1. XL-MIMO channel model

In XL-MIMO systems, spatial non-stationarities occur
frequently since typically dmax < L, what means that a given
user probably sees only a small part of the antenna array. The
propagation environment contains numerous objects reflecting
the signal, which are called scattering points. Each scattering
point has an associated VR. Herein, we assume that each user can
see the antenna array through Nc different VRs. The ith VR that is
visible to the kth user extends from the cikth to the (cik + Nik)th
antenna and is denoted by Cik = {cik , cik + 1 , . . . , cik + Nik}.
These VRs may overlap, and the set Ck = C1,k ∪ . . . ∪ CNC,k
contains the indices of the antennas that are visible to the kth
user. Considering that each user sees the antenna array through
more than one VR, it is a way of taking into account that not only
one subset of the array containing contiguous antenna elements
may be visible. Indeed, the mobile user may see more than one
portion of the array. For instance, if M = 100 in Fig. 2, it
may see antennas 10 to 20 and 25 to 40, which means there is
something in the propagation environment preventing the signal
from reaching antennas 21 to 24.

In general, the distances between a given user and all the
BS antennas are considered to be the same. However, in the
XL-MIMO scenario, as the length of the antenna array is not
negligible, the pathloss varies throughout the array, mainly when
dmax ≪ L. The pathloss coefficient between the mth antenna and
the kth user is given by:

bmk =
b0

(dmk)γ
(1)

where γ ≥ 2 is the pathloss exponent and b0 determines the
median channel gain at a reference distance of 1 m [6]. The pa-
rameters b0 and γ are functions of the carrier frequency, antenna
gains, and vertical heights of the antennas, which are derived
from fitting (1) to measurements [6]. Finally, the channel vector
hk = [h1k . . . hMk]

T between the BS and the kth user is given by:

hk = ak ⊙

√
bk ⊙ hk (2)

where bk is a vector whose mth element is bmk, and hk is the
independent Rayleigh fading component, which accounts for the
short-scale fading and follows a complex-Gaussian distribution
hk ∼ CN (0M , IM ). The coefficient amk = [ak]m indicates whether
the mth antenna is visible to the kth user (amk = 1) or not (amk
= 0), and is given by:

amk =

{
1 m ∈ Ck
0 otherwise.

(3)

2.2. UL pilot transmission

We assume the channel is estimated via UL synchronous pilot
transmission, which means that all users simultaneously send pi-
lot sequences from the same pilot codebook. They have length τp
and form an orthogonal set. Herein, it is assumed that each user
is assigned a different pilot sequence. Then, the pilot sequences’
set is Ψ = [ψ1 . . .ψK ] ∈ Cτp×K and the orthogonality condition
states that ΨHΨ = τpIτp , i.e.:

ψH
i ψk =

{
τp i = k,
0 i ̸= k.

(4)

During the UL pilot transmission, the kth user transmits the
pilot sequence ψk ∈ Cτp , with transmit power pp. The elements
of ψk are scaled by

√
pp, forming the signal sk =

√
ppψH

k , to be
transmitted over τp UL samples. As a result, the BS receives the
signal Yp

∈ CM×τp :

Yp
=

K∑
i=1

√
pphiψ

H
i + Np (5)

where Np
∈ CM×τp is the noise matrix at the receiver of the BS

with i.i.d. entries following a complex normal distribution with
zero mean and variance σ 2

UL.
As the information about which antennas are visible for each

user is unknown, it might be necessary to consider obtaining
the channel estimates by using estimators that require no prior
statistical information, such as the least-squares (LS). Moreover,
as we consider that each user is assigned a different pilot se-
quence and these sequences are mutually orthogonal, there is
no pilot contamination. Hence, the imperfections on the channel
estimates are just due to the noise power at the BS antennas
during the UL pilot transmission. It advocates for using LS channel
estimation rather than MMSE. The LS estimate of hk is attained
by [6]:

ĥk =
1

τp
√
pp

Ypψk (6a)

= hk +
1

τp
√
pp

Npψk (6b)

The last term in (6b) is the equivalent noise vector, which
adds imperfections to the channel estimates and follows a com-
plex normal distribution: Npψk ∼ CN (0M , τpσ

2
ULIM ). Finally, the

estimated channel matrix is Ĥ = [ĥ1 . . . ĥK ], while H =

[h1 · · · hK ] ∈ CM×K is the true channel matrix. According
to Eq. (6a), the channel estimation process corresponds to the
inner product of M complex vectors of length τp, requiring Mτp
multiplications between complex numbers (or 3Mτp multiplica-
tions between real numbers1) to estimate the channel vector of
each of the K users. Herein, we consider that both multiplication

1 Consider x = a + jb and y = c + jd. The hardware implementation of the
complex multiplication xy = ac − bd + j[(a + b)(c + d) − ac − bd] involves 3
real multiplications and 5 real sums. Only those will be considered, due to their
very greater hardware complexity compared to the real sum operation.
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and division between real numbers correspond to 1 floating-point
operation (flop). As the channel estimation process is performed
once per coherence block, its computational complexity, defined
in number of flops per coherence block [fpcb], is:

CCE = 3MKτp [fpcb] (7)

2.3. UL data transmission

The received signal r ∈ CM at the BS during the UL data
transmission is:

r =

K∑
k=1

hkxk + n (8)

where xk is the signal sent by the kth user and n ∼ CN (0M , σ 2
ULIM )

contains the noise received at the BS antennas. By utilizing a
suitable combining vector, vk ∈ CM , the BS detects the kth user’s
signal as follows:

yk = vHk r (9)

Herein we consider the two simplest types of linear process-
ing for receive combining: zero-forcing (ZF) and maximum-ratio
(MR), which are respectively defined by:

V = Ĥ(ĤHĤ)−1 (10)

and

V = Ĥ (11)

where the matrix V = [v1 . . . vK ] is the collection of the com-
bining vectors. ZF induces considerably smaller intra-cell inter-
ference than MR, yielding significantly better performance under
interference-limited conditions, which is normally the case. On
the other hand, it increases computational complexity signifi-
cantly when employing large antenna arrays, due to multiplica-
tions of complex numbers, and when serving a great number of
users, due to the size of the K × K matrix that is inverted [3,6].
Due to these particularities, it is interesting to compare the sys-
tem performance in terms of SE and EE considering such linear
processing techniques.

The channels are practically constant within a coherence
block, while the signals and noise take new realization at every
sample. Then, the instantaneous SINR is actually an expectation
over one coherence block, what means that pULk = E{|xk|2} –
which is the UL transmit power of the kth user – and σ 2

UL will
be taken instead of the instantaneous values of |xk|2 and |nk|

2,
respectively. Thus, one can define the SINR of the kth user during
the UL data transmission as

γ UL
k =

pULk |vHk hk|
2∑K

i=1
i̸=k

pULi |vHk hi|
2
+ σ 2

UL∥vk∥2
(12)

As a result, the UL ergodic spectral efficiency is defined by [6]:

SEUL =
τu

τc

K∑
k=1

E{log2(1 + γ UL
k )} (13)

2.4. DL data transmission

In the DL, the information to be transmitted by the BS to the
kth user, xk, needs to be precoded, by using the precoding vector
wk. The signal to be transmitted, denoted by s ∈ CM , is generated
as:

s =

K∑
k=1

wkxk (14)

We denote the matrix containing the collection of the precod-
ing vectors by W = [w1 · · · wK ] ∈ CM×K . The UL–DL duality
motivates a simple precoding design principle: selecting the DL
precoding vectors as the normalized version of their respective
combining vectors [6]:

wk =
v∗

k

∥vk∥
(15)

Assuming no receive combining, user k receives the signal:

yk = hT
ks + nk (16)

where the received noise follows the distribution nk ∼

CN (0, σ 2
DL). Analogously to (12) for the UL, the SINR of the kth

user in the DL data transmission is defined as:

γ DL
k =

pDLk |hT
kwk|

2∑K
i=1
i̸=k

pDLi |hT
kwi|

2
+ σ 2

DL

(17)

where pDLk is the downlink transmit power assigned for user k,

i.e.,
√
pDLk scales the vector wk, which has unit norm. Finally, the

DL ergodic spectral efficiency is given by [6]:

SEDL =
τd

τc

K∑
k=1

E{log2(1 + γ DL
k )} (18)

3. Antenna selection for combining and precoding in XL-MIMO

In this section, we propose an algorithm to select the antenna-
elements in an XL-MIMO system for received signal processing
(combiner) of a given user during the UL and transmit the signal
(precoder) of this user during the DL. One advantage of not using
all the M available antennas is the reduction of the computational
complexity and the circuit power consumption (Tx and Rx opera-
tions), as less antennas are active at the same time. Furthermore,
the throughput potentially increases, because the interference
power at the receivers decreases since each antenna individually
does not serve all the K users simultaneously.

3.1. HRNP-based antenna selection criterion and algorithm

First, Algorithm 1 computes the vector θk ∈ CM , which is a
quantitative indicator of the quality of the channel between the
kth user and each of the M antennas as:

θmk =
|ĥmk|

2∑K
i=1
i̸=k

|ĥmi|
2
, m = 1, 2, . . . ,M (19)

where ĥmk = [ĥk]m and θmk = [θk]m. A high signal intensity
may be obtained when |ĥmk|

2 is strong. Selecting the N strongest
θmk values among m = 1, . . . ,M in (19) for each user, provides
the highest received normalized power (HRNP) antenna selection
criterion. On the other hand, the terms |ĥmi|

2, i ̸= k, are related
to the interference intensity. Higher θmk values are therefore
associated to higher SINRs on the signal detection, as defined by
the Eqs. (12) and (17), and consequently higher SE and EE.

Second, the Algorithm 1 obtains the set Dk (lines 5–10), which
contains the indices of the N antennas with the highest θmk
values. Only these N antenna-elements are activated for user
k. Lastly, Algorithm 1 computes the receive combining and the
transmit precoding vectors of the kth user (lines 11–14) based
on the matrix Ĥk ∈ CN×K , which contains all the columns of
the estimated channel Ĥ but only the rows corresponding to the
elements of the set Dk.

As the set Dk contains the indices of the antennas that are
active for the kth user, the superset D = D1 ∪ · · · ∪ DK contains
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all the indices of the antennas that are active for any user. The
number of elements in D, denoted by Nact, corresponds to the
total number of active elements of antenna. Notice that the rows
of the combining and the precoding matrices corresponding to
the antennas whose indices are not in the set Dk are set equal
zero.

Algorithm 1 Antenna selection (AS) for receive combining and
transmit precoding

Input: M , N , K , Ĥ
Output: V, W

1: Initialize the combining matrix V with 0M×K
2: for k = 1 to K do
3: Compute vector θk via Eq. (19)
4: Reinitialize the set of the indices of the antennas: M =

{1, . . . ,M}

5: Initialize Dk = ∅

6: for n = 1 to N do
7: find m∗

= argmax
m∈M

θmk

8: M = M\m∗

9: Dk = Dk ∪ {m∗
}

10: end for
11: Ĥk = Ĥ(Dk, :)
12: If MR is selected: VMR(Dk, k) = Ĥk(:, k)
13: If ZF is selected: VZF(Dk, k) = [Ĥk(Ĥ

H
k Ĥk)−1

](:,k)

14: W(:, k) =
V(:,k)∗
||V(:,k)||

15: end for

3.2. Computational complexity

We first address the complexity of computing the ZF com-
bining vectors (line 13, Algorithm 1). Recalling that Ĥk ∈ CN×K ,
the multiplication of ĤH

k by Ĥk requires K2
+K
2 N complex multipli-

cations,2 using the Hermitian symmetry. When the inverse of a
matrix is multiplied by another matrix, the LDLH decomposition
can be used to achieve an efficient hardware implementation [6].
The decomposition of ĤH

k Ĥk requires K3
−K
3 complex multiplica-

tions [6]. Finally, we need to multiply the matrix Ĥk by the kth
column of the matrix (ĤH

k Ĥk)−1, which requires KN complex mul-
tiplications plus K complex divisions to compute D−1 [6,18]. Con-
sidering complex multiplications and complex divisions to corre-
spond to 3 and 7 flops,3 respectively, the computation of the com-
bining vector vk has a complexity of 3

(
K2

+K
2 N +

K3
−K
3 + KN

)
+

7K flops per coherence block. Thus, the computational complexity
to obtain the whole combining matrix V is given by:

CUL-ZF
SP-C = K 4

+
3
2
K 3N +

9
2
K 2N + 6K 2 [fpcb] (20)

As defined in (11), MR combining does not require multiplica-
tions or divisions, because it is given directly from the channel
estimates (from Algorithm 1, one can see that the kth column
of the MR combining matrix is simply a copy of the kth col-
umn of Ĥk). However, in practical implementations, we typically

2 Being A ∈ Ca×b and B ∈ Cb×c , the multiplication AB requires ac
inner products between b-length vector, what corresponds to abc complex
multiplications. However, if B = AH , the Hermitian symmetry is utilized. Thus,
only the a diagonal elements of A ·B and half of the a2 −a off-diagonal elements
need to be computed, what gives a2+a

2 b complex multiplications [6].
3 Considering x = a + jb and y = c + jd, then x

y =
xy∗
yy∗ =

xy∗

|y|2
, while

the computation of xy∗ requires 3 real multiplications. The computation of
|y|2 = c2 + d2 requires 2 real multiplications. Finally, the complex division xy∗

|y|2

corresponds to 2 real divisions, making a total of 7 real operations.

normalize the combining vector such that vHk hk in front of the
desired signal xk is close to one. Thus, this normalization requires
1 complex division per user [6], resulting in a total of 7K flops
per coherence block. Finally, the complexity of computing the MR
combining matrix is given by:

CUL-MR
SP-C = 7K [fpcb] (21)

The precoding vectors (wk) are chosen as the normalized ver-
sions of the combining vectors (vk), as described in Eq. (15). The
computation of ∥vk∥ requires 2N real multiplications4 and the
division of vk by ∥vk∥ also requires 2N real divisions,5 resulting in
a total of 4N flops. Thus, the computation of the precoding matrix
has a complexity of:

CDL
SP-C = 4KN [fpcb] (22)

Notice that the rows of the combining and the precoding vec-
tors of the user k that correspond to the antennas whose indices
are not in the set Dk are set equal zero. It reduces the complexity
to obtain yk, as in (9), because the BS will use N elements of the
vectors vk and r, instead of M elements, resulting in 3N flops.
This procedure is repeated τu times per coherence block. Simi-
larly, the complexity to precode the information during DL, wkxk,
following (14), is reduced since the BS only uses N elements of
the vector wk, also resulting in 3N flops. This task is performed τd
times per coherence block. Finally, the computational complexity
associated to the reception and transmission of the information,
in number of flops per coherence block, is:

CSP-R/T = 3(τu + τd)KN [fpcb] (23)

To obtain θmk in (19), the BS computes 2K real multiplications
and 1 real division. As there are M antennas and K users, the
associated complexity is:

CSP,θ = (2K + 1)MK [fpcb] (24)

Finally, the total signal processing computational complexity, in
flops per coherence block, when employing MR and ZF processing
in the context of XL-MIMO antenna selection is given respectively
by:

CTSP = CUL-MR
SP-C + CDL

SP-C + CSP-R/T + CSP,θ [fpcb] (25)

and

CTSP = CUL-ZF
SP-C + CDL

SP-C + CSP-R/T + CSP,θ [fpcb] (26)

Hence, if antenna selection (AS) procedure is not applied, the
complexities given in (20), (22) and (23) will be higher, since
all the M antennas always will be active for all the K users, i.e.,
N = M .

4. SE and EE in XL-MIMO systems

The SE is defined as the sum-rate in bits per channel use [bpcu]
achieved in the UL + DL, expressed as:

SE = SEUL + SEDL [bpcu] (27)

The overall network EE can be defined as the number of bits
that can be reliably transmitted per unit of energy, which is the
same as the throughput per unit of power

[ bit/s
W

]
, given by:

EE =
B · SE

PUL
TX + PDL

TX + P tr
TX + PCP

[
bit
J

]
(28)

4 Consider the complex vector x = [x1, . . . , xN ]. The computation of ∥x∥ =√∑N
n=1 |xn|2 depends on previously obtaining |xm|

2 . Being xn = an + jbn a

complex scalar, |xn|2 = a2n + b2n requires 2 real multiplications and 1 real sum.
Therefore, the computation of ∥xk∥ requires 2N real multiplications.
5 The division of a complex scalar x = a + jb by a real scalar c requires 2

real divisions. Therefore, the division of x by ∥x∥ requires 2N real divisions.
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where the denominator includes all power consumption terms
required to make the wireless communication system opera-
tional. Hence, the term

P tr
TX =

τp

τc

1
ηUL Kpp (29)

accounts for the total power consumed by the power amplifiers
during the UL pilot transmission, while

PUL
TX =

τu

τc

1
ηUL

K∑
k=1

pULk (30)

and

PDL
TX =

τd

τc

1
ηDL

K∑
k=1

pDLk (31)

refers to the UL and DL power consumed for data transmission,
respectively, being ηUL and ηDL the power amplifier efficiency at
the BS and at the users, respectively. PCP represents the circuit
power consumption. A detailed model for PCP is discussed in the
sequel.

4.1. Circuit power model

The following circuit power consumption model based on [6]
is adopted in this work:

PCP = PFIX + PTC + PCE + PC/D + PBH + PSP (32)

where PFIX is a constant quantity. It accounts for the power
consumption required for site-cooling, control signaling and load-
independent power of backhaul infrastructure and baseband pro-
cessors. The power consumed by the backhaul is commonly
modeled as the sum of two parts: load-independent and load-
dependent. The last one will be included in PBH, and is typically
the least significant part (around 20%) [6].

The other terms of the model represented in (32) account for
the power consumption of the transceiver chains (PTC), the chan-
nel estimation process (PCE), the channel coding and decoding
units (PC/D), the load-dependent backhaul (PBH) and the linear
processing at the BS (PLP). Each of these terms depends on at least
one of the main system parameters:M , K and the ergodic spectral
efficiency (SE).

The power consumption of the transceiver chains (PTC) in-
volves the power consumed by the BS local oscillator (PLO), the
power required by the circuit components (converters, mixers
and filters) of each BS antenna (PBS) and the power necessary
to run the circuit components (mixers, filters, amplifiers and
oscillator) of each single-antenna user (PUE), as described by the
equation

PTC = PLO + NactPBS + KPUE (33)

The computational complexity associated to the channel es-
timation process is given by Eq. (7). Hence, the resulting power
consumption is given by6:

PCE =
BCCE

τcLBS
(34)

6 As each coherence block contains τc symbols per second, B/τc is the number
of coherence blocks per second. If a given signal processing has a computational
complexity denoted by C , representing the number of flops per coherence block,
and L is the computational efficiency, representing the number of flops per
Joule of energy, then C

L represents the energy consumption per coherence block.
Therefore, the associated power consumption is BC

τcL
.

Table 1
Summary of system and channel adopted parameter values, similar to those
adopted in [6,19,20].
Parameter Value

Pathloss attenuation exponent: γ 2.5
Median channel gain at a distance of 1 m: b0 2.95 · 10−4

Number of NLoS VRs for each user: NC 3
Antenna array length: L 60 m
Number of BS antennas (ULA), M 100
Number of mobile users, K {4; 40}
Minimum distance (dmin) 5 m
Maximum distance (dmax) 30 m
Number of Monte Carlo realizations: T 1000
Transmission bandwidth: B 20 MHz
Channel coherence bandwidth: BC 100 kHz
Channel coherence time: TC 2 ms
Total UL noise power: σ 2

UL −100 dBm
Total DL noise power: σ 2

DL −80 dBm
UL pilot transmit power per user: pP 0.1 W
UL data transmit power per user: pUL 0.1 W
Total DL data transmit power: PDL 1.0 W
Fraction of UL transmission: ϵu 0.4
Fraction of DL transmission: ϵd 0.6
Power amplifier efficiency at the users: ηUL 0.5
Power amplifier efficiency at the BSs: ηDL 0.4
Computational efficiency at the BS: LBS 75

[ Gflop/s
W

]
Fixed power consumption: PFIX 10 W
Power consumed by local oscillators at BS: PSYN 0.2 W
Power consumed by circuit components at BS: PBS 0.2 W
Power consumed by circuit components at UE: PUE 0.2 W
Power density for coding of data signals: PCOD 0.1

[
W

Gb/s

]
Power density for decoding of data signals: PDEC 0.8

[
W

Gb/s

]
Power density for backhaul traffic: PBT 0.25

[
W

Gb/s

]

where LBS is the computational efficiency at the BS, in [flop/s W].
Similarly, the total signal power consumption is given by:

PSP =
BCTSP

τcLBS
(35)

The power consumed by the channel coding and decoding
units is defined as

PC/D = B SE (PCOD + PDEC) (36)

which increases linearly with the actual rates. PCOD and PDEC are

the coding and decoding power densities, respectively, in
[

W
bit/s

]
.

For simplicity, PCOD and PDEC are assumed to be the same in both
UL and DL.

The load-dependent backhaul power consumption, necessary
for the UL and DL data transmission between the BS and the core
network, is modeled as

PBH = B SE PBT (37)

where PBT is the backhaul traffic power density, in
[

W
bit/s

]
. There

is also a load-independent backhaul power consumption, which
can be included in PFIX.

5. Numerical results

In the sequel we present numerical results based on Monte
Carlo simulations with the objective to demonstrate that the pro-
posed algorithm provides an EE increase while reducing consid-
erably the computational complexity and the power consumption
in the context of XL-MIMO systems. Table 1 contains a list of
the main deployed parameter values, similar to those adopted
in [6,19,20].
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Fig. 3. Example of a XL-MIMO system, with 4 users being served by a BS
equipped with a 16-antenna linear antenna array. The figure illustrates each
user’s VR and the antennas that the proposed algorithm designates to commu-
nicate with each user. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

5.1. Simulation setup and system configuration

In our simulations, the antenna array contains M = 100 an-
tenna elements and each user sees the array through 3 different
VRs, i.e., Nc = 3. Furthermore, Nik is taken as a uniform random
variable distribution over the interval [0.1M, 0.3M], while the
index of the first antenna that is inside this VR, denoted by cik,
follows a uniform distribution in the interval [1,M − Nik].

The set Ck = C1,k ∪ . . . ∪ CNC,k contains the indices of the
antennas that sees the kth user. Thus, the number of elements
in Ck corresponds to the total number of antennas seen by user
k. We obtained this value numerically from our simulations. As
well as the other numerical results presented in the paper, this
value was averaged out of 1000 random realizations, obtaining
the average number of active antennas for the k-user as |C| =

55.8. It means that approximately 56 antennas are seen by each
user, on average. Also from our simulations, we found that, when
K = 4, each antenna sees an average of 2.23 users, while for K
= 40 this number goes to 22.3, resulting in higher interference
levels.

Moreover, we assume equal power allocation (EPA), what
means the transmit power is the same for all users. Hence, during
the UL data transmission, pULk = pUL, while during the DL data
transmission, the total available transmit power at the BS, PDL, is
equally divided among the K users, so that the power allocated
to the kth user is pDLk = PDL/K . We have adopted pP = pUL =

0.1 W and PDL = 1 W. Although the position of the users (and
consequently the pathloss), the short-scale fading and the VRs
are random variables, the numerical results are statically relevant
because they represent an average over 1000 realizations.

Fig. 3 shows an example of the XL-MIMO system user spa-
tial distribution, where K = 4 and M = 16, for simplicity.
Each triangle represents one of the 16 BS antennas, while each
colored circle represents one of the 4 mobile users, which are
randomly distributed over a rectangular area. Taking a random
channel realization, the portion of the array that each user sees is
indicated by the horizontal line with its correspondent color. User
1, for example, sees the antennas 1 to 10, while user 2 sees the
antennas 9 to 15, excepting the antenna 13. This fragmentation
of the VR into two parts may occur if any object is blocking the
signal in that region.

In this example, the algorithm was set up to define N =

4 antennas to communicate with each user. In the figure, the
triangle that represents a given antenna m is painted with the
user k color if user k sees antenna m. For example, antennas 1, 2,
3 and 9, which are in blue, were designated to communicate with
user 1. Notice that all these 4 antennas are part of the VR of user

Table 2
Definitions considered in Fig. 4, in [dBm].
Definition 1: UL average received signal power:
SUL = 10 · log10

(
1
K

∑K
k=1 E{pULk |vHk hk|

2
}

)
+ 30

Definition 2: UL average received interference power

IUL = 10 · log10

(
1
K

∑K
k=1

∑K
i=1
i̸=k

E{pULi |vHk hi|
2
}

)
+ 30

Definition 3: UL average received noise power

NUL = 10 · log10

(
σ2
UL
K

∑K
k=1 E{∥vk∥2

}

)
+ 30

Definition 4: DL average received signal power
SDL = 10 · log10

(
1
K

∑K
k=1 E{pDLk |hH

k wk|
2
}

)
+ 30

Definition 5: DL average received interference power

IDL = 10 · log10

(
1
K

∑K
k=1

∑K
i=1
i̸=k

E{pDLi |hH
k wi|

2
}

)
+ 30

Definition 6: DL average received noise power
NDL = 10 · log10

(
σ 2
DL

)
+ 30

1. Although the signal from user 1 probably achieves the antennas
4 to 8 with higher intensity than antenna 9, choosing one of these
antennas would increase the received interference power, mainly
due to user 3. Observe that antenna 4 is not active, while antenna
14 serves users 2 and 4, simultaneously. Therefore, considering
that only one antenna was designated to communicate with 2
users at the same time, we can say that the algorithm succeeded
in avoiding the interference from other users to affect the SINR
while reducing the computational complexity.

5.2. Dependency of the system performance on N

In the following, we present numerical results demonstrating
how the number of active antennas per user (N) influences the
system performance, in terms of throughput and EE, and the
resource consumption, in terms of computational complexity and
power consumption. From these results, we can see the advan-
tages of appropriately selecting the antennas subset (AS strategy)
against utilizing the whole antenna array strategy to serve all
users at the same time (no-AS strategy). To refine the comprehen-
sion upon these results, which depend on the processing scheme
(MR or ZF), Fig. 4 provides, for two different scenarios (K = 4
and K = 40), valuable insights on how N influences the received
signal, interference and noise power, during the UL and during
the DL, which are given by the definitions in Table 2.

Figs. 4a and 4b compare the UL signal, interference and noise
power, as given by the definitions Def. 1 to 3, when the number
of users is 4 and 40, respectively. When N < K , it is not possible
to execute ZF, due to singularity problems with the matrix ĤHĤ.
First, one can see that the received power levels of ZF are higher
than of MR. The reason is that ZF receive combining is the pseu-
doinverse of Ĥ (recall that the elements of the channel matrix
include the pathloss effect), while MR combining is simply a copy
of Ĥ. Second, by comparing Figs. 4a and 4b, one can observe
that,as expected, when K = 40, the received interference power
(IUL) is higher than when K = 4, because the selectivity of the
receive combining deteriorates. Third, looking at the MR curves,
one can verify that, by selecting more antennas to be active for
each user, the received signal power increases, but so does the
interference and noise power. It does not occur when employing
ZF combining. By increasing N , ZF performs better at reducing
the interference and noise power, because the receive combining
becomes more selective. Fourth, if the channel estimates are re-
liable, ZF combining will force the average received signal power
(SUL) to pUL, as |vHk hk|

2
= 1, from the definition of ZF combining.
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Fig. 4. Average received power of the desired signal, undesired signal (interference) and noise as given by Def. 1 to 6), as well as the system throughput, during
the UL and the DL data transmission. Two scenarios are considered: K = 4 and K = 40 users.

It can be observed in the figure, what attests that the channel
estimation predicted by Eq. (6a) provides good estimates.

Unlike the UL case, during the DL (see Figs. 4c and 4d), the
average received noise, NDL, does not depend on the precoding
scheme (compare Def. 3 and 6). Another important point is that
the desired signal power (SDL) is the same magnitude order for
both MR and ZF, because the precoding vectors are normalized,
unlike the combining vectors. Finally, as the total available DL
transmit power (PDL) is distributed among the K users, the in-
dividual DL transmit power (pDLk ) is inversely proportional to K .
That is why the average signal and interference power are smaller
in Fig. 4d than in Fig. 4c. The exception is IDL when employing
MR precoding, which is less efficient than ZF at eliminating the
interference.

Figs. 4e and 4f depict the UL, DL and UL + DL throughput,
given by B·SEUL, B·SEDL and B·SE, respectively. The throughput re-
sulting from the no-AS strategy can be obtained in the point N =

100. Thus, we can see that in a scenario with few active users, the
AS strategy improves considerably the system throughput when
using MR. On the other side, considering the K = 40 scenario,
the high interference levels deteriorate the selectivity of MR
combining and precoding, and the AS strategy cannot improve the
throughput. The same behavior is observed with ZF processing,
independently of the number of users. However, as the array is
physically large and the users have a VR corresponding to around
50% of the array, on average (as discussed in the beginning of
Section 5.1), increasing N beyond M/2 can barely improves the
throughput. Thus, by taking N close to M/2, we can obtain almost
the same throughput achieved with the no-AS strategy, as shown
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Fig. 5. Average number of active antennas per user (N) versus the total number
of active BS antennas (Nact).

in Figs. 4e and 4f, while benefiting from lower computational
complexity and consequently lower power consumption.

5.3. Computational complexity

While Dk contains the indices of the N antennas that are active
for user k, the set D contains the indices of antennas Nact that are
active for any of the K users. Fig. 5 addresses the dependency of
Nact on N . In the scenario with 4 users, the whole antenna array
is expected to be active when N ≥ 34, approximately. When K =

40, Nact scales faster than when K = 4, and reaches the limit of
100 when N ≈ 8. If a small N is sufficient to substantially increase
the EE or throughput, one will benefit from the reduced circuit
power consumption, as PTC is proportional to Nact, according to
(33). It can be evidenced by Figs. 6c and 6d that with small
values of N , the AS strategy provides considerable reduction on
the power consumption comparing to the entire antenna array
activation (no-AS strategy).

Table 3 provides a quantitative analysis of the impact of the
proposed HRNP-based AS scheme on the overall XL-MIMO com-
putational complexity, given by C = CCE + CTSP. The complexity
associated to the no-AS strategy can be obtained from (20), (21),
(22) and (23) by simply replacing N with M in these equations,
and canceling CSP,θ out in (25) and (26). The complexities are
in the unit of [flop/s], which is given by BC/τc, recalling that C
is measured in flop per coherence block [fpcb]. The first three
columns of the table define four scenarios, with different val-
ues of M , N and K . The other columns contain the complexity
associated to each processing scheme (MR and ZF), when using
or not the AS algorithm. Notice that the algorithm yields very
lower complexities, which is particularly advantageous in high
system dimensions (many BS antennas and many users). Also,
although providing lower throughput than ZF, one can benefit
from using MR due to its much smaller complexity. However,
in the fourth scenario, the AS’s complexity surpasses the no-AS’s
when employing MR, because CSP,θ is the only term of CTSP that is
proportional to K 2. It does not occur with ZF, as the term CUL-ZF

SP-C
is much more significative than CSP,θ .

Fig. 6a shows the linear dependency of the computational
complexity on N and the remarkable computational complexity
reduction provided by the adopted AS strategy. As a consequence,
there is also a reduction in the total power consumption, defined
as Ptot = PUL

TX + PDL
TX + P tr

TX + PCP, as depicted in Fig. 6c. Moreover,
Fig. 6b reveals a significant complexity increase when the number

Table 3
AS computational complexity in [Gflop/s], discriminated by processing scheme.
M N K no-AS MR AS MR no-AS ZF AS ZF

32 4 2 4 1 4 1
128 16 8 62 12 76 14
512 64 32 990 369 3,848 819

2048 256 128 15,834 17,551 702,031 126,822

Table 4
Optimal number of selected antennas for maximizing the EE (N∗) versus the
number of active users.

K 2 4 6 8 10 12 16 20 24 32 40 50

N∗ MR 3 1 1 1 1 1 1 1 48 48 48 47
ZF 5 6 8 64 62 60 58 57 57 60 65 75

of active users grows from 4 to 40. Furthermore, by avoiding
all antennas to be simultaneously active, the adopted HRNP-
AS strategy in Eq. (19) reduces the transceiver chains power
consumption,7 and consequently the total power consumption, as
indicated in Figs. 6c and 6d. As a final remark on the advantage
in adopting the HRNP-AS strategy is the operation point where
the AS power consumption curves meet the no-AS curves is very
close to the point where the average number of active antennas
meet M in Fig. 5.

5.4. Energy efficiency

Fig. 7 confirms the EE improvement when AS strategy based
on highest received power is adopted. Under reduced loading
scenario (K = 4), the EE is maximized when N = 6 and N = 1
for ZF and MR, respectively. It demonstrates that the HRNP-AS
strategy can guarantee huge EE improvements in a scenario with
few users, while reducing considerably the power consumption
and the computational burden, as discussed above. On the other
hand, results in Fig. 7b demonstrate that, the AS strategy cannot
improve the EE considerably when XL-MIMO operates under
high loading scenarios (K = 40). However, the HRNP-based AS
strategy is still advantageous over the no-AS strategy, as it still
provides a considerable complexity reduction. Thus, regardless of
the number of users, it is not reasonable to use the whole antenna
array to serve all users if about half of the antennas is sufficient to
achieve a remarkable EE increasing with a lower computational
complexity.

5.5. Overall XL-MIMO performance comparison

Table 4 shows the optimal number of selected antennas (N∗)
that maximizes the EE, when employing both linear MR or ZF
filtering. According to the data, N∗ is strongly influenced by the
number of active users K . As a rule of thumb, when the number
of active users is up to a limit, namely Kmax, the EE is maximized
when the AS algorithm selects less than 10% of the antenna array
to communicate with each user, i.e., N∗

≤ M/10. From the data
in Table 4, we see that Kmax = 20 for MR and Kmax = 6 for ZF.

Figs. 8a, 8b, 8c and 8d depict the EE, throughput, power
consumption and computational complexity, respectively, for the
proposed HRNP-AS and no-AS strategy assuming N = N∗. If
the system operates under the bound K ≤ Kmax, the HRNP-
AS strategy provides an increasing in the EE and simultaneously
reduces the power consumption and the computational burden,
while the throughput is very close to the obtained with the no-AS
strategy.

7 Notice that from (33), power consumption is linearly dependent on Nact .
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Fig. 6. The average consumption of computational and power resources raises when increasing N , while depends on the adopted AS strategy.

Fig. 7. Energy efficiency as a function of N , in both low and high loading scenarios: K = 4 and K = 40.

Besides, when increasing K until it is close to Kmax, the EE
gradually decreases until it meets the no-AS strategy EE curve. It
occurs because taking N ≤ M/10 is no longer enough to mitigate
the interference. Besides, from the point K = Kmax, N∗ suddenly
jumps to about 50 or 60% of the ULA array size, M = 100. Finally,
when the XL-MIMO system operates over the maximum number
of user bound, K > Kmax, the AS-strategy is no longer able to im-
prove the EE and simultaneously reduce the power consumption
considerably. However, it is still advantageous when compared to

the all-antennas activation strategy, as it is still able to reduce the
computational burden.

6. Conclusion

In XL-MIMO systems operating under non-stationary chan-
nels, the users see only a portion of the antenna array and the
majority of the energy sent by the users is concentrated on
this part of the array. Therefore, by appropriately selecting a
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Fig. 8. EE, throughput, power consumption and computational complexity for the HRNP-AS and no-AS strategies taking N = N∗ .

subset of antennas that communicate to each user, it can be
guaranteed to capture almost the totality of the incident energy
from that user, while reducing substantially the interference com-
ing from the other (K − 1) users. As corroborated by extensive
numerical results, the HRNP antenna selection criterion reduces
considerably the complexity of computing the combiners and
precoders and consequently reducing the power consumption
also. Furthermore, when the AS-HRNP algorithm is set to select
only a few N antennas per user, there may be several antennas
which are not activated, reducing the transceiver chains power
consumption. As the HRNP-based AS strategy results in almost
the same spectral efficiency as the no-AS strategy and a consider-
able substantial power consumption reduction, as a result, the EE
is increased significantly. Furthermore, the extensive numerical
results demonstrated the existence of an optimal value of N in
terms of maximizing the EE, which depends on the number of
users and array size. Also, it is not even advantageous to increase
N beyond this optimal value, since neither the throughput nor the
EE would be considerably improved while computational burden
and energy consumption increases remarkably.
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A B S T R A C T   

Massive multiple-input multiple-output (M-MIMO) is a key technology for 5G networks which consists on 
equipping the base station (BS) with hundreds or thousands of antennas. Increasing the antenna separation is 
paramount in order to make real advantage from an array dimension of the order of thousands of antennas. One 
potential approach is the integration of the antenna array into large structures, which is referred to as extra-large- 
scale MIMO (XL-MIMO). However, when employing extremely large arrays, centralized processing architectures 
face a challenging complexity. A promising solution is to divide the antenna array into disjoint units, referred to 
as subarrays, with individual processing units. In this paper, we modify the M-MIMO channel model aiming to 
take two implications of the extreme array dimensions into account: the spherical wavefronts, which is called 
near-field propagation, and the concentration of the majority of energy received from a specific user on a small 
portion of the array, namely spatial non-stationarity. Considering the latter, it is not efficient from an energy 
perspective to activate the antennas with lower channel gains to transmit/receive the signal to/from a given user. 
Thus, antenna selection methods are quite important in the considered scenario. Two antenna selection (AS) 
methods for XL-MIMO are proposed in this paper: the adjustable-flexible antenna selection (FAS), and the fixed 
subarray selection (FSS). Numerical results demonstrate that, by judiciously selecting the antennas subset used to 
detect the signal of each user in the uplink (UL), the number of active antennas can be reduced considerably in a 
scenario with up to 64 active users, reducing the power consumption without compromising the throughput. The 
EE is hugely increased in such scenario. Finally, the FSS scheme achieved the same performance of FAS, while 
having a simpler hardware implementation.   

1. Introduction 

Mobile networks have expanded recently with the objective of 
improving capacity and providing ubiquitous connectivity. Multiple- 
input multiple-output (MIMO) antenna systems permit multiple users 
to transmit simultaneously in the same bandwidth, avoiding the addi
tion of extra resources to the network, such as spectrum and energy [1]. 
This is possible as each mobile user equipment (UE) is given a different 
spatial signature [2]. During the uplink (UL), a combining technique is 
employed by the base station (BS) to coherently receive the signal sent 
by each user. During the downlink (DL) the information to be trans
mitted is precoded, so that the multipath components of the transmitted 
signal combine coherently at the users [1]. 

Massive MIMO (M-MIMO) is considered a crucial component for 
fulfilling the demands of the fifth generation (5G) wireless 

communication standard and beyond [3]. The M-MIMO base station is 
equipped with tens or hundreds of antennas, which is central to provide 
sufficient spatial dimensions to uncover the M-MIMO fundamental 
properties: channel hardening, large array gain and asymptotic inter- 
terminal channel orthogonality [4]. Specifically, having an order of 
thousands or more antenna elements provides extreme spatial resolution 
that can be used to boost both capacity and energy efficiency (EE). 

However, practical challenges appear when the array dimension is 
increased to the order of thousands or more, such as the size and weight 
of the array [5], as current cellular networks deploy compact and 
colocated antenna array, with antenna separation in the order of the 
wavelength. Moreover, in order to make real advantage from the 
deployment of such a large number of antenna elements, a proper an
tenna separation is important to achieve great spatial resolution [6]. 
These difficulties advocate for distributing the antennas over a 
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substantially large area. One potential approach is to divide the antenna 
array into disjoint subsets of antennas and distributing them over a large 
area, coordinated by a central processing unit (CPU), which is known as 
distributed M-MIMO [5]. Another approach, called extra-large-scale M- 
MIMO (XL-MIMO), is the integration of the antenna array into large 
structures, such as the facades of buildings, shopping malls or stadiums 
[4]. In this work, we stick to the latter. 

When a moderate number of antennas is compactly deployed in the 
BS, the wavefront from a far user signal can be reasonably approximated 
as planar wavefront, while the channel is spatially stationary, which 
means that the entire array receives approximately the same amount of 
energy from each user [7]. On the other hand, an antenna array with 
extreme dimensions yields different channel conditions. As the avail
ability of sufficiently accurate propagation channel models is of critical 
importance to the design and evaluation of new wireless systems [8], 
one must take such conditions into account in order to define a consis
tent channel model. First, due to the use of large aperture arrays and the 
close distance between the array and the users’ antenna, the BS antenna 
array will experience spherical wavefronts instead of planar wavefronts 
[9], which is called near-field propagation. 

Second, in large aperture arrays, different parts of the array might 
observe the same propagation paths with varying power or distinct 
propagation paths [4]. Consequently, the majority of energy received 
from a specific user concentrates on small portions of the antenna array 
[10,11], according to recent channel measurements [12–14]. It is called 
spatial non-stationarity, and such channel property can be introduced in 
the M-MIMO and XL-MIMO channel modelling by defining the concept 
of visibility region (VR). In the sequel, we discuss these two additional 
aspects on the propagation pattern and the concept of VR, specifically in 
Section 2, where we modify the traditional M-MIMO channel model in 
order to aggregate the spherical wavefront and the spatial non- 
stationarity assumptions. 

When employing extremely large arrays, saying a thousands of 
antenna-elements, the computational complexity for signal processing 
becomes a bottleneck if a centralized processing architecture is imple
mented, specially in crowded scenarios, due to the excessively large 
amounts of data being transferred from the array and the processing unit 
[5]. A promising solution is to divide the antenna array into subarrays, 
which are disjoint units with individual processing units that accesses 
only its locally received signals to estimate them [5] , consequently 
reducing the complexity. The number and size of subarrays may be 
fixed, when they correspond to separate hardware entities, or adjust
able, when they correspond to software-defined logical interconnections 
between different antenna elements [5]. 

Numerous benefits arise from the subarray-based processing archi
tecture, including: a) Simplification of the channel acquisition: as the 
channel of each subarray individually can be approximated as station
ary, one can simply apply MMSE channel estimation, which is known to 
provide very good channel estimation quality in stationary channels. 
Furthermore, as the channel matrix is divided into multiple submatrices 
and each one is estimated individually, the associated computational 
complexity is reduced. b) Computational complexity reduction: due to the 
spatial non-stationarities along the array, the energy received from each 
user is mostly concentrated in small portions of the array. Thus, the 
majority of the energy coming from that user can be received by using 
only a few antennas, instead of the whole antenna array. Hence, the 
complexity associated to computing the combining matrix, as well as the 
complexity associated to the UL reception and DL transmission, de
creases. c) Energy saving: the channel estimation and signal processing 
power consumption decreases, due to the reduction in the computa
tional complexity associated to tasks such as signal processing and 
channel estimation. 

By appropriately selecting a subset of BS antennas to communicate to 
each user, the BS may receive almost the totality of the energy trans
mitted by a specific user, while reducing the interference coming from 
the other users. Consequently, although less antennas participate in the 

signal detection, the SE is not compromised, while the power con
sumption considerably decreases. As a result, such AS configuration 
attains higher EE. Aside the necessity of improving SE, minimizing the 
power consumption is a growing concern in the XL-MIMO imple
mentation systems, including green communication technologies issues 
[15]. The EE is a performance metric that can manage both objectives. 
For this reason, the numerical results in Section 5 discuss both SE and 
EE. Finally, one can summarise the aforementioned benefits from the 
subarray-based architecture and a judicious antenna selection as: 1) 
simplification of the channel acquisition; 2) computational complexity 
reduction; 3) energy saving; and increased; 4) SE; and (5) EE. 

1.1. Contribution and related works 

This work deals with XL-MIMO systems with subarray-based pro
cessing architecture, in order to reduce the overall computational 
complexity while ensuring increasing EE and SE. We propose two novel 
algorithms to judiciously select the BS antennas that communicate with 
each user, aiming at obtaining higher SE and EE and reducing the power, 
when compared to the whole antenna array to communicate to every 
user. The flexible antenna selection (FAS) algorithm assigns the BS subset 
of antennas to perform receive combining and transmit precoding to 
each user. The fixed subarray selection (FSS) algorithm divides the an
tenna array into a number of fixed-size subarrays, which can be imple
mented in a distributed way, as separate hardware entities, while 
selecting one of the subarrays to communicate with each user. The FAS 
algorithm is expected to achieve higher SE and EE than the FSS algo
rithm, since there are more freedom degrees. However, FSS ensures 
smaller computational complexity and a simpler hardware 
implementation. 

Related works. The spatial non-stationarity impact on the SINR 
performance is analysed in [10]. In [4], authors show that, when M- 
MIMO systems operate in extra-large scale regime, several important 
MIMO design aspects change, due to spatial non-stationarities. In [11], 
three low-complexity data detection algorithms are proposed for uplink 
communication in XL-MIMO systems. Efficient detector for XL-MIMO 
systems based on the subarray processing architecture is proposed in 
[5], by extending the application of the expectation propagation prin
ciple to each subarray. A different approach to the AS in XL-MIMO is 
proposed in [16], which is based on machine learning to select a small 
portion of the array that contains a considerable portion of beamforming 
energy, aiming at overcoming the prohibitive antenna activation con
sumption/complexity in conventional XL-MIMO systems. 

Differently of our previous work in [17], herein the FAS and FSS 
schemes does not select a fixed number of antennas for every user. Thus, 
such AS schemes proceed with a flexible antenna selection based on 
cumulative power receiver signal, being able to provide a higher EE 
increase over antenna selection strategy suggested in [17]. The proposed 
FAS and FSS schemes may select only a few antennas (flexible) if the 
energy coming from an individual user signal is concentrated over a 
small portion of the array, for example. Also, herein we adopt a more 
realistic XL-MIMO channel model, considering a much larger number of 
antennas (1000 instead of 100 adopted in [17]). Moreover, the numer
ical results discussed herein cannot be directly compared to the ones in 
[17], as the system parameters configuration are quite different, 
including number of antennas, array length, antenna separation and 
channel model. 

Contributions. The contributions of this work are threefold: i) we 
propose two novel antenna selection procedures to improve SE and EE of 
XL-MIMO systems while reduce the computational complexity and the 
power consumption, using a detailed circuit power consumption model. 
ii) we also propose a simplified but consistent XL-MIMO channel model 
that takes into account the spatial non-stationarity and the near-field 
propagation assumptions. iii) we have developed a comprehensive 
analysis on how each proposed AS algorithm impacts on the system 
performance, highlighting the benefits arising from the algorithms 
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compared to the case of using the whole antenna array to communicate 
to every user. 

The next sections are organized as follows. The system model for the 
TDD XL-MIMO system is developed in Section 2, which describes the 
proposed channel model, the channel estimation process and the 
adopted power consumption model. The proposed flexible antenna se
lection and fixed subarray selection algorithms are presented in the 
Sections 3.1 and 3.2, respectively. Computational complexity corre
sponding to each algorithm is discussed in Section 4. Numerical results 
corroborating our findings are presented in Section 5 and Section 6 
shows the head conclusions. 

Notations. Throughout the paper, boldface lowercase letters, bold
face uppercase letters and calligraphic letters represent, respectively, 
column vectors, matrices and sets, while (.)T and (.)H denote the trans
pose and conjugate transpose (Hermitian) operators, respectively. I and 
A− 1 denote the identity matrix and the inverse of matrix A, respectively, 
while ‖a‖ represents the norm-2 of the vector a and both ai and [a]i 
correspond to its i-th element. The (i, j)-th element of the matrix A is 
denoted by aij, the k-th row of A is denoted by A(k,:), and the k-th column 
of A is denoted by both A(:,k) and ak. We denote the submatrix of A 
containing only the rows (columns) whose indices are in the set 𝒟 by 
A(𝒟,:) (A(:,𝒟)). Finally, |𝒟|,E{⋅} and ⊙ stand for the cardinality of the set 
𝒟, the expectation operator and the element-wise matrix product. 

2. System model 

We consider the UL of a single-cell multiuser XL-MIMO system with 
M-antenna BS and K single-antenna users, operating over a bandwidth of 
B Hz in the time-division duplex (TDD) operation mode. Due to channel 
reciprocity, TDD mode does not require CSI to be sent from the UEs to 

the BS via feedback, avoiding excessive overhead [18,19]. Channel state 
information (CSI) is acquired via UL synchronous pilot transmission, and 
the pilot sequences are taken from the same pilot codebook. Their length 
is denoted by τp and they form an orthogonal set. Herein, it is assumed 
that each user uses a different pilot sequence. Then, the pilot sequences’ 
set is Ψ = [ψ1…ψK] ∈ Cτp×K and the orthogonality condition states that 
ΨHΨ = τpIτp , i.e.: 

ψH
i ψk =

{
τp i = k,
0 i ∕= k. (1) 

The channel coherence time (TC) is divided into UL pilot and UL data 
transmission. Being BC the coherence bandwidth, the number of symbols 
that fits in a channel coherence block is determined by τc = TCBC, in 
which τp symbols are dedicated to UL pilot transmission and τu = τc − τp 

symbols are dedicated to UL data transmission [1]. During the UL pilot 
transmission, a different pilot sequence is assigned to each user. The 
number of available orthogonal pilot sequences is equal their length (τp). 
As we need K sequences, we can take τp = K, which means that the time 
required for pilots is proportional to K. Thus, the number of users that 
can be served is limited by the coherence time, which itself depends on 
the mobility of the users [1]. 

We consider a BS equipped with an M antenna elements uniformly 
and linearly arranged (ULA array). The distance between two adjacent 
ULA elements is d. Fig. 1 depicts the ULA lying along the y-axis of an xy 
coordinate system and centered at its origin. Therefore, the m-th an

tenna is located at 
[

0,
(

m − M+1
2

)

d
]

. Users are located in the positive x- 

axis region, inside the rectangular cell defined by xmin⩽x⩽xmax, x > 0, 
and ymin⩽y⩽ymax, being (x, y) the coordinates of the user. The distance 
between any point (x, y) and the antenna array is D0(x, y) = x and the 
distance to the m-th antenna is 

Dm

⎛

⎝x, y

⎞

⎠ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

x2 +

(

y − d
(

m −
M + 1

2

))2
√

(2)  

2.1. XL-MIMO channel 

The XL-MIMO channel model takes into consideration the spherical 
wavefront assumption and the spatial non-stationarities. 

Near-field propagation. The spherical wavefront causes the signal to 
arrive with different angles along the antenna array, and consequently 
with different intensities. Furthermore, the distance between a scatterer 
or user located at the point (x, y) and the antenna array varies signifi
cantly on the antenna index. We can model these properties associated 
with spherical wavefront assumption deploying the array response vector 
a(x,y) ∈ CM×1, which is excited by the scatterer located at (x,y), whose 
m-th entry can be expressed as [7]: 

[a(x, y)]m =
D0(x, y)
Dm(x, y)

ej2πDm(x,y) (3) 

Spatial non-stationarities. In [8], authors propose the notion of BS- 
side visibility region (BS-VR) and UE-side visibility region (UE-VR) to 
model spatial non-stationarities. Throughout this paper, when we say 
that the k-th user “sees” the m-th antenna, it means that the m-th antenna 
receives the signal transmitted by the k-th user with non-zero energy. 

The transmitted signal interacts with the objects in the environment 
such as building facades, trees and street furniture, in outdoor envi
ronments, or inner walls, pillars and office equipment, in indoor set
tings. Interactions happen at so-called scattering points [8]. The signal 
may travel from the user to the BS or from the BS to the user through a 
line-of-sight (LoS) or through the interactions with the scattering points, 
i.e., non-LoS (NLoS) propagation configurations. If there is no obstacle in 
the straight line between the k-th user and the m-th antenna, then there 
is a LoS propagation and we say that the m-th antenna is located in the k- 

Fig. 1. XL-MIMO system representation: xy-coordinates, with the ULA situated 
over the y-axis and the user located inside a rectangular cell, positioned in (x1,

y1). D0(x, y) is the distance between the user and the array; Dm(x, y) is the 
distance between the user and the m-th antenna element, while d denotes the 
antenna separation. 
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th user’s LoS-BS-VR. The set containing the antennas that are seen by the 
k-th user through LoS propagation is denoted by Ξk. 

Each scatterer s ∈ {1,2,…, S} has an associated UE-VR and an 
associate BS-VR. The UE-VR of the s-th scatterer is a circle centered in 
(xs,ys), whose radius is denoted by rs. The scatterers and the associated 
UE-VR centers are uniformly distributed over the cell area. The set 
containing the antennas that are in the BS-VR of the s-th scatterer is 
denoted by Φs. We considered, for simplification, a binary case where, if 
the k-th user is located inside the UE-VR of the s-th scatterer, it will see 
the antennas that are inside the BS-VR of the s-th scatterer. Otherwise, 
the k-th user it will not see these antennas. 

Fig. 2 illustrates a scenario with one user (UE1) and two scattering 
points, denoted by sc1 and sc2. The UE1 sees a portion of the array 
through LoS propagation. We say that this portion of the array is inside 
the BS-VR associated to the line-of-sight of UE1, which is denoted by 
LoS-BS-VR1. However, UE1 may also see other portions of the array, 
through NLoS propagation. In the case represented by Fig. 2, UE1 is 
inside the UE-VR of sc1, namely, UE-VR1, what means that it sees the 
portion of the array that is inside the BS-VR of sc1, namely, NLoS-BS- 
VR1. Then, the portion of the array seen by UE1 corresponds to the 
union of the regions LoS-BS-VR1 and NLoS-BS-VR1. The antennas that 
are not inside any of these two BS-VRs are assumed to receive zero en
ergy from UE1, and the signal transmitted by these antennas will not 
achieve UE1 as well. 

Modeling the XL-MIMO Channel. In this paper, we model the XL- 
MIMO channel as a sum of the LoS component and a number (⩽S) of 
NLoS components. The considered model embraces the pathloss, the 
small-scale fading, the spherical wavefront and spatial non-stationarity. 
The channel vector between the BS and the k-th user is defined by both 
LoS and NLoS terms: 

hk = hLoS
k +

∑S

s=1
hNLoS

ks αks (4)  

with the LoS component defined as: 

hLoS
k =

̅̅̅̅̅̅̅̅̅

bLoS
k

√

⊙ a
(

xUE
k , yUE

k

)

⊙ q
(

Ξk

)

(5)  

and the NLoS components associated to S scatterers: 

hNLoS
ks =

̅̅̅̅̅̅̅̅̅̅̅

bNLoS
ks

√

⊙ hks ⊙ a
(

xsc
s , y

sc
s

)

⊙ q
(

Φs

)

(6)  

where (xUE
k , yUE

k ) and (xsc
s , ysc

s ) are the position of the k-th user and the s- 
th scatterer, respectively; Φs is the set containing the indices of the 
antennas that see the s-th scatterer, while 

[q(Φ)]m =

{
1 if m ∈ Φ,

0 otherwise. (7)  

indicates whether the m-th antenna is in the BS-VR associated to the 
generic set Φ or not, and αks indicates if the k-th user is located inside the 
UE-VR associated to the s-th scatterer. Then, 

αks =

{
1 if dks⩽rs,

0 otherwise. (8)  

where dks =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xUE
k − xs)

2
√

+ (yUE
k − ys)

2 is the distance between the k-th 
user and center of the UE-VR associated to the s-th scatterer. 

The vector bLoS
k = [βLoS

1k ,…, βLoS
Mk ]

T groups the pathloss coefficients 
from the k-th user to each of the M antennas, in the case of the LoS 
channel. Considering that DUE

mk = Dm(xUE
k , yUE

k ) is the distance between 
the k-th user and the m-th antenna, according to Eq. (2), the LoS prop
agation has a pathloss determined by: 

βLoS
mk = β0

(
DUE

mk

1m

)− γ

(9)  

where β0 defines the median channel gain for the reference distance d0 =

1m, and γ⩾2 is the pathloss exponent. The parameter β0 and γ values are 
functions of the propagation environment, the carrier frequency, the 
antenna gains, and the vertical heights of the antennas, which can be 
obtained from fitting (9) and (10) to measurements [6]. 

The vector bNLoS
ks = [βNLoS

1ks ,…, βNLoS
Mks ]

T groups the pathloss coefficients 
in the case of NLoS propagation, when the signal travels from the user to 

the scatterer and then from the scatterer to the BS. Defining Dks =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xUE
k − xsc

s )
2
+ (yUE

k − ysc
s )

2
√

the distance between the k-th user and the 
s-th scatterer, and Dsc

ms = Dm(xsc
s , ysc

s ) the distance between the s-th user 
and the m-th antenna; hence, the NLoS pathloss is ready determined as: 

βNLoS
mks = β0

(
Dsc

ms + Dks

1m

)− γ

(10)  

In the NLoS propagation scenarios, the transmitted signal interacts with 
the objects in the environment, what changes its module and phase. This 
is the small-scale fading, which can be modeled as an independent 
Rayleigh fading; hence, in (6), the vector hks can be modeled as complex 
Gaussian distribution with zero mean and unity variance, hks̃𝒞𝒩 (0,IM). 

2.2. Channel estimates in XL-MIMO 

During the UL pilot transmission, the BS estimates the channel ma
trix, Ĥ = [ĥ1…ĥK]. The true channel matrix is expressed as H =

[h1⋯hK] ∈ CM×K. The k-th user transmits the pilot sequence ψk, with 
power pp. The elements of ψk are scaled by ̅̅̅̅̅pp

√ , forming the signal sk =

Fig. 2. Simplified example of an XL-MIMO system, with 1 user (UE 1) and two 
scatterers (sc1, sc2). The user sees a portion of the array through a LoS prop
agation and other portion of the linear array through a NLoS propagation via 
scatterer sc1. 
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̅̅̅̅̅pp
√ ψH

k , to be transmitted over τp UL symbols. As a result, the BS receives 
the signal Yp ∈ CM×τp : 

Yp =
∑K

i=1

̅̅̅̅̅pp
√ hiψH

i +Np (11)  

where Np ∈ CM×τp is the noise matrix at the receiver of the BS with i.i.d. 
elements following a complex normal distribution with zero mean and 
variance σ2

n . 
As the information about which antennas are visible for each user is 

unknown, it might be necessary to consider obtaining the channel esti
mates by using estimators that require no prior statistical information, 
such as the Least-Squares (LS). The LS estimate of hk is attained by [6]: 

ĥk =
1

τp
̅̅̅̅̅pp

√ Ypψk (12a)  

= hk +
1

τp
̅̅̅̅̅pp

√ Npψk

(12b)  

where the second term in (12b) is the equivalent noise vector, defined as 
Npψk̃𝒞𝒩 (0M, τpσ2

n IM). 
LS Channel Estimate (CE) Complexity According to (12a), the 

channel estimation process corresponds to the inner product of M 
complex vectors of length τp, requiring Mτp multiplications between 
complex numbers to estimate the channel vector of each of the K UEs. 
Each complex multiplication corresponds to 3 real multiplications.1 

Herein, we consider that both multiplication and division between real 
numbers correspond to 1 floating-point operation (flop). The channel 
estimation (CE) process is performed once per coherence block, and the 
associated complexity, defined in number of flops per coherence block 
[fpcb], is given by: 

CCE = 3MKτp
[
fpcb

]
(13)  

3. Antenna selection methods for XL-MIMO 

In this section, we propose two procedures for smart, flexible 
antenna-elements selection in the XL-MIMO systems, namely FAS and 
FSS procedures, to be used to detect the signal sent by each of the K users 
during the UL communication stage. 

3.1. Flexible antenna selection (FAS) 

The algorithm returns the subset 𝒟k, for each k ∈ {1,…,K} user, 
which contains the indices of the antennas that will be active for user k. 
One advantage of using Mk = |𝒟k| < M antennas instead of all the M 
available antennas is the reduction of the computational complexity, as 
the combining vector for a given user will be based only on the rows of 
the estimated channel matrix corresponding to the antennas that the 
algorithm designated to be active for that user, instead of the full esti
mated channel matrix. As less antennas are activated at the same time, 
and also due to the complexity reduction, the power consumption is 
considerably reduced. Besides, by properly selecting the antennas, the 
throughput will not deteriorate, because the interference power 
received at the BS antennas decreases. Consequently, the EE increases. 

In the sequel, we discuss how the UL data transmission structure in 
TDD XL-MIMO operates, as well as we discuss the FAS algorithm itself. 

3.1.1. UL data transmission 
The received signal r ∈ CM at the BS during the UL data transmission 

is: 

r =
∑K

k=1
hkxk +n (14)  

where xk is the signal sent by the k-th user and ñ𝒞𝒩 (0M, σ2
nIM) contains 

the noise received at the BS antennas. The detected signal for the user k 
after the combiner is given by: 

yk = vH
k r (15)  

where vk ∈ CM is the k-th user receive combining vector and its m-th 
entry is given by: 

[vk]m =

{
ĥmk if m ∈ 𝒟k,

0 otherwise.
(16)  

or: 

[vk]m =

⎧
⎪⎨

⎪⎩

Ĥ(m,:)

([
Ĥ

H
(𝒟k ,:)

Ĥ(𝒟k ,:)

]− 1
)

(:,k)
if m ∈ 𝒟k,

0 otherwise,
(17)  

depending on whether maximum-ratio (MR) or zero-forcing (ZF) 
combining is chosen, respectively. As defined in (16) and (17), the 
combiner vk has M − Mk zero entries, reducing the complexity. The 
matrix V = [v1…vK] is the collection of the combining vectors for all the 
K users. 

Assuming the channels are constant within the coherence block, 
while the signals and noise take new realization at every sample, the 
instantaneous signal-to-interference-plus-noise ratio (SINR) is actually 
an expectation over one coherence block. Thus, the average UL transmit 
power of the k-th user, pk = E{|xk|

2
}, and the average noise power, σ2

n , 
will be taken rather than the instantaneous values |xk|

2 and |nk|
2, 

respectively. Thus, one can define the SINR of the k-th user during the 
UL data transmission as 

γk =
pk
⃒
⃒vH

k hk|
2

∑K

i=1

i∕=k

pi|vH
k hi|

2
+ σ2

n‖vk‖
2

(18)  

3.1.2. FAS algorithm 
In this subsection, we propose a procedure to select the most suitable 

antenna-elements inside of the k-th user’s VR. First, Algorithm 1 com
putes the vector θk = [θ1k, θ2k,…, θMk] ∈ CM×1, which is a quantitative 
indicator of the quality of the channel between the k-th user and each of 
the M antennas. It is defined by: 

θmk =
|ĥmk|

2

∑K

i=1

i∕=k

|ĥmi|

2 (19)  

where ĥmk = [ĥk]m. A high signal intensity may be obtained when |ĥmk|
2 

is strong. On the other hand, the terms |ĥmi|
2
, i ∕= k, are related to the 

interference intensity. Higher θmk values are therefore associated to 
higher SINRs on the signal detection, as defined by Eq. (18), and 
consequently higher spectral and energy efficiencies. 

After that, Algorithm 1 obtains the suitable subset 𝒟k, containing the 
indices of the Mk⩽M antennas with the highest θmk values. These an
tennas will be designated to process the signals of the k-th UE. Being θmikk 

1 The multiplication between two complex numbers, x = a+jb and y = c +

jd, may be implemented in a way that involves only 3 real floating-point 
multiplications: xy = ac − bd + j[(a + b)(c + d) − ac − bd]. 5 real sums are also 
necessary, but will not be taken into account, due to their very lower hardware 
complexity compared to the real multiplication operation [6]. 
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the i-th highest element of the vector θk, Mk is the minimum number of 
antennas that satisfies 

∑Mk

i=1
|ĥmik k|

2⩾z0Zk (20)  

where 0⩽z0 ≤ 1, and Zk is the total cumulative power associated to the k- 
th user, defined as: 

Zk =
∑M

m=1
|ĥmk|

2 (21)  

Indeed, z0Zk represents a fraction of the total cumulative power for the 
kth user. For instance, setting z0 = 0.9 represents 90% of the total cu
mulative power. Hence, setting z0 = 1 corresponds to using all the M 
antennas to process the signal of the k-th user. In practice, it is the same 
as not applying antenna selection procedure for that user. On the other 
hand, setting z0 = 0 will simply force the BS to ignore that user. Finally, 
setting z0 as low values implies that the main concern is reduce the 
power consumption. 

In case the ZF combiner is chosen, there is an additional condition to 
guarantee that the matrix to be inverted in (17) is not singular, Mk⩾K, 
which is attended in line 13 of Algorithm 1. 

Algorithm 1. FAS for combining in XL-MIMO systems   
Input: M,K, Ĥ,z0  

1: for k = 1 to K do 
2: Reinitialize the set containing the indices of the M antennas: ℳ = {1,…,M}

3: Initialize the set containing the indices of the antennas that will communicate 
with the user k : 𝒟k = ∅  

4: Compute θk, according to (19)  
5: Compute Zk, according to (21)  
6: Initialize zk = 0  
7: while zk < z0Zk do  
8: m* = argmaxm∈ℳ θmk  

9: zk = zk +

⃒
⃒
⃒ĥm*k|

2  

10: 𝒟k = 𝒟k ∪ {m*}

11: ℳ = ℳ⧹m*  

12: end while 
13: for ZF combiner, repeat lines 8–11 until |𝒟k|⩾K.  
14: end for 
Output: 𝒟k,k = 1,…,K   

As the set 𝒟k contains the indices of the antennas that are active for 
the k-th user, the superset 𝒟 = 𝒟1 ∪ … ∪ 𝒟K contains all the indices 
of the antennas that are active for some user. Mact = |𝒟| is the number of 
antennas that are activated. 

3.2. Fixed Subarray Selection (FSS) 

In the Fixed Subarray Selection (FSS) method, the antenna array is 
divided into subarrays, which can be implemented as separate hardware 
entities. It is an advantage over the FAS approach, as the implementa
tion complexity is reduced. The number of subarrays (N) is fixed, as well 
as their size. We considered the specific case where all the subarrays 
have the same number of antennas (M/N). In case ZF combining is 
adopted, the number of antennas per subarray needs to be at least equal 
to the number of users, i.e., M/N⩾K. In other words, N⩽M/K is a con
dition that must be attended when defining the number of subarrays. 

The antennas in subarray n form the set ℳn =

{
M
N

(

n − 1
)

+ 1, …,

M
N n
}

. For instance, considering a ULA with M = 100 antennas, if we 

want to divide it into N = 10 subarrays of the same size, then each one 
will have Mi = 10 antennas i = 1,…,N, and subarray 1 corresponds to 
the antennas 1 to 10. 

The objective of Algorithm 2 is to define which subarrays will be 
designated to perform receive combining for each user. The set ℱ n 

contains the indices of the users that will be served by the subarray n, 
and 𝒟k contains the indices of the subarrays that serve the user k. The 
number of users served by the subarray n is Kn = |ℱ n|, and the number of 
subarrays serving the user k is Nk = |𝒟k|. If k ∈ ℱ n, then n ∈ 𝒟k, and vice 
versa. 

3.2.1. UL data transmission 
During the UL, the received signal rn ∈ CM/N at the subarray n is: 

rn =
∑K

k=1
hknxk + nn (22)  

where hkn = H(ℳn ,k) and ĥkn = Ĥ(ℳn ,k) are respectively the channel 
vector and the estimated channel vector between the n-th subarray and 
the k-th user and nñ𝒞𝒩 (0M/N,σ2

nIM/N). The estimated channel matrix of 
the n-th subarray is Ĥn = Ĥ(ℳn ,:) ∈ C(M/N)×K, which contains only the 
rows corresponding to its antennas. If k ∈ ℱ n, the subarray n will detect 
the signal transmitted by the user k: 

ykn = vH
knrn (23)  

where the combining vector vkn ∈ CM/N is given by 

vkn =

{
ĥkn if k ∈ ℱ n,

0M/N otherwise.
(24)  

or 

vkn =

⎧
⎨

⎩

[

Ĥn

(
Ĥ

H
n Ĥn

)− 1
]

(:,k)
if k ∈ ℱ n,

0M/N otherwise.
(25)  

depending on whether MR or ZF is chosen, respectively. The matrix 
Vn = [v1n…vKn] is the collection of the combining vectors used by the 
subarray n. The CPU will then combine the detected signals ykn, n ∈ 𝒟k 
in each of the Nk subarrays, featuring a precision detector: 

yk =
1
δk

∑

n∈𝒟k

θnkykn (26)  

where θnk and δk will be soon defined. Analogously to (18), the resulting 
SINR is given by: 

γk =
pktkk

∑K

k′ =1
k′ ∕=k

pk′ tkk′ + σ2
n
∑N

n=1
θ2

nk‖vkn‖
2

(27)  

where 

tkk′ =

⃒
⃒
⃒
⃒
⃒

∑N

n=1
θnkvH

knhk′ n

⃒
⃒
⃒
⃒
⃒

2

(28)  

As defined in (24) and (25), if k ∕∈ ℱ n, then vkn is an all-zero vector. 
Notice that each subarray computes its receive combining matrix 

independently, based on the matrix Ĥn, which contains only the rows of 
the matrix Ĥ that corresponds to the antennas that are part of the sub
array n. Notice that the k-th column of the matrix Vn is all-zero if sub
array n is not designated by Algorithm 2 to serve user k, i.e., if k ∕∈ ℱ n. 

3.2.2. FSS algorithm 
In the context of fixed subarray selection methodology, Algorithm 2 

assigns Nk subarrays with the highest θnk values to communicate with 
the user k. The algorithm computes the n-th entry of the vector θk ∈ CN 

according to: 
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θnk =
Zkn

∑K

i=1
i∕=k

Zin

(29)  

where θnk = [θk]n. Notice that θnk in (29) is a metric that indicates the 
quality of the channel between the k-th user and the n-th subarray, while 
in (19) it indicates the quality of the channel between the user and each 
antenna individually. In order to normalize the combining evaluated in 
(26), we define δk as: 

δk =
∑

n∈𝒟k

θnk (30) 

Being θnikk the i-th highest number in the set {θ1k,…, θNkk},Nk is the 
minimum number of subarrays that satisfies 

∑Nk

i=1
|Zknik |

2⩾z0Zk (31)  

where Zkn is the cumulative power associated to the k-th user in the n-th 
subarray, given by: 

Zkn =
∑

m∈ℳn

|ĥmk|
2 (32)  

while Zk in (21) can also be computed as: 

Zk =
∑N

n=1
Zkn (33)  

Algorithm 2. FSS for receive combining in XL-MIMO systems   
Input: M,N,K, Ĥ, z0  

1: Initialize the set of the users that will be served by each subarray: ℱ n = ∅,n = 1,…,

N.  

2: Initialize the sets ℳn =

{
M
N

(

n − 1
)

+ 1, …,
M
N

n
}

, which will be used to compute 

zkn in line 6.  
3: for k = 1 to K do 
4: Reinitialize the set containing the indices of the N subarrays: 𝒩 = {1,…,N}.  
5: Initialize the set containing the indices of the subarrays that will communicate 

with the k-th user: 𝒟k = ∅.  
6: Compute Zkn,n = 1,…,N, according to (32).  
7: Compute Zk, according to (33).  
8: Compute θk, according to (29).  
9: Initialize zk = 0.  

10: while zk < z0Zk do  
11: n* = argmaxn∈𝒩 θnk  

12: zk = zk + Zkn*  

13: 𝒟k = 𝒟k ∪ {n*}

14: ℱ n* = ℱ n* ∪ {k}
15: 𝒩 = 𝒩⧹n*  

16: end while 
17: end for 

Output: ℱ n ,n = 1,…,N, and 𝒟k,k = 1,…,K   

If Nact denotes the number of non-empty ℱ n sets, and consequently 
the number of subarrays that serve at least one user, then Mact = M⋅Nact/

N is the number of active antennas. 

4. Computational complexity and power consumption model 

4.1. FAS complexity 

We first address the complexity of computing the ZF combining 

vectors, following (17). Multiplying Ĥ
H
(𝒟k ,:)

by Ĥ(𝒟k ,:) requires K2+K
2 Mk 

complex multiplications,2 using the Hermitian symmetry. According to 
[6], when the inverse of a matrix is multiplied by another matrix, the 
LDLH decomposition can be used to achieve an efficient hardware 

implementation. The decomposition of Ĥ
H
(𝒟k ,:)

Ĥ(𝒟k ,:) requires K3 − K
3 com

plex multiplications [6]. Finally, we need to multiply the matrix Ĥ(𝒟k ,:)

by the k-th column of the matrix 
[

Ĥ
H
(𝒟k ,:)

Ĥ(𝒟k ,:)

]− 1
, which requires KMk 

complex multiplications plus K complex divisions to compute D− 1 

[6,20]. Besides, considering complex division consumes 7 flops,3 the 
complexity associated to the computation of the combining vector vk is 

3
(

K2+K
2 Mk +

K3 − K
3 + KMk

)

+7K flops per coherence block. Thus, 

computing the whole combining matrix V has a complexity of: 

CFAS
C− UL− ZF = K4 + 6K2 +

3
2

(

K + 3

)

K
∑K

k=1
Mk

[

fpcb

]

(34) 

MR combining does not require multiplications or divisions, as it is 
given directly from the channel estimates, as its k-th column is simply a 
copy of some entries of the k-th column of Ĥ, according to (16). How
ever, in practical implementations, we typically normalize the received 
signal yk in (15) such that vH

k hk in front of the desired signal xk is close to 
one (or another constant). The complexity of this normalization is 
accounted by 1 complex division per user [6], what gives: 

CFAS
C− UL− MR = 7K

[
fpcb

]
(35) 

Recall that the k-th user combining vector was defined in (16) and 
(17) to have only Mk non-zero values. It reduces the complexity in 
obtaining yk, as in (15), since BS will use Mk antenna-elements of the 
vectors vk and r, instead of M elements, resulting in 3Mk flops. As the 
information processing is done τu times per coherence block, the asso
ciated complexity results: 

CFAS
R/T = 3τu

∑K

k=1
Mk

[

fpcb

]

(36) 

Obtaining Zk in (21) requires M complex multiplications to compute 
⃒
⃒
⃒ĥmk|

2
, m = {1, …, M}. Considering that there are K users, the total 

complexity is 3MK [fpcb]. Then, obtaining θk,k = 1,…,K, requires only 
MK real divisions, as all the modulus were already computed. Finally, 
the associated complexity is given by: 

CFAS = 4MK [fpcb] (37) 

If there was no antenna selection, the complexities given by the Eqs. 
(34) and (36) would be higher, as all the M antennas would always be 

2 Multiplying two matrices A ∈ Ca×b and B ∈ Cb×c requires ac inner products 
between b-length vectors, corresponding to abc complex multiplications. 
However, if B = AH, only a diagonal elements of A⋅B and half of the a2 − a off- 
diagonal elements need to be computed, due to the Hermitian symmetry, 
resulting in a2+a

2 b complex multiplications [6].  
3 Let’s x = a+jb and y = c + jd, then x

y =
xy*

yy* =
xy*

|y|2
. Computing xy* and 

⃒
⃒
⃒y|2 = c2 +d2 requires 3 and 2 real multiplications, respectively, while 2 real 

divisions are needed to compute the ratio xy*

|y|2
, counting a total of 7 real 

operations. 
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active for all the K users, i.e., Mk = M,k = 1,…,K. 
Finally, the total computational complexity associated to the FAS 

scheme, in flops per second,4 can be established as: 

CFAS
tot− MR =

B
τc

(

CCE +CFAS
C− UL− MR +CFAS

R/T +CFAS

) [

fps
]

(38)  

or 

CFAS
tot− ZF =

B
τc

(

CCE +CFAS
C− UL− ZF +CFAS

R/T +CFAS

) [

fps
]

(39)  

depending on whether MR or ZF is chosen, respectively. 

4.2. FSS complexity 

The multiplication of Ĥ
H
n by Ĥn, according to (25), has a complexity 

of K2+K
2

M
N flops per coherence block, using the Hermitian symmetry. The 

LDLH decomposition of the matrix Ĥ
H
n Ĥn requires K3 − K

3 complex mul

tiplications. Multiplying Ĥn by the k-th column of (Ĥ
H
n Ĥn)

− 1
, in order to 

obtain vkn,k ∈ ℱ n, requires K M
N complex multiplications plus K complex 

divisions to compute D− 1. Recalling that |ℱ n| = Kn, the n-th subarray 
needs to compute the combining vectors of Kn users, and the complexity 

of obtaining the matrix Vn is 3
(

K2+K
2

M
N + K3 − K

3 + KnK M
N

)

+7K flops per 

coherence block. Finally, the complexity to compute the combining 
matrix of the N subarrays, when employing ZF combining, is given by: 

CFSS
C− UL− ZF = NK3 +

3
2
MK2 +

3
2

(

M + 4N
)

K

+MK
∑N

n=1
Kn

[

fpcb

] (40) 

Similarly to (35), the complexity associated with the computation of 
the MR combining matrix is given by: 

CFSS
C− UL− MR = 7

∑N

n=1
Kn

[

fpcb

]

(41) 

As vkn and rn are (M/N)-length vectors, obtaining ykn, as in (23) re
quires M/N complex multiplications. This process is done τu times per 
coherence block. As the subarray n serves Kn users, the resulting 
complexity is 3τuMKn/N [fpcb]. Recalling that there are N subarrays, the 
total computational complexity is: 

CFSS
R/T = 3τu

M
N
∑N

n=1
Kn

[

fpcb

]

(42) 

To obtain Zkn, given by (32), the BS does M/N complex multiplica

tions to obtain 
⃒
⃒
⃒ĥmk|

2
,m ∈ ℳn. As there are N subarrays and K users, it 

results in a complexity of 3MK [fpcb]. Given the values of Zkn, obtaining 
Zk according to (33) does not involve any further multiplication or di
vision. Finally, obtaining θk, k = {1, …, K}, requires only NK real di
visions, and the associated complexity is given by: 

CFSS = (3M +N)K [fpcb] (43) 

There is also an additional complexity due to the precision detector. 
To obtain δk, as in (30), Nk real multiplications are required. As there are 
K users, the resulting complexity, in [fpcb], is 

∑K
k=1Nk, which is equal to 

∑N
n=1Kn. 

Multiplying θnk by ykn, as in (26), costs 1 complex multiplication. It is 
done for the Nk subarrays that serve user k. Then, the sum obtained in 
(26) is divided by δk, which costs 1 complex division. It is done for the K 
users, τu times per coherence block, resulting in 
τu
∑K

k=1(3Nk +7) = 7τuK+3τu
∑K

k=1Nk [fpcb]. 
Thus, the total precision detector/precoder additional complexity is: 

CFSS
P = 7τuK +

(

1+ 3τu

)
∑N

n=1
Kn

[

fpcb

]

(44) 

Finally, the total computational complexity associated to the FSS 
scheme, in flops per second, is: 

CFSS
tot− MR =

B
τc

(

CCE +CFSS
C− UL− MR +CFSS

R/T +CFSS +CFSS
P

) [

fps
]

(45)  

or 

CFSS
tot− ZF =

B
τc

(

CCE +CFSS
C− UL− ZF +CFSS

R/T +CFSS +CFSS
P

) [

fps
]

(46)  

depending on whether MR or ZF is chosen, respectively. 
The while loop in Algorithm 1 and Algorithm 2 can be implemented 

with a sorting algorithm. The array to be sorted, θk, is M-length when 
adopting FAS1 or FAS2 schemes and N-length when adopting FSS1 or 
FSS2. As we can consider the sorting algorithms to have order of MlogM 
with FAS1 or FAS2 and of NlogN with FSS1 or FSS2 [21], the resulting 
complexity terms were neglected without compromising the accuracy of 
the total complexity equations developed in this section. 

4.3. No Antenna Selection (noS) complexity 

When there is no antenna selection (noS) scheme, the total compu
tational complexity increases: 

CnoS
tot− MR =

B
τc

(

CCE +CnoS
C− UL− MR +CnoS

R/T

) [

fps
]

(47)  

or 

CnoS
tot− ZF =

B
τc

(

CCE +CnoS
C− UL− ZF +CnoS

R/T

) [

fps
]

(48)  

depending on whether MR or ZF is chosen, respectively. The terms 
CnoS

C− UL− MR,C
noS
C− UL− ZF and CnoS

R/T can be obtained from 41, 40 and 42, by 
simply taking N = 1 and replacing Kn with K, resulting in: 

CnoS
C− UL− MR = 7K

[
fpcb

]
(49)  

CnoS
C− UL− ZF = K3 +

9
2

MK2 +
3
2
(M + 4)K

[

fpbc
]

(50)  

and 

CnoS
R/T = 3τuMK

[
fpcb

]
(51)  

4.4. SE and EE and power consumption model 

The ergodic spectral efficiency is defined by [6]: 

SE =
τu

τc

∑K

k=1
E

{

log2

(

1+ γk

)}

(52)  

where γk is the SINR of the k-th user, given in the XL-MIMO AS context 

4 As each coherence block contains τc symbols, B/τc is the number of 
coherence blocks per second. Therefore, if C is the complexity in [fpcb], the 
complexity in [fps] is given by BC/τc. 
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by (18) or (27), depending on the selection strategy. 
The energy efficiency of a cellular network is defined in [6] as the 

number of bits that can be reliably transmitted per unit of energy. Thus, 

its unit is 
[

bit
J

]

, which is the same as the throughput per unit of power 
[

bit/s
W

]

. Alternatively, it can be defined as the throughput per unit of 

power: 

EE =
B⋅SE
Ptot

=
B⋅SE

PUL
TX + Ptr

TX + PCP
(53)  

where the denominator contains the total power consumption (Ptot), 
including all power consumption terms required to make the wireless 
communication system operational. Being pk the k-th user UL transmit 
power and ηUL the power amplifier efficiency at the BS, the term 

PUL
TX =

τu

τc

1
ηUL

∑K

k=1
pk (54)  

refers to the UL power consumed for data transmission, while 

Ptr
TX =

τp

τc

1
ηULKpp (55)  

accounts for the total power consumed by the power amplifiers during 
the UL pilot transmission. Based on [17,6], we utilized a detailed model 
for the circuit power consumption: 

PCP = PFIX +PTC +PCE/SP +PC/D +PBH (56) 

The fixed power consumption (PFIX) is a constant quantity that ac
counts for the power consumption required for site-cooling, control 
signaling and load-independent power of backhaul infrastructure and 
baseband processors [6,22]. The transceiver chains power consumption 
(PTC) involves the power consumed by the BS local oscillator (PLO), the 
circuit components (converters, mixers and filters) of each BS antenna 
(PBS) and the circuit components (mixers, filters, amplifiers and oscil
lator) of each single-antenna user (PUE), as described by: 

PTC = PLO +MactPBS +KPUE (57) 

The channel estimation and signal processing power consumption 
(PCE,SP) can be obtained by simply dividing the total complexity in flops 
per second [fps], given in (38), (39), (45), (46), (47) or (48), by the 
computational efficiency at the BS (LBS), which represents the number of 
flops per energy. 

Finally, being ℘COD,℘DEC and ℘BT the coding, decoding and back

haul traffic power densities, respectively, given in 
[

watt
bit/s

]

, the channel 

coding and decoding power consumption can be expressed as: 

PC/D = B⋅SE⋅
(
℘COD +℘DEC

)
(58) 

The load-dependent backhaul power consumption, necessary for the 
data transmission between the BS and the core network, is modeled as 

PBH = B⋅SE⋅℘BT (59)  

5. Numerical results 

In the sequel we present numerical results based on Monte-Carlo 
simulations (MCS) in order to demonstrate that the proposed algo
rithms provide an EE increase while reducing considerably the compu
tational complexity and the power consumption in the context of XL- 
MIMO systems. From these results, we can see the advantages of 
appropriately selecting the antennas subset (FAS or FSS schemes) 
against utilizing the whole antenna array to serve all users at the same 
time (noS scheme), and make comparisons between the two algorithms. 
We adopted equal power control policy, what means all UEs utilizes the 
same fixed transmit power, i.e., pk = pUL,k ∈ {1,…,K}. Table 1 contains 
a list of the main deployed parameter values, similar to those adopted in 
[6,17,22,23]. 

In the MCS, the antenna array contains M = 1000 antenna elements 
and the distance between the antennas is d = λ/2, where λ is the 
wavelength. The borders of the cell are defined by 
xmin = 20λ, xmax = 200λ, ymin = − 600λ and ymax = 600λ. Although the 
position of the users (and consequently the pathloss), the short-scale 
fading and the VRs are random variables, the numerical results repre
sent an average over 1,000 independent realizations, therefore statisti
cally relevant. 

In all simulations, S = 50 scatterers and rs = 5 m (radium for all 
scatterers) have been adopted. The NLoS-BS-VR of the s-th scatterer 
stands from (0, ysc

s − xsc
s /2) to (0,ysc

s + xsc
s /2). If the antenna m is in this 

interval, then m ∈ Φs. The LoS-BS-VR of the k-th user stands from 
(0, yUE

k − xUE
k /2) to (0, yUE

k + xUE
k /2), with probability of occurrence of 

Table 1 
System and Channel Parameter Values.  

Parameter Value 

Pathloss attenuation exponent: γ  2.5 
Median channel gain at a distance of 1 m: β0  2.95⋅10− 4  

[xmin,xmax]  [20λ,200λ]  
[ymin,ymax]  [ − 600λ,600λ]  
Wavelength: λ  5 cm 
Antenna separation: d λ/2  
Number of BS antennas (ULA): M 1000 
Number of scatterers: S 50 
Radium of the scatterers: rs  5 m 
Number of mobile users: K {4; 8; 16; 32; 64; 100}

Loading factor ℒ% =
K
M

⋅100 [%
]

{0.4; 0.8; 1.6; 3.2; 6.4; 10}%  

Transmission bandwidth: B 20 MHz 
Channel coherence bandwidth: BC  100 kHz 
Channel coherence time: TC  2 ms 

Total UL noise power: σ2
n  − 100 dBm 

UL pilot transmit power per user (EPA): pp  0.1 W 
UL data transmit power per user (EPA): pUL  0.1 W 

Power amplifier efficiency at the BSs: ηUL  0.5 

Computational efficiency at the BS: LBS  75 
[

Gflop/s
W

]

Fixed power consumption: PFIX  10 W 
Power consumed by local oscillators at BS: PLO  1.0 W 
Power consumed by circuit components at BS: PBS  0.5 W 
Power consumed by circuit components at UE: PUE  0.2 W 
Power density for coding of data signals: ℘COD  0.1 

[
W

Gbit/s

]

Power density for decoding of data signals: ℘DEC  0.8 
[

W
Gbit/s

]

Power density for backhaul traffic: ℘BT  0.25 
[

W
Gbit/s

]

Number of Monte-Carlo realizations: 𝒯 1000  

Table 2 
Average VR size. Adopted XL-MIMO channel parameters with M = 1000.  

# antennas inside the BS-VR of an scatterer: 259.9 
# antennas seen by each user via LoS propagation: 193.9 
# antennas seen by each user via NLoS propagation: 406.2 
# antennas seen by each user via LoS or NLoS propagation: 520.1 
% users that don’t see any antenna via LoS propagation: 49.5% 
% users that don’t see any antenna via NLoS propagation: 25.9% 
% users don’t see any antenna via neither LoS nor NLoS: 13.6%  

G.A. Ubiali et al.                                                                                                                                                                                                                                

122



AEUE - International Journal of Electronics and Communications 130 (2021) 153568

10

75%. If the antenna m is in this interval, and this VR exists, then m ∈ Ξk. 
Recall that (xsc

s , ysc
s ) and (xUE

k , yUE
k ) represent the points where the s-th 

scatterer and the k-th user are located, respectively. Under these con
ditions, one can obtain information about the length of the visibility 
regions associated to the users and the scatterers, via numerical simu
lation. For example, the BS-VR of a scatterer contains, on average, 259.9 
antennas; each antenna is inside the BS-VR of 12.9 antennas, on average; 
and each user is inside the UE-VR of 2.0 scatterers, on average. Further 
information is presented in Table 2. 

5.1. Impact of parameter z0 and N on the energy efficiency 

Numerical results demonstrate the impact of parameter z0 and N 
value choice on the system energy efficiency and make comparisons 
among the noS, FAS and FSS selection schemes. Notice that algorithms 
FAS and FSS define the set 𝒟k containing the antennas indexes deployed 
to select and detect the k-th user’ signal in the UL data transmission 
phase, via receive combining, by utilizing MR or ZF processing. The 
number of selected antennas, Mk = |𝒟k|, corresponds to the minimum 
number of antennas that satisfies the conditions (20) and (31), when 
employing FAS and FSS, respectively. Intuitively, increasing the z0 value 
causes both algorithms to select more antennas to participate in the 
signal detection of each user. Consequently, the total number of active 
antennas and the power consumption also increase, as depicted in 

Figs. 3a, b, 4c and d. 
When employing FSS, the number of subarrays (N) influences the 

average number of selected antennas per user, as well as the average 
number of active antennas. Dividing the antenna array into N = 25 
subarrays, there are more degrees of freedom at selecting the antennas 
than if adopting N = 5 subarrays; hence, the condition in (31) can be 
attended with fewer antennas.5 It comes at the cost of a more complex 
hardware implementation. Moreover, the maximum number of degrees 
of freedom is achieved taking N = M, where FSS would work like FAS. 
This is the reason why FAS activates less antennas than FSS. As PTC is the 
most significant term in the total power consumption, the following 
pattern also holds: 

Pfas
tot < Pfss

tot < PnoS
tot ,

as depicted in Figs. 4 c and d. Notice that there is a considerable power 
saving when employing FAS or FSS, comparing to the noS strategy, 
specially when adopting low z0 values and when there are few active 
users; in such conditions, the antenna array is less likely to be entirely 
activated. Besides, the power consumption with ZF combiner is slightly 
higher than with MR, due to its higher computational complexity, as 
highlighted by Figs. 4a and b. 

Elaborating further on the fraction of cumulative power values, z0 in 
(20) and (31) influences the computational complexity of both AS 
methods (Figs. 4a and b). Higher z0 implies that more antennas will be 
utilized to perform receive combining, which increases the complexity 
associated to multiplying the receive signal at the BS antennas with the 
combining vector, according to (36) and (42). Also, it is straightforward 
to conclude that a higher number of active users causes an increase in 
the XL-MIMO receiver complexity, since the ZF or MR combiner must be 
performed for more users. Finally, the FAS complexity exceeds the noS 
complexity when z0 > 0.7 for K = 32 (or higher), mainly due to the 
impact of subarray size Mk over the CFAS

C− ZF, eq. (34) , as FAS computes the 
combining vector of the k-th user based on the pseudo-inverse of a 
matrix of size Mk × K, and it is done for the K users. 

Fig. 5c shows that, by choosing a proper value for z0, the FAS and FSS 
schemes can improve the throughput when employing MR, compared to 
the noS scheme. It means that the AS methods can reduce significantly 
the interference power at the reception while maintaining the desired 
signal power, resulting in a SINR increasing, and consequently higher 
data rates. Fig. 5d demonstrates that, as expected, ZF combiner provides 
much higher throughput than MR. Despite reducing the number of an
tennas at the receiver combining usually compromises the ZF ability to 
mitigate interference, FAS and FSS algorithms were capable to maintain 
the throughput level near to the noS strategy, as they reduce the 
received interference power by properly selecting the antennas. For 
instance, if we divide the antenna array into 5 subarrays, and employ 
FSS to select which subarray(s) will be used to detect the signal of each 
user, we can obtain about 90% of the throughput that we would obtain 
by utilizing the whole array in the detection, while reducing the power 
consumption. If we divide the antenna array into 25 subarrays, the XL- 
MIMO power consumption can be reduced further, but the throughput 
would fall to about 65% of the noS throughput. 

Energy Efficiency. From Figs. 5a and b, one can intuitively conclude 
that it is possible to balance throughput and power consumption 
because, specially for the cases of K = 8 and K = 32 under ZF combining 
(Fig. 5b), the EE can be improved by both the FAS and FSS strategies. 
One only needs to select z0 and N accordingly. We also observe that 
when there are few active users (K = 8), it is possible to increase the 
system EE near the levels of K = 32, because under the analyzed antenna 
selection algorithms it is more likely to reduce considerably the number 
of active antennas, leading to a power saving while not compromising 

Fig. 3. Impact of the z0 on the average number of a) selected antennas to 
perform receive combining (each user); b) active antennas, for two different 
number of users, K = 8 and K = 32. 

5 But with a number of antennas sufficiently large to guarantee channel 
hardening features. 
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the throughput. As a result, the system EE attained with both AS 
methods can be increased when the fraction of the selected antenna 
within the cumulative received power decreases below z0 < 0.6. When 
employing MR, as the FAS and FSS can improve the throughput (what 
seems not to be possible with ZF), the EE can be easily increased. 
However, the ZF combiner provides much higher EE than MR due to its 
capability in mitigating multiuser interference. 

5.2. How much can FAS and FSS boost the EE, by properly choosing z0 
and N? 

Can z0 and N in the FAS and FSS algorithms be optimized in order to 
maximize the system EE? Fig. 6 compares the three selection schemes 
(noS, FAS and FSS) in terms of computational complexity, power con
sumption, throughput (B⋅SE) and per user rate (B⋅SE/K), for different 
number of users and for the two most common massive MIMO linear 
combining schemes (MR and ZF). Table 3 contains the optimal value of 
z0 and N, denoted by z*

0 and N*, for several numbers of active users. If 
K ≤ 32, it is advantageous, in order to maximize the EE, to activate only 
few antennas. Otherwise, the considerable power consumption increase 
would not justify the small throughput gain. Consequently, z*

0 is very 
low for both algorithms. Thus, the AS strategies were effective at 

reducing the average number of selected antennas per user (see Fig. 6a), 
particularly under very low loading factor scenario (ℒ%⩽3%). In this 
scenario, the number of active antennas is therefore considerably 
reduced when compared to the noS strategy, and consequently so does 
the power consumption and the computational complexity (see Figs. 6c 
and d). 

If K⩾64, the optimal z*
0 increases a lot, what means the algorithms 

need to select much more antennas in order to handle with the 
increasing interference levels, resulting in higher power consumption as 
the whole antenna array is active, Fig. 6b. Hence, considering XL-MIMO 
with ULA configurations, one can determine the loading factor range 
under which simple AS methods bring remarkable gains in terms of 
system EE-SE tradeoff and complexity reduction: ℒ% ∈ {3; 6.5} %. 

Elaborating further, simple FAS and FSS methods work well in two 
different ways depending on the goal (EE or SE maximization) in XL- 
MIMO systems. If K⩽32 (ℒ%⩽3.2%), the EE is maximized with very 
low z0 values, which means few antennas selected per user. In this 
scenario, the computational complexity is considerably reduced when 
compared to the traditional strategy (noS). Another consequence is that 
the number of active antennas may be much lower than M, causing a 
great power saving. As the channel is non-stationary, which means that 
the majority of the energy sent by one user achieves only a small portion 

Fig. 4. Computational complexity and power consumption with FSS and FAS antenna selection schemes and MR or ZF combiners.  
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of the array, performing receive combining with only some of the M 
antennas will not compromise the throughput considerably, as long as 
this selection is done appropriately, via antenna selection method. As a 
result, one can obtain a huge EE improvement regarding the no-selection 
strategy (noS), according to Fig. 7. 

On the other hand, if K⩾64 (ℒ%⩾6.4%), the interference power from 
overleaped VRs in XL-ULA grows such that both FAS and FSS need to 
select much more antennas for the signal detection. In this scenario, the 
(almost) whole ULA array must be activated and the power consumption 
cannot be reduced; as a consequence, in such scenario, the EE cannot be 
improved; besides, the multiuser inter-antenna interference must be 
mitigated (ZF combiner), yet reducing the system throughput, Fig. 6f. 

As expected, the ZF performance, considering both the throughput 
and the energy efficiency, Fig. 6e and 7, respectively, is much better than 
the MR when deploying the same AS methods, while its power con
sumption is not much higher and its computational complexity is not 
prohibitive. Hence, the ZF combiner at XL-MIMO receiver combined 
with the FSS or FAS antenna selection method results in the best EE-SE 
tradeoff. Finally, the performance of the FAS and FSS schemes are very 
similar. The only relevant difference is under higher loading factor 
(ℒ%⩾3.2%), when FSS performs better than FAS, considering ZF 
combiner in each massive MIMO subarray. 

6. Conclusion 

Increasing the number of antennas at the BS of a massive MIMO 
network is useful to provide higher rates and energy efficiency. How
ever, increasing the antenna separation is opportune to make real 
advantage from an array dimension of the order of hundreds or thou
sands of antennas. Consequently, the array length increases a lot and 
channel spatial non-stationary properties appear, which means that the 
majority of the energy sent by a given user achieves only a small portion 
of the antenna array. Thus, selecting the antennas that will participate in 
the receive combining of the signal sent by each user, instead of using all 
the available antennas, may be very useful strategy to reduce consid
erably the power consumption without degrading the throughput. The 
numerical results corroborated it for both antenna selection schemes 
proposed in this work (FAS and FSS). Up to loading factor ℒ%⩽3.2%, at 
least, FAS and FSS provided huge EE improvement, by properly 
choosing the values of the parameters z0 and N. It is important to say 
that, considering the cell dimensions, K = 32 is a realistic scenario. On 
the other hand, in a scenario with 64 users or more, FAS and FSS could 
not prevent the whole antenna array to be activated simultaneously, and 
the system EE could not be improved accordingly. Finally, considering 
that the FAS and FSS schemes resulted in a very similar performance, 

Fig. 5. Energy efficiency and throughput, with FSS and FAS antenna selection schemes and MR or ZF combiners.  
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Fig. 6. Comparison among the three antenna selection strategies (noS, FAS and FSS), when the optimal values of z0 and N are adopted to maximize the EE, M = 1000 
BS antennas. 
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FSS may be advantageous, as its hardware implementation is simpler. 
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