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Resumo

Nesta dissertação discute-se a tarefa de sensoriamento espectral cooperativo em
rádios cognitivos baseada em ferramentas estat́ısticas e de aprendizado de máquina.
Considerando o uso de detectores de energia nos usuários secundários (SU),
compara-se a aplicação de diferentes ferramentas de tomada de decisão como
forma de combinar o ńıvel de energia obtido em cada SU. Através de análise es-
tat́ıstica do ńıvel de energia, o modelo proposto Weighted Bayesian combina as
probabilidades a posteriori de ocupação de canal obtidas em cada SU, ponder-
adas pela respectiva taxa de sinal-rúıdo (SNR), de forma a obter uma decisão que,
por sua vez, é transmitida de volta aos usuários secundários. Com o objetivo de
suprimir a necessidade de obter e transmitir o ńıvel de SNR nos SUs, compara-se
a aplicação de três modelos de aprendizado de máquina, a saber naive Bayes,
rede neural feed-forward e máquina de vetor de suporte (SVM), como forma de
estimar a probabilidade a posteriori de ocupação do canal baseada somente no
ńıvel de energia e um conjunto de treinamento. Resultados numéricos mostraram
que todos os três modelos obtiveram uma performance próxima da ótima definida
pela técnica maximum ratio combining, especialmente a técnica SVM com kernel
linear. Por fim, o objetivo desta dissertação é prover uma análise abrangente de
diferentes técnicas de tomada de decisão em cenários realistas de sensoriamento
espectral cooperativo, considerando a complexidade computacional de se treinar
modelos de aprendizado de máquina.

Palavras-chave: Radios cognitivos; sensoriamento espectral; aprendizado
de máquina;



Abstract

In this dissertation we tackled the task of cooperative spectrum sensing on cogni-
tive radio networks based on statistical and machine learning tools. Considering
the use of energy detectors on the secondary users (SU), we compared the ap-
plication of different decision-making tools as a way to combine the energy level
obtained at each SU. Through statistical analysis of the estimated energy levels,
the proposed Weighted Bayesian model combines the a posteriori probabilities
of channel occupancy obtained at each SU weighted by their respective signal-to-
noise (SNR) ratio in order to obtain a decision, which gets transmitted back to
the SUs. In order to suppress the need of obtaining and transmitting the SNR
level on the SUs, we compared the application of three machine learning models,
namely naive Bayes, feed-forward neural network and support vector machine
(SVM) as a way of estimating the a posteriori probability of channel occupancy
based solely on the energy level and a training dataset. Numerical results have
demonstrated that all three models perform close to the optimum maximum ra-
tio combining (MRC) technique, specially the SVM technique with linear kernel.
Ultimately, the goal of this dissertation is to arrive at an in-depth analysis of dif-
ferent decision-making tools in a realistic cooperative spectrum sensing scenario,
considering the computational complexity of training machine learning models.

Keywords: Cognitive radios; spectrum sensing; machine learning;
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Conventions and List of Symbols

The following conventions were used in the notation of equations and formulas:

• bold lowercase letters are vectors, example: x,d;

• bold uppercase letters are matrices, example: W;

• xi is the ith element of vector x;

• yij is the element at ith row and jth column of matrix Y;

• N (m,σ2) is a random process with normal distribution of mean m and

variance σ2;

• Γ(x, y) is a random process with Gamma distribution of shape x and scale

y;

• Q(·) is the right tail probability function;

• || · || is the Euclidean norm of a vector;

• {·}T is the matrix transpose operator;
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1 Introduction

Cognitive radios (CR) systems are a proposed solution to the spectrum scarcity

problem found in radio frequency (RF) environment that aims to improve the

overall spectrum utilization. Several studies showed (CHEN; OH, 2014) that li-

censed spectrum bands are often not occupied by the licensed users, thus creat-

ing the opportunity for other devices to access the unoccupied spectrum in an

opportunistic way. These opportunistic devices, denoted as secondary users (SU)

in the context of cognitive radios, need to be able to sense the spectrum to assess

the presence or absence of licensed users, denoted as primary users (PU), either

individually or cooperatively.

The idea of cognitive radios was first introduced by Joseph Mitola III in 1999

(MITOLA; MAGUIRE, 1999), but has been given a lot of attention recently due to

the proposed heterogeneous nature of 5G networks (TSENG et al., 2015; JIA et al.,

2016; CHAE; JEONG; LEE, 2018; LI et al., 2018a).

Spectrum sensing in cognitive radios still poses a challenge for high-performance

and low-energy systems due to the fact that performance is often proportional

to the spectrum sensing period which, in turn, is an energy consuming task that

also degrades the spectral efficiency of the secondary users (since they need to

spend time and energy on a task that does not effectively result in transmitted

bits).

Generally speaking, cooperative spectrum sensing schemes falls into two topolo-

gies: distributed (LI; YU; HUANG, 2009) or centralized (MA; ZHAO; LI, 2008). Cen-

tralized approaches require the SUs to transmit information regarding the local

spectrum sensing (e.g., the SU binary decision on spectrum occupancy for hard

combination schemes) to a fusion center, which in turn combines the received data

according to a given method, decides on the spectrum occupancy and retransmits

the decision back to the SUs. On the other hand, distributed approaches relies on

information sharing among neighboring SUs and consensus methodologies, thus

eliminating the need for a fusion center.
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Since the task of determining the channel status based on spectrum sens-

ing is clearly a classification task, several authors considered the use of machine

learning models as inference tools. Machine learning, in turn, is a way of pro-

gramming computers to optimize a performance criterion using example data or

past experience (ALPAYDIN, 2014). This apparent self-learning characteristic is

by itself mostly based on applied statistics, whereas the training and inference

capabilities owe their efficiency to great computer science algorithms.

In (THILINA et al., 2013), the authors propose and compare the performance

of several supervised and unsupervised machine learning (ML) techniques for

cooperative spectrum sensing, such as Support Vector Machines (SVM), the K-

means clustering algorithm and Gaussian Mixture Model (GMM), but do not

provide a comparison of detection performance over different training set sizes.

In (AZMAT; CHEN; STOCKS, 2015), the authors study the use of machine learning

algorithms for spectrum occupancy in cognitive radio networks, which include the

Naive Bayesian Classifier (NBC). In (LI et al., 2018b), the authors propose user

grouping algorithms to improve spectrum sensing results and SVM training time

and in (BKASSINY; LI; JAYAWEERA, 2012) the authors enumerate the pros and

cons of several unsupervised and supervised machine learning techniques applied

to spectrum sensing, such as the requirement of data labeling for supervised

models and the risk of overfitting.

In this dissertation, we explored the use of several statistical and machine

learning tools within two papers addressing centralized cooperative spectrum

sensing. In the first, entitled Bayesian Estimators for Cooperative Spectrum Sens-

ing in Cognitive Radio Networks, a conference paper published in the IEEE URU-

CON’ 2017 conference, we made use of the statistical modeling of the estimated

energy level on SUs in order to derive two analytical Bayesian methodologies

that aimed at reducing the overhead imposed by the maximum ratio combining

(MRC) technique.

The second paper developed in the context of this Dissertation, entitled Ma-

chine Learning-based Models for Spectrum Sensing in Cooperative Radio Net-

works, which is an extension of the first work. Currently, the manuscript is under

review in the IET Communications journal. In this work, the application of

three popular supervised machine learning models (multilayer perceptron, sup-

port vector machine and naive Bayes) was considered to the task of channel status

inference based on cooperative energy detection spectrum sensing.

The performance of the models are compared to the optimum MRC technique
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through area under the curve (AuC) metrics and receiver operating characteristic

(ROC) graphics, under additive white Gaussian noise (AWGN) and Rayleigh

channel models. In addition, the computational performance of each model is

evaluated through standard profiling tools in order to draw a complexity trade-

off analysis. Furthermore, an analysis of training set size is conducted to reveal

the effects on channel detection and training time.
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2 Development

Throughout the development of both papers, we consider centralized spectrum

sensing based on energy detection. With the energy information gathered on the

secondary users, we employ and compare different combination techniques based

on analytical and machine learning models.

The basic framework upon which every technique is designed is the decision

between two hypothesis H1 (channel is occupied by the primary user) and H0

(channel is free), which can be written as:




H1 : zi(k) = hix(k) + ni(k), if the PU is active

H0 : zi(k) = ni(k), otherwise
(2.1)

where zi(k) is the signal at the secondary user, ni(k) is the zero-mean Gaussian

channel noise with variance σ2
n, x(k) is the signal transmitted by the primary user

and hi(k) is the channel gain measured from the primary user to the ith secondary

user, which can be specified by the path loss and fading components.

From this, the estimated energy can be defined as:

yi =
1

σ2
n

K∑

k=1

zi(k)2 (2.2)

Based on the definition above, we can write the basic modeling for each of

the techniques.

2.1 Analytical Techniques

The analytical techniques explored throughout A.1 and A.2 are based on knowl-

edge about the communication channel in use during the spectrum sensing peri-

ods. This knowledge include the signal-to-noise ratio at the secondary users and

the a priori probability of channel occupancy.
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2.1.1 Maximum Ratio Combining

The maximum ratio combining technique, considered as the upper-bound in chan-

nel status detection performance and explored in A.1 and A.2, is an analytical

technique in which the energy level sensed on the secondary users are combined

proportionally to their current signal-to-noise levels. In this sense, the estimated

channel status Ŝ can be written as:

Ŝ =





H1, if
N∑

i=1

wiyi ≥ λ

H0, otherwise

(2.3)

where wi =
γi∑
N

γi
, γi is the SNR level on the ith secondary user and λ is a constant

used to reflect the desired false-alarm probability of the estimator.

2.1.2 Weighted Bayesian

The weighted Bayesian technique is an analytical technique developed on A.1,

which makes use of the statistical analysis of the estimated energy level on the

secondary users in order to reduce the data overhead imposed by the MRC ap-

proach. The goal is to map the estimated energy level to a posteriori probability

of channel occupancy in the secondary user and then send it to the fusion center

for combination.

The occupancy probability can be defined as:

P (H1|yi) =
fΓK

2

(yi)P (H1)

fX 2
N

(yi)P (H0) + fΓK
2

(yi)P (H1)
(2.4)

where fΓK
2

and fX 2
N

are the probability density functions defined for hypothesis

H1 and H0, respectively. They are discussed in details at A.1.

From Eq. (2.4), the estimated channel status can be defined as:

Ŝ =




H1, if P (H1|y) ≥ 1− P ∗fa
H0, otherwise

(2.5)
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2.1.3 Gaussian Mixture

The Gaussian mixture model, also explored in A.1, is an analytical technique

based on the assumption of Gaussianity and independence among the energy

samples obtained on each individual secondary user on the network. These two

assumptions allows us to completely specify the mean M , variance Σ2 and mix-

ture proportions π as:

M =

[
K . . . K

K(1 + γ̄i) . . . K(1 + γ̄N)

]

Σ2 =

[
2K . . . 2K

2K(1 + γ̄i)
2 . . . 2K(1 + γ̄N)2

]

π =
[
P (H0) P (H1)

]T

(2.6)

where K is the number of samples obtained during a sensing period.

Once the statistical aspects of the energy samples are defined, the estimated

channel status can be written as:

Ŝ =




H1, if P (H1|y) ≥ 1− P ∗fa
H0, otherwise

(2.7)

2.2 Machine Learning Techniques

The methods discussed in Section 2.1 are based on previous knowledge about the

cognitive radio channel, such as instantaneous and average signal-to-noise ratio

at the SUs and the a priori probability of channel occupancy P (H1).

The following section explores the use of techniques which do not require any

previous knowledge of the channel, with the necessary counterpart of coopera-

tion from the primary user, which should provide the fusion center with labeled

samples matching a number of previous sensing periods.

Figure 2.1 depicts a typical cognitive radio scenario with the cooperation from

the primary user. The vector d consists of M channel status results (referring

to either hypothesis H0 or H1) and is used by the fusion center in order to train

machine learning models.

The training process is an automated way to approximate a function which

maps the estimated energy samples on the SUs to a label provided by the PU.
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After the training phase, the models are able to decide the channel status based

on unseen energy samples. This allows the design of the cognitive radio network

to consider the best-effort approach, either by defining the cooperation of the

primary user or performing a way to provide channel knowledge into the secondary

users.

Fusion Center

SU1

PU

SU2

y1 y2

d

h1x h2x

Figure 2.1: Illustration of a cognitive radio network and the interactions
between SUs and PU. The vector d contains previous channel status and is used
by the fusion center in order to perform training of supervised machine learning

models.

2.2.1 Naive Bayes

The naive Bayes classifier, explored in A.1 and A.2, is based on the same as-

sumptions defined at 2.1.3 and can estimate the channel occupancy a posteriori

probability given the detected energy y through Bayes Theorem:

P (H1|y) =
f(y|H1)P (H1)

f(y|H1)P (H1) + f(y|H0)P (H0)
(2.8)

where P (H1) and P (H0) are the a priori probabilities of each hypothesis, esti-

mated as follows:

P (H1) =
M{H1}

M
(2.9)

P (H0) =
M{H0}

M
(2.10)

where M{Hi}, i = 0, 1 is the number of the ith hypothesis occurrences.

Once the posteriori probability has been defined, the estimated channel status

is given by:
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Ŝnb =




H1, if P (H1|y) ≥ 1− P ∗fa
H0, otherwise

(2.11)

2.2.2 Multilayer Perceptron

The multilayer perceptron is a well-known and widely adopted machine learning

technique explored in A.2. Its basic functionality can be described as a non-

linear function approximator. The set of inputs provided at the first layer of the

network flow through a series of inner (or hidden) layers, where each node applies

a non-linear sigmoidal function to the weighted combination of inputs.

Figure 2.2 depicts a typical network with one hidden layer of J neurons, I

inputs and Θ outputs.

y1

y2

...

yI

o
(2)
1
...

o
(2)
Θ

w
(1)
11

w
(1)
IJ

w (2)
11

w
(2)

JΘ

Figure 2.2: Illustration of a feed-forward neural network with one hidden layer

During the training procedure, the set of weights w are adjusted according

to the deviation of the actual outputs to expected outputs.

For the spectrum sensing problem, we consider a neural network with one

hidden layer, one output unit, i.e. Θ = 1 (since we are interested in binary

classification) and with the number of inputs equal to the number of SUs, i.e.

I = N . Also, we consider the number of neurons of the hidden layer to be equal

to the number of inputs N , so J = N . Therefore, we can write the output of any

neuron in the hidden layer as:

o
(1)
j = σ

(
N∑

i=0

w
(1)
ij yi

)
(2.12)

and similarly for the output neurons:

o
(2)
θ = σ

(
N∑

j=0

w
(2)
jθ o

(1)
j

)
(2.13)
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in both cases, y0 and o
(1)
0 are known as bias inputs and are equal to 1. They are

necessary in order to shift the activation function away from the origin.

The output of the network is mapped to the estimated channel status accord-

ing to the following:

Ŝmlp =




H1, if o ≥ 1− P ∗fa
H0, otherwise

(2.14)

where P ∗fa is the target false alarm probability.

2.2.3 Support Vector Machine

The support vector machine is a maximum margin classifier explored in A.2.

Putting simply, the SVM approximates a hypothesis function h(y) whose output

is positive for hypothesis H1 and negative for H0.

m
axim

um
m
argin

op
ti
m
al
hy
p
er
pl
an
e

support vector

support vector

Figure 2.3: Illustration of a support vector machine decision plane. The
optimal hyperplane separates the two classes (filled circles and empty circles) at

half distance of the maximum margin defined by the support vectors.

After solving an optimization problem to find the support vectors among

the training samples (i.e. the samples which define the margin between the two

hypothesis in feature space), the output of the SVM can be written as:

h(y) =
M∑

m=1

α?mdmκ(y,ym) + b? (2.15)

Once the output is obtained, a mapping function is used to convert the scalar

to a posterior probability of occupancy. Finally, the estimated channel status is
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obtained by:

Ŝsvm =




H1, if P̂ (h(y)) ≥ 1− P ∗fa
H0, otherwise

(2.16)
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3 Numerical Results

In the following sections, the numerical results obtained at each of the annexes

will be discussed separately, considering the techniques discussed in Chapter 2.

3.1 Bayesian Estimators for Cooperative Spec-

trum Sensing

On A.1, two cognitive radio scenarios were used to compare the techniques dis-

cussed in Sections 2.1.1, 2.1.2, 2.1.3 and 2.2.1. In both cases, the radio channel

was assumed to be AWGN.

SU 1

500 m

PU

750 m

SU 2

1000 m

SU 3

Figure 3.1: First cognitive radio scenario used in A.1

The first scenario depicted at Fig. 3.1 has three secondary users and one

primary user, separated by distances of 500m, 750m and 1000m. The spectrum

sensing results obtained by each technique were compared according to receiver

operating characteristic (ROC) curves and area under the curve (AuC) metrics.

The complete channel and simulation configuration can be found on A.1.
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Figure 3.2: ROC curve for scenario I

The ROC curves on Fig. 3.2 show very similar graphical results obtained

by the considered techniques. Clearly, the analytical and machine learning tech-

niques greatly outperform the simple methods such as OR and AND and the

individual results of the secondary users (not considering cooperation).

SU 1

500 m

PU

750 m

SU 2

1000 m

SU 3

SU 4

500 m

Figure 3.3: Second cognitive radio scenario used in A.1

The second scenario considered on A.1 is depicted at Fig. 3.3, the main dif-

ference from scenario I is the addition of a fourth secondary user also at 500m

of the primary user. This addition provides additional energy samples with rela-

tively high SNR to the fusion center, which is expected to improve the detection

performance.
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Figure 3.4: ROC curve for scenario II

Indeed, from Fig. 3.4 the performance of all techniques is clearly increased,

surpassing the 90% detection probability mark at 10% of false alarm.

Since all techniques have shown similar results graphically, Table 3.1 sum-

marizes the obtained AuC metrics for both scenarios, showing the MRC as the

upper-bound, followed by GM in scenario I and WB in scenario II.

Table 3.1: Monte Carlo simulation results (AuC).

Scenario MRC GM WB NB AND OR

Scenario I 0.9627 0.9615 0.9603 0.9608 0.7104 0.9314

Scenario II 0.9913 0.9902 0.9909 0.9891 0.7735 0.9716

3.2 Machine Learning Models for Cooperative

Spectrum Sensing

On A.2, the scenario from Fig. 3.1 was used to compare the techniques 2.1.1,

2.2.1, 2.2.2 and 2.2.3 under AWGN and Rayleigh fading channels. We compared

the results of channel status inference using ROC curves and AuC metrics. Ad-

ditionally, computational performance measurements were extracted during the

training and inference phases of each model, to better reflect the actual cost of

implementation.
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Figure 3.5: ROC curve for AWGN channel

On Fig. 3.5, we obtained the ROC curve for the aforementioned techniques

operating in an AWGN channel. MRC is established as an upper-bound followed

closely by the SVM with linear kernel.
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Figure 3.6: ROC curve for Rayleigh fading channel

On the other hand, when operating in Rayleigh fading channel, the MRC is

no longer the upper-bound due to the lack of channel estimation. In this case,

both the linear and Gaussian kernel SVMs establish the best channel detection

performance.
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3.2.1 Computational Costs

One interesting metric to take into account during implementation of machine

learning models is the size of the training set, which can directly impact the

training duration as well as the final model accuracy.

Table 3.2 summarizes the training and inference time averaged over 20 rounds,

for a training set of 500 samples. Whereas on Fig. 3.7, the time spent during

training phase is shown for 5 different training set sizes, from 50 to 1000 samples.

Table 3.2: Average time spent during training/inference phase for 500 training
samples

SS Technique Training [sec] Inference [sec]

NB 0.420 0.141

SVM-Linear 1.060 0.035

SVM-Gaussian 0.327 0.082

MLP 0.230 0.024

MRC - 0.006
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Figure 3.7: Time spent during training phase for different training set sizes.

Finally, on Fig. 3.8 we have the difference in AuC resulting from the variation

of the training set size. Clearly, the sharpest difference in performance is evident

from 50 to 500 samples.
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Figure 3.8: AuC for different training set sizes.

One interesting aspect that has not been taken into account by the metrics

and graphics above is the implementation considerations of each technique.

Despite having no training required and practically instant inference time,

the MRC technique requires the propagation of SNR information from SUs to

the fusion center, as well as channel estimation in realistic channels with fading,

which can pose a difficulty to implement.

On the other hand, each and every supervised machine learning technique

such as the ones described by 2.2 requires the cooperation from the PU to provide

the fusion center with channel status samples for the training of the models.

3.3 Simulation Code

The code used for the simulations performed in A.1 and A.2 is open source and

can be found at https://github.com/caiotavares/spectrum-sensing. Below

are listed some of the algorithms used during the development of A.2.

Listing 3.1: Naive Bayes implementation in MATLAB

function NB = NB(train , test)

NB.model = fitcnb(train.X,train.Y);

[~,NB.P,~] = predict(NB.model ,test.X);

NB.positiveClass = 2;

NB.name = ’NB’;
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Listing 3.2: Linear SVM implementation in MATLAB

function SVM = LSVM(train , test)

scoreModel = fitcsvm(train.X,train.Y,’KernelFunction ’, ’linear ’);

SVM.model = fitPosterior(scoreModel); % Transforms score to

posterior probability

[~,SVM.P] = predict(SVM.model ,test.X);

SVM.positiveClass = 2;

SVM.name = ’LSVM’;

Listing 3.3: Gaussian SVM implementation in MATLAB

function SVM = GSVM(train , test)

scoreModel = fitcsvm(train.X,train.Y,’KernelFunction ’, ’gaussian ’

);

SVM.model = fitPosterior(scoreModel); % Transforms score to

posterior probability

[~,SVM.P] = predict(SVM.model ,test.X);

SVM.positiveClass = 2;

SVM.name = ’GSVM’;

Listing 3.4: Multilayer perceptron implementation in R using the RSNNS

library

MLP <- function ()

{

library(R.matlab)

library(RSNNS)

data <- R.matlab :: readMat("ss.mat")$ML

X.train <- data.frame(data[,,1]$train [1])

X.train <- cbind(X.train , data[,,1]$train [2])

colnames(X.train)[ncol(X.train)] <- "Status"

X.train$Status <- factor(X.train$Status , levels = c(0,1))

inputs = ncol(X.train)-1

hiddenUnits = inputs

model <- RSNNS ::mlp(x = X.train[, -ncol(X.train)], y = RSNNS ::

decodeClassLabels(X.train$Status), size = hiddenUnits ,

hiddenActFunc = "Act_Logistic")

weights = weightMatrix(model)

W_hidden <- weights [1:inputs ,( inputs +1):( inputs+hiddenUnits)]

W_output <- weights [( inputs +1):( inputs+hiddenUnits) ,(inputs+

hiddenUnits +1):( inputs+hiddenUnits +2)]
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bias <- extractNetInfo(model)$unitDefinitions$unitBias

R.matlab :: writeMat(W_hidden = W_hidden , W_output = W_output ,

bias = bias , con = "MLP.mat")

}
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4 Conclusions

Considering the work conducted on Annex A, it was shown that the proposed

Bayesian methods perform well on simple AWGN channel models, and can be

considered as alternatives to the optimum MRC technique. Also, by comparing

different training set sizes, it was possible to show that the Naive Bayes model

performance is upper-bounded by a Gaussian Mixture Model with diagonal co-

variance matrix.

On the other hand, on the work developed on Annex B, it was shown that all

machine learning models perform very well when compared to the MRC technique

under AWGN channel, with special attention on the Support Vector Machine

with linear kernel function, which achieved the highest Area Under the Curve

metric. Whereas under Rayleigh fading channel, all studied ML models achieved

a high AuC than MRC, mostly due to the varying SNR on the SUs for each

sensing period. In addition, by using standard profiling tools, the computational

performance of each model was evaluated. Based on execution time metrics, the

MLP was shown to have the best trade-off between computational complexity

and AuC performance.

Both works provide insights into how well some common supervised machine

learning models perform on the problem of spectrum sensing for cognitive radios

under AWGN and Rayleigh channels and for different training set sizes.

Event though several authors explored the use of machine learning models in

the context of cognitive radio spectrum sensing, we’ve shown that by changing

the number of samples used for training, one can tune the trade-off between time

spent in training phase and the performance obtained on channel status inference,

which could affect each model differently.

Despite not being optimal, the time-based computational complexity obtained

can be used as a heuristic for choosing which technique is more suitable for the

desired implementation scenario.

In practice, the decision to which category and technique (analytical based
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on channel knowledge or machine learning based on PU cooperation) to apply on

a cognitive radio network depends on the system requirements and capabilities.

Despite being popular in many applications, supervised machine learning could

require periodic training in order to avoid performance degradation (due to de-

viations on the channel characteristics over time), which could pose additional

difficulties.

4.1 Future works

One interesting aspect that could be addressed in a future work is how often do

the machine learning models need to be re-trained in a non-stationary channel,

such as one imposed by SU mobility to avoid performance degradation. Also,

varying numbers of PUs/SUs on the cognitive radio network could affect the

channel status estimation.
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Abstract—In this paper we consider centralized cooperative
spectrum sensing (SS) techniques for cognitive radio networks
using energy detector scheme. In light of the requirements
imposed by centralized SS methods such as Maximum Ratio
Combining (MRC), namely the estimation and transmission of
the signal-to-noise ratio (SNR) on each secondary user, as well
as the transmission of the exact energy level to the fusion center,
we aim to analyze and compare alternative Bayesian techniques
to tackle the trade-off between operation overhead and detection
performance. Based on the statistics of classic energy detection
scheme, we consider three Bayesian SS estimators, the Weighted
Bayesian (WB) estimator, the Gaussian Mixture (GM) estimator
and a Naive Bayes (NB) classifier. We compare the results of
these techniques with well established cooperative SS schemes,
such as the MRC, AND and OR rule. Through the use of Monte
Carlo simulations, our results shows that the Bayesian techniques
evaluated offer similar performance in terms of area under the
ROC curve (AUC) regarding the optimum MRC technique, while
requiring less operation overhead for the secondary users.

Keywords – Cognitive Radios; Spectrum Sensing; Gaussian
Mixture Models; Bayesian Inference; Machine Learning;

I. INTRODUCTION

Cognitive radios (CR) systems are a proposed solution
to the spectrum scarcity problem in radio frequency (RF)
environment that aims to improve the overall spectrum utiliza-
tion. Several studies showed [1] that licensed spectrum bands
are often not occupied by the licensed users, thus creating
the opportunity for other devices to access the unoccupied
spectrum in an opportunistic way. These opportunistic devices,
denoted as secondary users (SU), need to be able to sense
the spectrum to assess the presence or absence of licensed
users, denoted as primary users (PU), either individually or
cooperatively. The idea of cognitive radios was first introduced
by Joseph Mitola III in 1999 [2], but has been given a lot of
attention recently due to the proposed heterogeneous nature of
5G networks [3].

Generally speaking, cooperative spectrum sensing schemes
falls into two topologies: distributed [4] or centralized [5].
Centralized approaches require the SUs to transmit infor-
mation regarding the local spectrum sensing (e.g., the SU
binary decision on spectrum occupancy for hard combination
schemes) to a fusion center, which in turn combines the
received data according to a given method, decides on the
spectrum occupancy and retransmit the decision back to the
SUs. On the other hand, distributed approaches relies on

information sharing among neighboring SUs, thus eliminating
the need for a fusion center.

Within centralized cooperative spectrum sensing techniques,
several authors explored the use of machine learning (ML)
models for SU data combination and decision-making in the
fusion center, such as [6] and [7]. Such models relies heavily
on the statistical characterization of the detection scheme
considered.

In this paper, we leverage the knowledge of the statistical
model of energy detection scheme and analyze Bayesian es-
timators for centralized cooperative spectrum sensing, namely
the Weighted Bayesian (WB), Learning-Based Naive Bayes
(NB) and Gaussian Mixture model (GM). The motivation
for studying such techniques is to reduce the overhead and
complexity imposed by traditional well-established centralized
cooperative techniques such as the Maximum Ratio Combin-
ing (MRC) [5].

With this in mind, the WB estimator translates the estimated
energy on the SU to a channel occupancy probability before
transmitting to the fusion center, which in turn is bounded,
thus, requires less bytes to perform such task. On the other
hand, the NB classifier suppresses the need to estimate and
transmit the SNR on each SU by considering a machine learn-
ing approach, modeling the system probability distribution
according to a training set of labeled energy levels.

The remainder of this paper is organized as follows. Section
II discusses the system model for the cognitive radio network
and the statistics of the primary user signal. Section III details
the cooperative spectrum sensing techniques with soft combi-
nation schemes. Section IV discusses comparative results for
such SS techniques through numeric results from Monte Carlo
simulations. Finally, Section V offers the remarks and main
conclusions. II. SYSTEM MODEL

We consider a cognitive radio network (CRN) with one
PU and n SUs, where each secondary user employs energy
detection for spectrum sensing with sensing period τ and
sensing bandwidth w. The sampling frequency is considered
to be at the Nyquist rate, fs = 2w, thus the SU acquires
K = 2wτ samples at each sensing period.

We can write the signal at the ith SU according to two
hypothesis:
{
H1 : zi(k) = hix(k) + ni(k), if the PU is active
H0 : zi(k) = ni(k), otherwise

(1)



where hi is the channel coefficient from the PU to the ith
SU, x(k) is the transmitted PU signal and ni(k) is the
background thermal noise at the ith SU receiver considered
to be a zero-mean Gaussian random variable with variance
σ2
n. Furthermore, the channel coefficient hi is described by

the path-loss and fading components:

hi = gi

√
d−αi (2)

where gi is the fading component considered to be unitary
throughout this paper, di is the Euclidean distance between the
PU and the ith SU and α is the path-loss exponent, which we
have considered as 4, indicating a non-line-of-sight (NLOS)
channel environment.

At the end of the spectrum sensing period, the estimated
normalized energy level at the ith SU is given by:

yi =
1

σ2
n

K∑

k=1

z2
i (k) (3)

where K is the number of samples deployed in the spectrum
sensing period.

It is clear that under the H0 hypothesis, zi(k) = ni(k) ∼
N (0, σ2

n), thus, yi will follow a central Chi-squared distribu-
tion with K degrees of freedom:

yi =
K∑
k=1

[
ni(k)

σn

]2

=

K∑

k=1

ẑ2
i (k) where ẑi(k) ∼ N (0, 1)

∴ yi ∼ X 2
K (4)

On the other hand, under hypothesis H1, the signal at the
ith SU will be the composition of the PU signal scaled by the
channel gain plus the receiver Gaussian noise. If we assume
the transmitted PU signal as zero-mean Gaussian random
variable with variance σ2

s , then the estimated normalized
energy level will follow a Gamma distribution with shape K

2
and scale 2(1 + γi):

yi =
K∑
k=1

[
hix(k) + ni(k)

σn

]2

=
K∑
k=1

ẑ2
i (k) (5)

where ẑi(k) ∼ N
(

0, 1 +
h2
iσ

2
s

σ2
n

)
∴ yi ∼ Γ

(
K
2 , 2(1 + γi)

)

where γi is the signal-to-noise ratio given by: γi =
(
hiσs

σn

)2

On the conventional energy detection scheme, each SU
infers the spectrum occupancy status by comparing the nor-
malized sensed energy level to a given threshold λ:

si =

{
H1, if yi ≥ λ
H0, if yi < λ

(6)

The probability of false alarm is defined as Pfa = P (y ≥
λ|H0). Likewise, the probability of detection is defined as
Pd = P (y ≥ λ|H1). Hence, given the statistics of hypothesis
H0, we can write Pfa for the ith SU as the right-tail probability
of a central Chi-squared random variable:

Pfai =

∞∫

λ

f(yi|H0)dy , QX 2
K

(λ) (7)

where f(yi|Hj) is the conditional probability density function
(PDF) for the estimated normalized energy level at the the ith
SU, given hypothesis Hj , with j = 0, 1.

In turn, the threshold parameter λ can be obtained from (7)
by fixing a target false alarm probability (P ∗fa) as:

λ = Q−1
X 2

K
(P ∗fa) (8)

III. SOFT COMBINATION CENTRALIZED COOPERATIVE
SPECTRUM SENSING

In centralized cooperative spectrum sensing, the term soft
combination refers to schemes where the estimated energy
level on the SU is transmitted for further processing in the
fusion center, which will infer the channel status and transmit
the decision back to the secondary users, concluding the
sensing time period. Within this category, we shall enumerate
and briefly analyze three Bayesian methods and the well-
established maximum ratio combining method.
A. Maximum Ratio Combining (MRC)

The Maximum Ratio Combining (MRC) technique esti-
mates the channel status by combining the weighted energy
levels obtained at each SU and communicated with the fusion
center.

Ŝ =




H1, if

N∑

i=1

wiyi ≥ λ

H0, otherwise

(9)

where wi is the weight for the ith SU energy level, defined as
the normalized SNR over N cooperate nodes, seen on each
SU, i.e., wi =

γi∑
N

γi
and λ is given by Eq. (8).

This technique achieves optimum performance at the cost
of estimating and transmitting the SNR and exact energy level
of each SU to a fusion center.
B. Weighted Bayesian (WB) Estimator

The Weighted Bayesian estimator (WB) takes advantage of
the knowledge on the statistics of the estimated energy level
and computes the a posteriori probability of occurrence for
each hypothesis, given the energy level estimated on each SU.
The estimator then combines the calculated probabilities of
each SU weighted by their respective average SNR γ̄i, hence:

P (H1|y) =
1

N∑
i=1

γ̄i

N∑

i=1

γ̄iP (H1|yi) (10)

where P (H1|yi) is given by Bayes Theorem:

P (H1|yi) =
P (yi|H1)P (H1)

P (yi|H0)P (H0) + P (yi|H1)P (H1)
(11)

where P (H1) and P (H0) are the PU transmission a priori
probability and its complement, respectively, discussed in
Section IV.

From (4) and (6), Eq. (11) can be rewritten as:

P (H1|yi) =
fΓK

2

(yi)P (H1)

fX 2
N

(yi)P (H0) + fΓK
2

(yi)P (H1)
(12)



In order to reduce the overhead, the conditional probability
P (H1|yi) can be calculated on each SU and transmitted to a
fusion center instead of the estimated energy level, alongside
its respective average SNR γ̄i.

Finally, the WB estimator infers the channel status (occu-
pied or empty) based on the following rule:

Ŝ =

{
H1, if P (H1|y) ≥ 1− P ∗fa
H0, otherwise

(13)

where y = [y1, y2, . . . yN ] is the estimated energy level vector.

C. Learning-Based Naive Bayes (NB) Classifier

The Naive Bayes (NB) classifier makes a simplifying as-
sumption regarding the estimated energy level on each SU
(yi), by considering that yi, for i = 1 to N , are mutually inde-

pendent, thus f(y|Hj) =
N∏
i=1

f(yi|Hj), with j = {0, 1}. Fur-

thermore, by considering that f(yi|Hj) is Gaussian, f(y|Hj)
becomes a multivariate Gaussian distribution with diagonal
covariance matrix.

Indeed, as the number of samples K increases, (4) can be
well approximated by a Gaussian distribution with mean K
and variance 2K. Likewise, (6) can be well approximated by
a Gaussian distribution with mean K(1 + γi) and variance
2K(1 + γi)

2.
With this in mind, we can model f(y|Hj) using a machine

learning approach. Considering a training set with samples
of yi of size Ωtrain, in which the channel status is known,
the Naive Bayes model can estimate the probability density
functions parameters of each hypothesis as:

µ̂i,H1,0
=

1

Ω
H1,0

train

Ω
H1,0
train∑

ω=1

yi,H1,0
[ω]

σ̂2
i,H1,0

=
1

Ω
H1,0

train − 1

Ω
H1,0
train∑

ω=1

(yi,H1,0
[ω]− µ̂i,H1,0

)2

(14)

where Ω
H1,0

train refers to the section of the training set which
comprises hypothesis H1 or H0.

After the training phase, the Naive Bayes classifier can
estimate the channel occupancy probability given the detected
energy y through Bayes Theorem, Eq. (11), where P (H1)
and P (H0) are the a priori probabilities of each hypothesis,
estimated in the training phase as the number of occurrences
of each hypothesis divided by the number of training samples.

Finally, the channel status is inferred based on P (H1|y)
and the target false alarm probability in a same way as
obtained in the WB estimator, Eq. (13). However, differently
of WB estimator, by using this NB learning-based approach,
the secondary users are not required to estimate the average
signal-to-noise ratio γi, as it can be inferred from the training
phase with the labeled samples, Eq. (14).

D. Gaussian Mixture Model

The Gaussian Mixture (GM) estimator assumes that the esti-
mated energy levels given each hypothesis form a multivariate

Gaussian distribution, which, according to the central limit
theorem, is a valid approximation for large number of samples
K. For simplification, we further assume that the distributions
are mutually independent.

Thus, the GM model applied to spectrum sensing problem
can be fully specified by the mean matrix M , variance matrix
Σ2 and mixing proportions vector π. From (4) and (6), we
have:

M =

[
K . . . K

K(1 + γ̄i) . . . K(1 + γ̄N )

]

Σ2 =

[
2K . . . 2K

2K(1 + γ̄i)
2 . . . 2K(1 + γ̄N )2

]

π =
[
P (H0) P (H1)

]T

(15)

Given the GM model, the estimator calculates the a posteri-
ori probability P (H1|y) as in Eq. (11) and infers the channel
occupancy by applying Eq. (13). Therefore, the GM model
performs as an asymptotic version of the Naive Bayes classifier
discussed in III-C and can be seen as a upper-bound on the
performance of NB as the size of the training set increases.

IV. NUMERICAL RESULTS

In order to compare the performance of the analyzed
Bayesian techniques, we carried out Monte Carlo simulations
with 5 × 104 realizations, considering two CRN scenarios.
For both scenarios, we considered the parameters described
in Table I. In addition to the soft combination techniques, we
considered two well-established hard combination methods,
where the secondary users decisions based on Eq. (6) are
transmitted to the fusion center, namely the AND rule and
OR rule, for comparison purpose.

Table I
ADOPTED SYSTEM PARAMETERS FOR THE MONTE CARLO SIMULATIONS.

Bandwidth (w) 5 MHz Sampling frequency (fs) 10 MHz
Noise PSD (η0) -153 dBm PU active prob. (P (H1)) 0.5
PU TX power (σ2

s ) 0.1 mW Number of SUs (N ) 3 and 4
Sensing time (τ ) 5 µs Number of samples (K) 50
Training set size (Ωtrain) ΩH1

train + ΩH0
train = 500

A. Scenario I

As depicted in Fig. 1a, the first scenario considers a diverse
setup with three secondary users, with various distances from
the PU, thus, various SNR levels can be emulated. Hence,
we have evaluated the receiver operating characteristic (ROC)
curve for each technique discussed, both cooperative and in-
dividual spectrum sensing strategies operating under scenario
1. The average SNR obtained on each SU are as follows:
γ̄1 = −2 dB, γ̄2 = −9 dB and γ̄3 = −14 dB. From Fig.
2a we notice that all the soft-combination methods evaluated
performed really closely. Indeed, from Tab. II, the values
for the area under the ROC curve (AuC) demonstrate that
although the performances are similar, the Weighted Bayesian
estimator is slightly outperformed by the simpler Gaussian
Mixture model and the learning-based Naive Bayes classifier.
Besides, all the soft-combination methods are quite superior in
terms of ROC performance regarding both hard combination
cooperative SS techniques, namely rule AND and OR.
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Figure 1. CRN simulation scenarios.
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Figure 2. ROC curves for scenarios I and II.

In order to better assess the effect of the training set size on
the performance of the NB classifier, we evaluated six different
training set sizes and compared the performance in terms of
the ROC curve and AuC measures, as well as the Gaussian
Mixture model, which acts as the upper-bound. Figure 3
summarizes our finding. It is clear that for training sets larger
than 250 samples the NB performance is sufficiently close to
the upper-bound (GM model), with marginal improvements
for increases in the training set when Ωtrain > 1000 samples.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

False Alarm Probability

0.8

0.85

0.9

0.95

1

D
et

ec
tio

n 
P

ro
ba

bi
lit

y  = 25
 = 50

 = 100

 = 250
 = 500

 = 5000
GMM

Figure 3. Naive Bayes performance for various training set sizes.

B. Scenario II

Next, we consider Scenario II depicted in Fig. 1b. As an
extension to Scenario I, we consider the addition of another
SU at 500 m from the primary user, in order to evaluate the
cooperative performance benefits.

The addition of another SU with an average SNR of
γ̄4 = −2 dB incurs in an increase in the detection probability
for all cooperative methods evaluated, as depicted in Fig. 2b,

improving substantially the overall CRN spectrum sensing
performance. In contrast to the ROC curve for Scenario I, Fig.
2b corroborates that the centralized cooperative techniques
analyzed herein remarkably outperform all individual SUs,
demonstrating that these methods can leverage the addition
of more secondary users to the cooperative schemes, at the
cost of exchanging information between the cooperative SU
nodes and the fusion center, reducing the spectral efficiency
of the CRN.

Table II
MONTE CARLO SIMULATION RESULTS (AUC).

SCENARIO MRC GM WB NB AND OR
Scenario I 0.9627 0.9615 0.9603 0.9608 0.7104 0.9314
Scenario II 0.9913 0.9902 0.9909 0.9891 0.7735 0.9716

V. DISCUSSION AND FINAL REMARKS

In this paper, we compared cooperative spectrum sensing
techniques of Bayesian nature such as a weighted Bayesian
estimator, a Gaussian mixture estimator and the learning-
based Naive Bayes classifier to the well-established centralized
techniques such as the Maximum Ratio Combining, rule AND
and rule OR techniques.

As an alternative for the high overhead of the Maximum
Ratio Combining method, we presented the weighted Bayesian
estimator, which transmits the channel occupancy probability
to the fusion center, instead of the exact estimated energy level.

For systems that can not afford to estimate the SNR on the
SU nodes, the Learning-Based Naive Bayes classifier can be
seen as an attractive alternative. In order to infer the channel
status, the NB requires a prior training phase with estimated
energy levels of each SU and the respective channel status.
It was shown that for a sufficiently large training set, the NB
performs similarly as the Gaussian mixture model technique
with mutually independent distributions.

Based on Monte Carlo simulations, we were able to demon-
strate the performance of each SS method operating under two
practical cognitive radio scenarios. The numerical results allow
infer that all soft-combination cooperative methods performed
closely for both scenarios.
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Machine Learning-based Models for Spectrum
Sensing in Cooperative Radio Networks
Caio Henrique Azolini Tavares, Jose Carlos Marinello, Mario Lemes Proenca Jr.

Taufik Abrao

Abstract—In this paper, we consider the application of
machine learning (ML) models in cooperative spectrum
sensing (SS) of cognitive radio networks (CRNs). Based on
statistical analysis of classic energy detection (ED) scheme,
the probability of detection and false alarm are derived,
which depends solely on the number of samples and signal-
to-noise ratio of the SUs. The channel occupancy detection
obtained from established analytical techniques such as
MRC and AND/OR rules are compared to different ma-
chine learning techniques, including Multilayer Perceptron
(MLP), Support Vector Machine (SVM) and Naive Bayes
(NB), based on receiver operating characteristic (ROC) and
area under the curve (AuC) metrics. By using standard
profiling tools, we obtain the computational performance
of the analyzed models during the training phase, a
critical step for operating in CRNs. Ultimately, the results
demonstrate that the MLP machine learning technique
presents a better trade-off between training time and
channel detection performance.
Keywords – Cognitive Radios (CR); Spectrum Sensing
(SS); Machine Learning (ML) techniques; Computational
Performance;

I. INTRODUCTION

Cognitive radios (CR) systems are a proposed solution
to the spectrum scarcity problem in radio frequency (RF)
environment that aims to improve the overall spectrum
utilization. Several studies showed [1]–[3] that licensed
spectrum bands are often not occupied by the licensed
users, thus creating the opportunity for other devices to
access the unoccupied spectrum opportunistically. These
opportunistic devices denoted as secondary users (SU),
need to be able to sense the spectrum to assess the
presence or absence of licensed users, denoted as primary
users (PU), either individually or cooperatively. The idea
of cognitive radios was first introduced by Joseph Mitola
III in 1999 [4], but has been given much attention
recently due to the proposed heterogeneous nature of 5G
networks [5]–[8].

C. Tavares, J. C. Marinello and T. Abrao are with the Department
of Electrical Engineering, State University of Londrina, Parana,
Brazil. E-mail: caio.tavares11@gmail.com; jcmarinello@uel.br;
taufik@uel.br

M. L. Proenca Jr. is with the Department of Computer Science,
State University of Londrina, Parana, Brazil. E-mail: proenca@uel.br.

Spectrum sensing in cognitive radios (SS-CRs) still
poses a challenge for high-performance and high-energy
efficient systems since SS performance is often propor-
tional to the spectrum sensing period. In turn, SS-CRs is
an energy consuming task that also degrades the spectral
efficiency of the secondary users, since they need to
spend time and energy on a task that does not result
in transmitted bits.

Machine learning (ML) has received increasing in-
terest and found application in many fields recently.
ML is a way of programming computers to optimize a
performance criterion using example data or experience
[9]. Such interest is due to the its ability to apply complex
calculations to evaluate and interpret patterns and to
its ability to interpret patterns and structures in data,
enabling learning, reasoning, and decision making. This
apparent self-learning characteristic associated to ML
techniques is by itself mostly based on applied statistics,
whereas the training and inference capabilities owe their
efficiency to great computer science algorithms.

There are several networking open problems been
treated under the ML perspective, including a) traffic
prediction; b) traffic classification; c) traffic routing; d)
congestion control, including important issues such as
queue management, congestion inference and packet loss
classification; e) resource management, which comprises
admission control and resource allocation policies; f)
fault management; g) QoS and QoE management; h)
network security, aggregating anomaly and intrusion
detection; among others. A comprehensive survey on
machine learning applied to networking is discussed in
[10].

Specifically, in the context of cognitive radio net-
works (CRNs), several research papers related to ma-
chine learning for spectrum sensing have been published.
These ML-based sensing techniques aim at detecting the
availability of frequency channels by formulating the
process as a classification problem in which the classifier,
supervised or unsupervised, has to decide between two
states of each frequency channel: free or occupied.

Moreover, cooperative SS-CRNs have been performed
by ML. The existing works can be classified into two
main categories. The technique in the first category uses
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two steps. In the first step, unsupervised machine learning
techniques are used to analyze data and discover the
primary user’s patterns. In the second step, supervised
machine learning techniques are used to train the model
with the data labeled in the first step [11]. For instance,
a two-step machine learning model for spectrum sensing
can be constructed. In the first step, for instance, the K-
means algorithm could be used to identify the state of
the primary user’s presence. In the second step, support
vector machine (SVM) or other types of classifiers can
be used to attribute the new input data into one of the
classes specified by the K-means method used in the
first step. Techniques of the second category assume that
the classes are known, and they are based on supervised
machine learning to train models. In the current work,
we follow the second category approach. For example,
existing works in the literature that use only one step
in which supervised machine-learning classifiers, such
as K-nearest neighbor, support vector machine, Naive
Bayes, and decision tree, are applied [11].

Since the task of determining the channel status based
on spectrum sensing is due to its nature a classification
task, several authors have considered the use of ML
models as inference tools. In [12], the authors propose
and compare the performance of several supervised and
unsupervised ML techniques for cooperative SS pur-
pose, such as Support Vector Machines (SVM), the K-
means clustering algorithm and Gaussian Mixture Model
(GMM), but do not provide a comparison of detection
performance over different scenarios of interest, such as
considering distinct training set sizes or different channel
scenarios of practical interest. In [13], the authors study
the use of ML algorithms for spectrum occupancy in
cognitive radio networks (CRNs), which include the
Naive Bayesian Classifier (NBC). In [14], the authors
propose user grouping algorithms to improve spectrum
sensing results and SVM training time and in [15] the
authors enumerate the pros and cons of several unsu-
pervised and supervised machine learning techniques
applied to spectrum sensing, such as the requirement
of data labeling for supervised models and the risk of
overfitting. Authors in [16] proposed a centralized SS-
CRN scheme based on K-nearest neighbor. In the training
phase, each CR user produces a sensing report under
varying conditions and, based on a global decision, either
transmits or stays silent. The local decisions of CR users
are combined through a majority voting at the fusion
center and a global decision is returned to each CR user,
implying in a spectral overhead.

SVM-based cooperative SS model with user grouping
method is discussed in [17]. User grouping procedures
reduce cooperation overhead and effectively improve

detection performance. Hence, users in CRN are grouped
before the cooperative sensing process using energy data
samples and a properly ML model. Authors compare
three grouping methods, the first divides normal and
abnormal users into two groups, while the second group-
ing algorithm distinguishes redundant and non-redundant
users, and the third grouping algorithm selects users
within a subset that minimising average correlation. The
performances of the three algorithms were quantified in
terms of the average training time, classification speed
and classification accuracy.

Finally, in [18], a low-dimensional probability vector is
proposed as the feature vector for machine learning based
classification, instead of the high-dimensional energy
vector in a CRN with a single primary user and N
secondary users. Such method down-converts a high-
dimensional feature vector to a constant two-dimensional
feature vector for ML techniques while keeping the same
spectrum sensing performance. Due to its lower dimen-
sion, the probability vector-based classification requires
a smaller training duration and a shorter classification
time.

A. Contributions

This work considers the application of supervised ML
models to the task of channel status inference based
on cooperative energy detection spectrum sensing. By
considering the a posteriori probability of channel occu-
pancy, we aim to obtain a clear tradeoff characterization
between computational complexity and classification per-
formance for each model when compared to traditional
analytical cooperative SS-CRN techniques, while also
raising relevant issues on the system implementability.

B. Paper Organization

The remainder of this paper is organized as follows.
Section II discusses the system model for the CRN and
the statistics of the primary user signal for energy de-
tectors. Section III includes the modeling of well known
analytical models for cooperative spectrum sensing. Sec-
tion IV explores the application of supervised machine
learning techniques. Section V shows comparative results
of the techniques through Monte Carlo simulations. Fi-
nally, Section VI offers remarks and main conclusions.

II. SYSTEM MODEL

We consider a cognitive radio network (CRN) with one
PU and n SUs, where each secondary user employs en-
ergy detection for spectrum sensing with sensing period
τ and sensing bandwidth w. The sampling frequency is
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considered to be at the Nyquist rate, fs = 2w. Thus the
SU acquires K = 2wτ samples at each sensing period.

We can write the signal at the ith SU according to two
hypotheses:
{
H1 : zi(k) = hix(k) + ni(k), if the PU is active

H0 : zi(k) = ni(k), otherwise
(1)

where hi is the channel coefficient from the PU to the ith
SU, x(k) is the transmitted PU signal, and ni(k) is the
noise at the ith SU receiver considered to be a zero-mean
Gaussian random variable with variance σ2

n.
The channel coefficient hi is described by the path-loss

and fading components:

hi = giD
−α

2

i (2)

where gi is the fading component, Di is the Euclidean
distance between the PU and the ith SU and α is the
path-loss exponent, which we consider as 4, indicating a
non-line-of-sight (NLOS) channel environment.

At the end of the spectrum sensing period, the esti-
mated normalized energy level at the ith SU is given by:

yi =
1

σ2
n

K∑

k=1

zi(k)
2 (3)

Under hypothesis H0, zi(k) = ni(k) ∼ N (0, σ2
n),

thus, yi will follow a central Chi-squared distribution
with K degrees of freedom:

yi =

K∑

k=1

(
ni(k)

σn

)2

=

K∑

k=1

ẑi(k)
2 where ẑi(k) ∼ N (0, 1)

∴ yi ∼ X 2
K

(4)
On the other hand, under hypothesis H1, the signal at

the ith SU will be the composition of the PU signal scaled
by the channel gain plus the Gaussian receiver noise.
If we assume the transmitted PU signal as zero-mean
Gaussian random variable with variance σ2

s , then the
estimated energy level will follow a Gamma distribution
with shape K

2 and scale 2(1 + γi):

yi =

K∑

k=1

(
hix(k) + ni(k)

σn

)2

=

K∑

k=1

ẑi(k)
2 , where ẑi(k) ∼ N

(
0, 1 +

h2iσ
2
s

σ2
n

)

∴ yi ∼ Γ

(
K

2
, 2(1 + γi)

)

(5)
where γi is the signal-to-noise (SNR) ratio given by:

γi =
(
hiσs

σn

)2

On the conventional energy detection scheme, each SU
infers the spectrum occupancy status by comparing the
normalized sensed energy level to a given threshold λ:

si =

{
H1, if yi ≥ λ

H0, if yi < λ
(6)

The probability of false alarm is defined as Pfa =
P (y ≥ λ|H0). Likewise, the probability of detection is
defined as Pd = P (y ≥ λ|H1). Hence, given the statistics
of hypothesis H0, we can write Pfa for the ith SU as
the right-tail probability of a central Chi-squared random
variable:

Pfai =

∞∫

λ

f(yi|H0)dy , QX 2
N
(λ) (7)

In turn, the threshold parameter λ can be obtained
from (7) by fixing a target false alarm probability (P ∗

fa)
as:

λ = Q−1
X 2

N
(P ∗

fa) (8)

Using the definition of the incomplete Gamma function,
Eq. (8) can be rewritten as [19]:

λ = 2Γ−1
u

(
P ∗

fa,
K

2

)
(9)

where Γu(x, n) is the upper incomplete Gamma function,
defined as:

Γu(x, n) =
1

Γ(x)

∞∫

n

tx−1e−tdt (10)

and Γ(x) is the Gamma function.
Likewise, given λ we can calculate the probability of

detection offered by the ith SU as the right-tail probability
of a Gamma distribution with shape K

2 and scale 2(1+γ):

Pdi
=

∞∫

λ

f(yi|H1)dy , QΓ

(
λ;

K

2
, 2(1 + γi)

)
(11)

which, in turn, can be rewritten as:

Pdi
= Γu

(
λ

2(1 + γi)
,
K

2

)
(12)

III. CONVENTIONAL SS-CRN TECHNIQUES

So far, the discussed methodology for the ith SU to
assess the presence or absence of a primary user involves
only the estimated energy level on the ith SU. Now
we shall enumerate and briefly analyze classical ana-
lytical methods of cooperative spectrum sensing, where
the estimated energy level on all secondary users are
transmitted through a service layer to a fusion center,
which will apply deterministic decision rules aiming
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at deciding cooperatively whether a PU is present or
not by combining the SU individual decisions. In the
following the three main deterministic decision rules for
SS cooperative networks, namely AND, OR and MRC
rules are revisited.

A. AND Rule

In the AND rule, the fusion center decides the oc-
cupancy state of the channel by comparing the sensed
energy level of each SU to the threshold λ from Eq.
(9) and then applying the AND logical operation on the
result, as shown below:

Ŝ =

{
1, if (ŝ1 ⊙ ŝ2 ⊙ . . . ŝN) = 1

0, otherwise
(13)

where ⊙ denotes the logical AND operator.

B. OR Rule

The OR rule is similar to the AND rule, in which it
compares the energy level from each SU to λ and then
applies the logical OR operation on the result:

Ŝ =

{
1, if (ŝ1 ⊕ ŝ2 ⊕ . . . ŝN) = 1

0, otherwise
(14)

where ⊕ denotes the logical OR operator.

C. Maximum Ratio Combining

The maximum ratio combining (MRC) technique es-
timates the channel status by combining the weighted
energy levels obtained at each SU and communicated
with the fusion center.

Ŝ =





H1, if
N∑

i=1

wiyi ≥ λ

H0, otherwise

(15)

where wi is the weight for the ith SU energy level,
defined as the normalized average SNR over N cooperate
nodes γ̄i, seen on each SU, i.e., wi =

γ̄i∑
N

γ̄i
and λ is

given by Eq. (8).
This technique achieves optimum performance at the

cost of increasing complexity and overall spectral effi-
ciency reduction, due to the requirement of estimating
and transmitting the SNR and exact energy level of each
SU to a fusion center (centralized decion).

IV. MACHINE LEARNING TECHNIQUES

The primary motivation for using ML models in spec-
trum sensing is the ability to operate in the absence of
knowledge of the CR network parameters, such as the
signal-to-noise ratio γi in SUs and the a priori hypothesis
probabilities P (H0) and P (H1). The only requirement
in the case of supervised learning methods is a set of
labeled energy samples in order to train the models. In
practical terms, this means that the primary users need to
cooperate with the training phase of the secondary users
by providing the channel status regularly. As shown, in
Fig. 1 a simple CRN configuration with N = 2 SUs, one
PU and one fusion center is sketched.

Fusion Center

SU1

PU

SU2

y1 y2

d

h1x h2x

Figure 1. Example of a cognitive radio scenario training phase. The
SUs provide the fusion center with y ∈ RM×1 energy samples, while
the PU provide the corresponding channel status vector d.

The general objective of a supervised machine learning
model is to devise a system that, given a set of training
inputs and the corresponding labelled output, such sys-
tem is able to infer on the output of an unseen example
or scenario with a certain level of confidence.

In the context of channel status inference, this means
that given a set Ytrain ∈ RM×N of M energy samples
detected by N cooperative SUs and a corresponding set
d ∈ RM×1 where dm ∈ {0; 1} of channel status, we
want to obtain a hypothesis function h(y) : RN → R
which can estimate the channel status Ŝ, i.e., for a given
ym, we want to be able to predict dm. For clarification
purpose, Fig. 2 shows the received energy level on 3
SUs and the corresponding channel status for M = 104

samples. Clearly, the classes are non-separable in input
space.

Concretely, the model training procedure can be seen
as obtaining a hypothesis function such as the linear:

h(y) = yw + b (16)

where w ∈ RN×1 optimally separates the two classes
or channel status by minimizing an error function
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Figure 2. Example of non-separable R3 input space. Each dimension
is the received energy level on a secondary user.

E(h(Ytrain),d). The decision region of (16) can also be
interpreted as the hyperplane h(y) = 0. With this in
mind, we can write down the general goal of a supervised
machine learning problem:

minimize
w,b

1

M

M∑

i=1

E(h(yi), di) (17)

where w and b are the parameters of the hypothesis
function in Eq. (16), and E(·) is the error function.

In simple terms, most supervised ML models differ
only in three aspects:

a) implementation of the error function E(·);
b) formulation of the hypothesis function h(y);
c) optimization methodology applied on E(·).

A. Multilayer Perceptron (MLP)

Neural networks are known as universal function ap-
proximators and perhaps the most well-known machine
learning technique. The neural network maps the input
vector y to the output o through a set of weighted
nonlinear functions. Given its relative simplicity and
success in the context of pattern recognition [20], we
consider a multilayer perceptron with one hidden layer,
which is based on Rosenblatt perceptron developed in
[21].

In the forward phase, an input signal flows from left
to right of the network. The signal value at the input of
any given neuron j at layer ℓ can be written as:

a
(ℓ)
j =

∑

i

w
(ℓ)
ij o

(ℓ−1)
i (18)

y1

y2
...

yI

o
(2)
1
...

o
(2)
Θ

w
(1)
11

w
(1)
IJ

w (2)
11

w
(2)

JΘ

Figure 3. General representation of a feed-forward neural network
with one hidden layer.

where o0i = yi
Similarly, the output of any neuron j is given by:

o
(ℓ)
j = σ

(
a
(ℓ)
j

)
(19)

where σ(·) is the activation function, which has only two
requirements: to be differentiable and nonlinear. Often
chosen to be the logistic sigmoid function or hyperbolic
tangent. In this paper, we chose the former:

σ(x) =
1

1 + e−x
(20)

Being specific, we consider a neural network with one
hidden layer, one output unit, i.e. Θ = 1 (since we are
interested in binary classification) and with the number of
inputs equal to the number of SUs, i.e. I = N . Also, we
consider the number of neurons of the hidden layer to be
equal to the number of inputs N , so J = N . Therefore,
we can write the output of any neuron in the hidden layer
as:

o
(1)
j = σ

(
N∑

i=0

w
(1)
ij yi

)
(21)

and similarly for the output neurons:

o
(2)
θ = σ




N∑

j=0

w
(2)
jθ o

(1)
j


 (22)

in both cases, y0 and o
(1)
0 are known as bias inputs and

are equal to 1. They are necessary in order to shift the
activation function away from the origin.

By considering a training vector of desired binary
outputs d ∈ RM×1 with dm ∈ {0; 1} for M input vectors
y, we can interpret the output o of the neural network
(22) as the conditional probability p(H1|y), whereas the
probability p(H0|y) is given by 1 − o. With this in
mind, we can write the conditional distribution of desired
outputs as a Bernoulli distribution: [20]

p(d|y,w) = od (1− o)1−d (23)
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where the set of all weights and biases have been
combined into vector w.

By taking the negative log likelihood of (23) and,
by considering that the training set is composed of
independent observations, the error function becomes the
cross-entropy error function for the input vector ym [20]:

E(w) = −
M∑

m=1

Em(w) (24)

= −
M∑

m=1

{dm ln om + (1− dm) ln(1− om)}

Since it is not possible to arrive at the optimum weight
vector analytically [20], we can resort to a numerical
approach such as stochastic gradient descent (25) in order
to find w that minimizes (24):

w[τ+1] = w[τ ] − η∇Em(w[τ ]) (25)

where η > 0 is known as the learning rate parameter and
controls the step size of the update to the weight vector.

A prevalent method for obtaining the error function
gradient on each neuron is known as backpropagation.
Putting simply, we propagate an error signal from the
output nodes to the hidden nodes and apply a penalty
to the associated weight according to the cost function.
For a network with Θ outputs and two layers (same as
depicted in Fig. 3), the error on the output node θ is
trivial:

δθ = oθ − dθ (26)

whereas on the jth hidden neuron:

δj = σ′
(
a
(1)
j

)∑

θ

w
(2)
θj δθ (27)

where σ′(·) is the derivative of the activation function
σ(·).

Once we have the errors for every neuron, we can
easily obtain the derivative:

∂Em

∂wij
= δjoi (28)

Finally, once the neural network is trained, the channel
status inference for an unseen example is made based on:

ŜMLP =

{
H1, if o ≥ 1− P ∗

fa

H0, otherwise
(29)

B. Naive Bayes (NB)

The Naive Bayes (NB) classifier makes a simplifying
assumption regarding the estimated energy level on each
SU, by considering that yi, for i = 1 to N , are mutually
independent. Thus one can write their joint conditional

probability density function (pdf) as the multiplication of
each marginal pdf:

f(y|Hj) =

N∏

i=1

f(yi|Hj) with j ∈ {0, 1} (30)

Furthermore, by considering that f(yi|Hj) is Gaus-
sian, f(y|Hj) becomes a multivariate Gaussian distribu-
tion with a diagonal covariance matrix. Indeed, as the
number of samples K increases, zi(k) under hypothesis
H0 can be well approximated by a Gaussian distribu-
tion with mean K and variance 2K. Likewise, zi(k)
under hypothesis H1 can be well approximated by a
Gaussian distribution with mean K(1+ γi) and variance
2K(1 + γi)

2.
Considering a training set with M samples of y and d,

the Naive Bayes model can estimate the probability den-
sity functions parameters of each hypothesis by applying
the maximum likelihood principle:

µ̂
{H1|0}
i =

1

M{H1|0}

M
{H1|0}∑

m=1

yi[m]{H1|0}

σ̂2
i

{H1|0}
=

1

M{H1|0} − 1

M
{H1|0}∑

m=1

(
yi[m]{H1|0} − µ̂

{H1|0}
i

)2

(31)
where the superscript {H1|0} refers to the section of the
training set which comprises hypothesis H1 or H0.

After the training phase, the Naive Bayes classifier can
estimate the channel occupancy a posteriori probability
given the detected energy y through Bayes Theorem:

P (H1|y) =
f(y|H1)P (H1)

f(y|H1)P (H1) + f(y|H0)P (H0)
(32)

where P (H1) and P (H0) are the a priori probabilities
of each hypothesis, estimated as follows.

P (H1) =
M{H1}

M
(33) P (H0) =

M{H0}

M
(34)

where M{Hi}, i = 0, 1 is the number of the ith
hypothesis occurrences.

Finally, the Naive Bayes channel status is inferred
based on the evaluation:

ŜNB =

{
H1, if P (H1|y) ≥ 1− P ∗

fa

H0, otherwise
(35)
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C. Support Vector Machine (SVM)

The Support Vector Machine (SVM) is a classification
technique aiming at finding a linearly separable hyper-
plane with a maximum margin between the classes by
applying a kernel function κ(x,x′) to the input vector
in order to increase its dimension from input space
to feature space. It is worth noting that for the SVM
the desired channel status needs to be dm ∈ {−1; 1},
representing hypothesis H0 and H1, respectively.

maximum
margin

op
tim

al
hy

pe
rpl

an
e

support vector

support vector

Figure 4. Illustration of a support vector machine decision plane.
The optimal hyperplane separates the two classes (filled circles and
empty circles) at half distance of the maximum margin defined by
the support vectors.

Therefore, given the following linear model:

h(y) = wTφ(y) + b (36)

where φ(·) is a feature-space transformation function, our
goal is to find w and b such that h(ym) > 0 if dm = 1
and h(ym) < 0 if dm = −1. Moreover, one can apply
(36) to maximize the decision margin of the hyperplane
h(y) = 0. By taking into account that the distance of
any point y to the decision surface is given by:

dm
(
wTφ(ym) + b

)

‖w‖ (37)

we choose to define that for the closest point to the
decision surface, dm(wTφ(ym) + b) = 1. Thus, the
following optimization problem can be formulated [22]:

minimize
w,b

1

2
‖w‖2 (38)

s.t. dm(wTφ(ym) + b) ≥ 1, m = 1, . . . ,M

where the constraint in (38) guarantees that every sample
is correctly classified. The points ym for which this
constraint is met with the equality sign are called support
vectors. The support vectors completely characterize the

SVM model, while the rest of the training samples are
entirely irrelevant.

Notwithstanding, Eq. (38) assumes that the classes
can be perfectly separated in feature space, which is
not always true in our spectrum sensing context. To
address the case of overlapping classes, we can modify
the constraint by introducing the slack variable δm and
an additional overlap budget ξ. Therefore, (38) can be
rewritten as [20] [12]:

minimize
w,b

1

2
‖w‖2 (39)

s.t. (c.1) dm(wTφ(ym) + b) ≥ 1− δm, m = 1, . . . ,M

(c.2) δm ≥ 0, m = 1, . . . ,M

(c.3)
M∑

m=1

δm ≤ ξ

where ξ is a constant used to control the trade-off
between minimizing training errors and controlling the
model complexity (which can be used as a heuristic to
avoid overfitting).

The problem in Eq. (39) is quadratic with linear
constraints, with the following Lagrange primal function
[22]:

L(w, b, δ,α,µ) =
1

2
‖w‖2 + ξ

M∑

m=1

δm (40)

−
M∑

m=1

αm [dmh(ym)− 1 + δm]−
M∑

m=1

µmδm

where αm and µm are Lagrange multipliers.
By setting the derivatives to zero, we have:

∂L
∂w

= 0 → w =

M∑

m=1

αmdmφ(ym) (41)

∂L
∂b

= 0 →
M∑

m=1

αmdm = 0 (42)

∂L
∂δm

= 0 → αm = ξ − µm (43)

From (40)-(43) we have the following set of KKT
conditions:

αm ≥ 0 (44a)

dmh(ym)− 1 + δm ≥ 0 (44b)

αm (dmh(ym)− 1 + δm) = 0 (44c)

µm ≥ 0 (44d)

δm ≥ 0 (44e)

µmδm = 0 (44f)

By substituting (41)–(44) into (40) we can obtain the
dual problem w.r.t. the support vector:
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L̃(α) =

M∑

m=1

αm − 1

2

M∑

m=1

M∑

n=1

αmαndmdnκ(ym,yn)

(45)
where κ(ym,yn) = φ(ym)Tφ(yn) is a kernel function
such as the linear yT

myn. A kernel function, in turn, can
be formally defined as [23]: a function that computes
the inner product of the images produced in the feature
space under the embedding φ of two data points in the
input space.

Finally, one can formulate the following optimization
problem [12] [22] [24]:

maximize
α

L̃(α) (46)

s.t. (c.1) 0 ≤ αm ≤ ξ

(c.2)
M∑

m=1

αmdm = 0

which can be solved using standard quadratic program-
ming (QP) techniques.

By defining α⋆ as the solution to the dual problem
(46) and b⋆ as the solution of the primal problem (39),
as well as modifying (36) to be expressed in terms of
α⋆, we can obtain the output of the SVM to an unseen
example according to:

h(y) =

M∑

m=1

α⋆
mdmκ(y,ym) + b⋆ (47)

It is worth noting that in order to predict the output
for an unseen example, the SVM retains only the support
vectors of the training dataset, i.e., where αm is nonzero.

Once we obtain the SVM output h(y), we can decide
the channel status by first converting the output to the
estimated a posteriori probability P̂ (H1|y) as [25]:

P̂ (h(y)) =
1

1 + e(Ah(y)+B)
(48)

where the parameters A and B can be found by mini-
mizing the negative log likelihood function (LLF) of the
training data:

minimize −
∑

m

tm log(pm) + (1− tm) log(1− pm)

(49)

where pm =
1

1 + e(Ah(ym)+B)
, and tm =

dm + 1

2
.

Finally, the channel status inference using SVM ap-
proach results:

ŜSVM =

{
H1, if P̂ (h(y)) ≥ 1− P ∗

fa

H0, otherwise
(50)

V. NUMERICAL RESULTS

In order to assess the performance of the models
mentioned above on channel status inference, we ran
Monte-Carlo simulations (MCS) with 5 × 104 realiza-
tions, considering a scenario with one PU and 3 SUs
depicted at Fig. 5, as well as the parameters on Table I
under AWGN and Rayleigh flat fading channels.

SU1

500 m

PU

750 m

SU2

1000 m

SU3

Figure 5. Cognitive radio network scenario for evaluation purpose.

We compared the machine learning methods with
traditional analytical methods AND, OR and MRC. For
the SVM, we have considered both the linear and Gaus-
sian kernel functions. As for the MLP, we considered
a network of one hidden layer with size equal to the
number of inputs and only one output.

Table I. ADOPTED SYSTEM PARAMETERS IN THE MONTE
CARLO SIMULATIONS.

PARAMETERS VALUE
Bandwidth w = 5 MHz

Sampling frequency fs = 10 MHz
Noise PSD η0 = −152 dBm/Hz

PU active probability P (H1) = 0.5
PU transmission power σ2

s = 0.1 mW
SU1 → PU distance 500m
SU2 → PU distance 750m
SU3 → PU distance 1000m

Sensing time-interval τ = 5µs
Number of samples K = 2wτ = 50

Training dataset size κ ∈ [50; 100; 250; 500; 1000]

A. SS Performance under AWGN Channels

For each model, we evaluated the receiver operating
characteristic (ROC) curve, depicted in Fig. 6a and 6b.
By visual inspection, we can notice the upper bound on
performance defined by the MRC technique, followed
closely by the SVM with a linear kernel.

Alongside the cooperative techniques, we have the
plot of the ROC curves obtained by individual energy
detection on each SU. Due to the PU distance differences,
the average SNR level obtained were γ̄1 ≈ −2dB,
γ̄2 ≈ −9dB and γ̄3 ≈ −14dB. This difference becomes
apparent on the channel detection performance displayed
by each SU.

In order to better evaluate the results of each model,
we also obtained the area under the curve (AuC) metric
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(b) Zoom into the ROC 0.9Pd / 0.1Pfa interest region.

Figure 6. Receiver operating characteristic (ROC) curves for the
different techniques under AWGN channel.

in Table II. Hence, from Fig. 6 and Tab. II we notice
the machine learning methods perform much better than
the more straightforward AND or OR techniques, with
results very close to MRC centralized SS technique.

Table II. AREA UNDER THE CURVE (AUC) RESULTS FOR
AWGN AND RAYLEIGH CHANNELS

TECHNIQUE AUC AWGN AUC Rayl.
AND 0.7186 0.7370

OR 0.9302 0.9256
MRC 0.9616 0.9240

NB 0.9594 0.9244
SVM-Linear 0.9613 0.9360

SVM-Gaussian 0.9604 0.9327
MLP 0.9609 0.9359

B. SS Performance under Rayleigh Fading Channels

On the other hand, when considering a flat Rayleigh
fading channel, the ML techniques were able to attain
better performance than MRC, as it can be seen in Fig.
7 and Table II, because MRC considers the average
SNR level over each secondary user, which, under a
flat Rayleigh fading channel, varies for each sensing

period. Indeed, from Tab. II, one can notice that the MLP
and linear-SVM have achieved the highest AuC values,
similarly from the Gaussian channel results.
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Figure 7. Receiver operating characteristic (ROC) curves for the
different techniques under Rayleigh fading channel.

In order to assess the effects of the amount of training
samples on the final AUC metric under Rayleigh channel,
we variated training set size from 50 to 1000 samples.
Fig. 8 shows the resulting for the AUC variation. Clearly,
all analyzed ML techniques benefit from the increase of
the training set size, with the sharpest difference between
50 and 500 samples. It is apparent that the suitable
performance-complexity tradeoff occurs for κ = 100
training samples for the SVM Linear and Gaussian and
κ = 250 training samples for the MLP and NB machine
learning techniques.

C. Complexity

In order to compare the computational burden com-
plexity of each technique, we obtained the time spent
during the training and inference phase for a dataset of
κ = 500 training samples, averaged over 20 rounds.
Considering that all models output a posteriori proba-
bility of channel occupancy, while the inference phase
has significantly less computation time compared to the
training phase. Table III summarizes the time spent for
each SS technique in both training and inference phases
of the analyzed CRN scenario of Fig. 5.
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Figure 8. Variation of Area Under the Curve results for different κ
training samples for the SS-CRNs operating under Rayleigh channels.

Table III. AVERAGE TIME SPENT DURING TRAINING PHASE

SS TECHNIQUE TRAINING [sec] INFERENCE [sec]
NB 0.420 0.141

SVM-Linear 1.060 0.035
SVM-Gaussian 0.327 0.082

MLP 0.230 0.024
MRC - 0.006

As a drawback of increasing the size of the training
set, Fig. 9 shows the increase in time spent during the
training phase for the techniques. It is worth noting that
only the naive Bayes model remains with almost constant
training time for increased training sets.
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Figure 9. Time spent during training phase for different sizes of
training sets.

The computational metrics were evaluated on a con-
sumer laptop with Intel i7 5500U @2.4 GHz and 16GB
DDR3 @1600 MHz RAM. Based solely on the results
from Table III and the AuC metrics from Tab. II, the MLP
achieves the best performance-computational complexity
trade-off operating in both AWGN or Rayleigh channels
when compared to the others machine learning models.

Nonetheless, it is worth noting that besides time
spent training, the machine learning techniques have

the requirement of cooperation from the PU to provide
the fusion center with the channel status vector, which
must be taken into account a system complexity of
implementing such models.

On the other hand, while the MRC technique provides
almost instantaneous channel status inference based on
energy samples, it requires the SUs transmit to the fusion
center in a completely centralized way their estimated
SNR, which can also pose a further challenge for imple-
mentation while reduce the overall spectral efficiency of
the CRN.

VI. DISCUSSION AND FINAL REMARKS

In this paper, we compared the use of machine learning
models, namely the support vector machine with linear
and Gaussian kernel functions, a feed-forward neural
network with one hidden layer and Naive Bayes method
with those well-established analytical models in the
context of spectrum sensing problem for cognitive radios.

Numerical results demonstrated that the studied mod-
els are of proved suitability for the task of channel status
inference from energy samples obtained from multiple
secondary users. Based on the receiver operating char-
acteristic curve and area under the curve metrics, we
are led to conclude that all machine learning models
performed closely to the optimum maximum ratio com-
bining analytical technique under AWGN channels.

Interestingly enough, under Rayleigh flat fading chan-
nels, all machine learning techniques outperformed the
MRC due to varying SNR levels on secondary users over
each sensing period. It becomes clear that MRC needs to
perform channel response estimation in order to be able
to perform well on fading channels, which could be a
challenge under cognitive radio networks.

By using standard profiling tools, we were able to
obtain computational performance metrics for each ma-
chine learning model evaluated during the training and
inference phases. For small CRNs context, the results
demonstrated an advantage of multilayer perceptron tech-
nique followed by the Gaussian support vector machine,
being the fastest model to train and infer the channel
status, achieving great AuC performance on channel
status inference.

One interesting aspect that should also be considered
in a future work is how often such machine learning mod-
els need to be re-trained under non-stationary channels
(such as imposed by SU and/or PU mobility).
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