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Resumo

Redes de Rádio Cognitivo constituem uma tecnologia recente que busca fazer
o uso otimizado do espectro de frequências, que jáestá super-utilizado. Essa
tecnologia oferece meios para portadores de licensa compartilhar sua banda de
frequências com outros usuários para possibilitar o uso eficiente e também recer-
ber certos benefícios em troca, como descontos ou aumento do tempo de validade
da licensa. Dado que essa tecnologia é relativamente recente, os seus estudos
estão ainda incompletos e precisam de uma pesquisa mais aprofundada. A fim
de contribuir com a literatura, este trabalho trás importantes contrubuições para
diferentes áreas do Rádio Cognitivo.

Primeiramente, várias técnicas de sensoriamento espectral como Filtro Ca-
sado, Sensor de Energia, Sensor de Razão de Hadamard ou Sensor de Valor
Absoluto de Covariância são analisados. Todos esses detectores são estudados
e comparados de modo a oferecer ao leitor uma ampla visão sobre todas suas
características, fraquezas e pontos fortes. Após esse estudo, o sensor mais pro-
missor é escolhido para ser aplicado em um cenário realístico de transmissão sem
fio. Escolheu-se o sensor de Razão de Hadamard, dado sua capacidade de prover
altas taxas de detecção, baixa detecção errada ou alarme falso com um número
necessário de amostras relativamente baixo.

A segunda parte desta Dissertação é baseada em técnicas de otimização não
linear que buscam maximizar a soma das capacidades de uma rede de rádio
cognitivo. Uma MISO-CRN (Multiple-Input Multiple-Output Cognitive Radio
Network) foi escolhida como arquitetura de aplicação e sua otimização foi di-
vida em duas partes: cancelamento de interferência e alocação de potência. Essa
técnica é conhecida como Zero Forcing-Water Filing, e alcança a capacidade má-
xima de transmissão sob certas configurações de sistema e canal. Além disso, esta
pesquisa desenvolveu também uma aproximação prática para encontrar o número
ótimo de usuários secundários ativos que proporcione a máxima capacidade da
rede. Essa é uma ferramenta muito útil, uma vez que pode prover uma maneira
simples de escolha do número permitido de usuários secundários para um certo
cenário.

Finalmente, técnicas de estimativa de canal aplicadas a redes de rádio cogni-
tivo são estudadas. A transmissão completa em banda-base equivalente é descrita,
a qual inclui a transmissão de sequência piloto, a estimativa da matriz de canal
e uso dessa estimativa para gerar a matriz ótima de precodificação. Além disso,
analisou-se o efeito da estimativa imperfeita do canal no sistema de transmis-
são com precodificação, na tentativa de se encontrar técnicas para superar esses
problemas e melhorar o desempenho do sistema de comunicação com múltiplas
antenas.

Palavras-Chave: sensoriamento espectral, rede de rádio cognitivo, maximiza-
ção da capacidade, estimativa de canal, erro em estimativa de canal MIMO.



Abstract

Cognitive Radio Network is a recent and emerging technology that aims to op-
timally use the already overcrowded frequency spectrum. This technology offers
means for license-holders to share their spectrum bandwidth with other users, in
order to make an efficient use of it and also receive some benefits, like payback or
increase in license time. Once this is a recent technology, many studies are still
incomplete and need furthers research. Ir order to contribute with the literature,
this work brings some important research of a few different parts of Cognitive
Radio.

Firstly, various spectrum sensing techniques, such as Matched Filter, En-
ergy Sensing, Hadamard Ratio Sensor or Covariance Absolute Value Detector are
analyzed. All those sensors are studied and compared, in order to give a broad
overview about its characteristics, strengths and weaknesses. After this study, the
most promising detector is chosen to be applied into realistic wireless channels.
The Hadamard Ratio Sonsor has been chosen, given its capacity of providing high
detection rates, low miss detection or false alarm with a relatively low number of
samples.

The second part is based on non-linear optimization techniques and aims
to maximize the sum capacity of a cognitive radio network. A MISO-CRN
was chosen as target architecture, and the optimization was divided into two
parts: power allocation and interference nulling. This technique is known as
Zero Forcing-Water Filing strategy, which achieves maximum sum capacity un-
der certain system and channel configurations. Also, this research came up with
a practical approximation to find out the optimum number of active secondary
users to achieve maximum capacity. This is a very useful tool, once it can pro-
vide an easy way of choosing the allowed number of SUs for a given configuration
of number of antennas at the base station and link quality (related to signal to
interference plus noise ratio).

Finally, channel estimation techniques applied to cognitive radio networks are
analyzed. A complete base-band transmission is described, which includes pilot
sequence transmission, channel matrix estimation and optimal precoder matrix
generation based on channel estimative. Also, the effect of imperfect channel es-
timation has been studied to provide means of developing techniques to overcome
possible problems and enhance the MIMO communication performance

Keywords: spectrum sensing, cognitive radio networks, spectrum sensing,
precoding, sum rate maximization, channel estimation, MIMO channel estimation
error.
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Notation

• Capital bold letters denote matrices: H and Y ;

• Small bold letters are vectors s and y ;

• Small italic letters represent scalars: s and x;

• |X| is the determinant of matrix X;

• || · || is the Euclidean norm;

• (·)H is the hermitian operator (transposed conjugate);

• ∇f is the gradient of f ;

• ∇2f is Hessian matrix;

• Ry is the covariance matrix of variable y

• R̂y is the sample covariance matrix of variable y

• N (m,σ2) is a Gaussian Random process with mean m and variance σ2;

• E[·] is the statistic expectation;

• tr(·) is the matrix trace operator;

• Q(·) is a Gaussian tail function (Q-function);

• B(·, ·) is the Beta function;

• Bx(·, ·) is a Incomplete Beta function;

• Γ(·) is the Gamma function;

• L(·) is a Likelihood function;

• L(·) is a log-Likelihood function;

• P (x|y) is the conditional probability of x given y;



Symbols

Chapter 2
Symbol Description

T Total period of time;

τ Sensing period;

N Number of samples;

Pt Transmitted power;

Pm Maximum transmitted power;

K Number of SU antennas;

M Number of PU antennas;

PI Average Interfering power;

Pnoise Noise power;

d Distance between transmitter and receiver;

ψ Path-loss exponent;

v User’s velocity;

fd Doppler shift;

fc Carrier frequency;

c Light velocity;

TL Limit of interference temperature;

κ Boltzmann’s constant;

W Bandwidth;

Cp Primary user’s Shannon capacity;

Cs Secondary user’s Shannon capacity;

Rp Rate region for primary users;

Rs Rate region for secondary users;

ξZ Decision metric for spectrum sensor Z;

PZ
f False Alarm probability for spectrum sensor Z;

PZ
d Detection probability for spectrum sensor Z;

λZ Decision threshold for spectrum sensor Z;

H0 Hypothesis of absence of signal;

H1 Hypothesis of presence of signal;

s(k), s(k) Transmitted signal;



n(k), n(k) Additive noise;

h Multiplicative channel state constant;

H Channel matrix;

y(k), y, Y Received signal;

σ2
x Variance of variable x;

γ Signal to Noise Ratio;

Mi i-th moment of a variable;

M−i i-th negative moment of a variable;

ΥL Correlation strength;

Υ̂L Normalized correlation coefficient;

Σ(i) Covariance matrix under hypothesis i;

Σ̂(i) Sample covariance matrix under hypothesis i;

Chapter 3
Symbol Description

K: Number of secondary users;

K: Set of secondary users;

M : Number of primary users;

M: Set of primary users;

S: Set of active secondary users;

nbs: Base station’s number of antennas;

Im: Interference limit to m-th PU;

Ip: Interference from PUs to SUs;

Pbs SU-BS’s power constraint;

Ck Capacity of user k;

yk : Received signal;

ηk AGWN noise;

γ Signal to Interference plus Noise Ratio;

xk: Transmitted symbol;

x: Transmitted signal;

hk: BS-SU link’s channel vector;

gm: BS-PU link’s channel vector;

qm,k PU-SU link’s channel vector;

wk: Precoding vector;

tk: ZF precoding vector;

p Power allocation vector;



H: Collection of all SU channel vectors;

G: Collection of all PU channel vectors;

W: Collection of all precoding vectors;

F−k: Collection of all channel vectors, except of user k;

Chapter 4
Symbol Description

K: Number of secondary users;

K: Set of secondary users;

S: Set of active secondary users;

M : Number of primary users;

M: Set of primary users;

N : Training realizations;

nbs: Base station’s number of antennas;

Im: Interference limit to m-th PU;

Ip: Interference from PUs to SUs;

Pbs SU-BS’s power constraint;

y, Y,: Received signal;

p, p, P: Transmitted pilot sequence;

xk, x: Transmitted signal;

hk, H: SU channel vector and matrix;

gk, G: PU channel vector and matrix;

Û: Estimated form of matrix U;

n, n, N: AGWN noise;

γ Signal to Interference plus Noise Ratio;

wk: Precoding vector;

tk: ZF precoding vector;

p Power allocation vector;

W: Collection of all precoding vectors;

J : Error between real and estimated;

C System capacity;

Ĉ System capacity with use of estimated channel ma-

trix;

RAB: Correlation matrix between variables A and B;
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1 Introduction

Spectrum is a limited resource that has to be strictly regulated and correctly

managed in order to provide means for high speed/quality transmissions. Un-

til nowadays, each sub-band of the total spectrum bandwidth was assigned to

one specific owner (PU, Primary User) who has payed rights to transmit over

this frequencies; this means that no other user was allowed to exploit such pre-

allocated spectrum, regardless if PU is using it or not. The problem is that,

in the past decades, wireless technologies have been significantly developed and

fixed available frequency bandwidths are becoming overcrowded and scarce. In

recent studies, regulatory commissions, i.e. Federal Communications Commis-

sion (FCC), have discovered that spectrum is underutilized (FCC, 2002; DATLA;

WYGLINSKI; MINDEN, 2009).

These studies reveal the need for new schemes of spectrum allocation. Hence,

researchers are looking for strategies to enhance spectrum utilization efficiency.

A recent technology known as cognitive radio (CR) aims to solve this spectrum

scarcity problem via proposing a wireless transceiver able to interact with the

environment and change its transmission parameters in order to achieve a better

performance (FCC, 2003).

The concept of cognitive radio has been firstly introduced in (MITOLA; MAGUIRE,

1999), where the authors stated that CR may be interpreted as an evolution of

Software Defined Radios (SDR), where various SDRs present a high level of com-

putational intelligence. Such intelligence makes them able to mimic some human

cognitive behavior like observation, orientation, planning, decision and action, in

order to derivate a broad view about a wireless scenario and provide appropriate

communication services.

Cognitive radio is basically a system with high environmental awareness able

to dynamically access available bandwidths. Therefore, a CR is an special ra-

dio system with two main abilities: cognition and reconfigurability (KHATTAB

DMITRI PERKINS, 2013). The cognition of a CR is basically an ability to sense

the environment and observe spectral opportunities so the radio is able to iden-
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tify available spectrum bands. The reconfigurability is related to the fact that

a CR, after estimating the bandwidth usage, is able to interactively adapt its

transmissions values and plans in terms of power, bandwidth and time.

A typical CR network (CRN) layout consists of a series of PUs coexisting

harmoniously with CR devices (SU, Secondary User). PUs are also known as

licensed users, which are the ones who own the license to transmit over some spe-

cific bandwidth. The idea of a CR proposes that SUs operate over a bandwidth,

even though they do not hold a license. In order to do so, a series of constraints

must be followed, i.e. the SU may only operate when PUs are not transmitting

or the SU must not overcome an energy threshold in order not to affect PU’s

transmission (KHATTAB DMITRI PERKINS, 2013). According to the FCC (FCC,

2003), there are two main markets for CRN: rural market and general secondary

market spectrum leasing. The CRNs in rural market plays an important role in

terms of providing greater signal coverage for both PU and SU. The spectrum

leasing allows licensees to freely offer their idle spectrum (either just a white space

or the whole bandwidth) to secondary transmissions. This transaction benefits

SUs because they will be able to seek for a bandwidth without buying a proper

license and PUs might receive discount in their license or get payed by SUs for

the leasing.

1.1 Basic Architectures of Cognitive Radio

A CRN can be divided in three different categories: Underlay, Overlay and Hybrid

spectrum access strategies.

The underlay strategy allows spectrum sharing between PUs and SUs in

respect to the whole authorized spectrum. Both users are able to transmit simul-

taneously at all frequencies; however, SUs are seen as noise at the PUs, what im-

poses that SUs do not create harmful interference and keep its transmitting power

below a certain limit. Hence, when measuring primary’s signal-to-interference

plus noise ratio (SINR), the interference level must stay below a pre-determined

value. This interference constraint means that the total power of any secondary

signal must respect a spectral mask bounded by the power spectral density (PSD)

interference over all frequencies under the sensing band. Alternatively, for low

variant interference constraints scenarios, the threshold might be simply set ac-

cording to an average value of the PSD interference taken across all the licensed

frequencies (BIGLIERI et al., 2013).
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The overlay strategy, also known as opportunistic spectrum access, proposes

that all SUs must sense the spectrum and detect unused (idle) bandwidths for

a certain period of time and at a certain geographic location. These idle band-

widths are known as white spaces, and SUs are always seeking to detect them, so

they can transmit over these space with the maximum allowed power (SAYRAC

HRISHIKESH VENKATARAMAN, 2012). When operating as overlay CRN, the SU

must dedicate a period of time to sense the environment in order to identify

not only idle bandwidths, but also PUs request to re-establish the transmission.

Hence, there is a tradeoff between sensing time and transmission time.

A third strategy, the hybrid access, mixes both techniques. SUs also have

to dedicate a period of time for the spectrum sensing; however, the device does

not need to transmit only if a white space is detected. In case where a primary

transmission is identified, SUs can use a reduced power and follow underlay power

limit constraints. In case where there is an idle bandwidth, the SU adapt its

transmission as an overlay spectrum access.

Figure 1.1 depicts all three access strategies. 1.1.a) shows the underlay

method, where a SU device is allowed to transmit over all bandwidths (BW)

with reduced transmission power in order to avoid any possible interference on

primary transmissions. Figure 1.1.b) is the overlay method, where SU has to

firstly sense the spectrum over a period of time t and, only if detected an idle

band, adapt its power levels to transmit over that frequency. Figure 1.1.c) is the

hybrid strategy, where SU also has to sense the spectrum; however, if detected a

primary signal, the device transmits with reduced power (according to underlay

constraints), otherwise it transmits with nominal power.

1.2 Applications of Cognitive Radio

The CR is a very promising idea, and researchers have been studying many dif-

ferent applications for this technology. However, these technologies are not much

developed and ruled. The FCC has broadly stated a few possible areas for CRN,

but did not specified strict regulations for them (FCC, 2003). Majority of CR

studies are on TV bands, where intelligent CR devices opportunistically find

many available bandwidths and use them to different applications. Additionally,

(BIGLIERI et al., 2013) explain four typical scenarios for CRN: dynamic spectrum

access in cellular systems, cellular data boost, machine-to-machine (M2M) com-

munications and distribution and backhaul networks.
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Figure 1.1: Access modes for cognitive radio.
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Next-generation cellular systems are relying on a much greater number of

smart phones, portable devices and smart sensors to create networks with small

cells embedded into large macrocells (AKYILDIZ et al., 2006). These small cells

(femtocells or picocells) are a miniaturized version of a traditional base station

transmitting with low power for small areas (ie. a shopping center transmission).

The dynamic spectrum access (DSA) is an important resource for this new

generation networks, because it provides a way to exploit idle spectrum and

achieve higher spectral/power efficiency. CR implementation in this scenario

targets to estimate wireless traffic’s characteristics, mainly in peak demands, in

terms of space and time usage of all available bandwidth.

Additionally, CRs are very useful to offload traffic of crowded wireless net-

works (cellular boost). This means that, during peak time, a CR can possibly

detect white spaces and direct part of the traffic for these unused bandwidths and

consequently alleviate the transmission of fully loaded networks. As an example,

figure 1.2 shows a mesh network (AKYILDIZ; WANG; WANG, 2005) working in peak

time. The hot-spots have non-real-time messages like mail, files, etc and also have

the cognition to detect white spaces and follow this messages for end-users. By

doing so, the hot-spots free some traffic so the base station (BS) is then able to

deal with real-time communication like voice calls or video streaming. This archi-

tecture leads to capacity boost (BIGLIERI et al., 2013) and the only requirement is

that end-users must be able to transmit in both white spaces and cellular band.

Another next-generation technology is the machine-to-machine communi-
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Figure 1.2: Example of CR spectrum access in a mesh network.
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cation, which contributes to fully automation of entire sensors network (FADLUL-

LAH et al., 2011). Cognitive radio may be useful in this context in terms of allowing

a design of wireless M2M communication networks. The communication can be

between a central decision making device and multiple sensors spread over the

plant or even a full-duplex talk between sensors. Consequently, implementation

of a CRN in this scenario will allow multiple devices to transmit over the available

band, without necessity of buying license for more transmission bandwidth.

A CR can also enhance the distribution and backhaul of wireless networks.

It will be useful not only for rural areas, but also for end-users who are at the

edge of a coverage area. Figure 1.3 illustrates a typical problem of this situation.

The end-users are out of range to communicate with BS1; however, BS3 has a

white space available that can be used to establish a connection between users

and BS1. The only update needed for this situation is the change for multi-band

devices, once the users must be able to work in different bands, according to

available white spaces.

The advance in technology has made architectures, designers and engineers

start to design electronic devices to be used at home, ie. wireless video streaming,

wireless printers, smart fridges, smart sensors etc. Design of fully automated

homes is another very promising scenario for CRN. This is known as cognitive

digital homes (BIGLIERI et al., 2013; LI; MANDAYAM; REZNIK, 2010). Figure 1.4

shows an example of a cognitive digital home, where many different devices and

sensors are connected to a central node responsible for managing all connexions.
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Figure 1.3: Example of a distribution and backhaul scenario.
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The problem in this scenario is that many of these devices are not designed to

operate in conjunction with other smart sensors. Indeed, a central controlling

device is needed to regulate the operation of all devices and designate a specific

time and frequency for each transmission (RAMAN; YATES; MANDAYAM, 2005).

The central cognitive controller tries to detect white spaces and simultaneously

communicate with multiple devices.

Figure 1.4: Example of a digital home scenario.
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1.3 Motivation

The available transmission frequencies are becoming overcrowded as a conse-

quence of a great necessity of new high speed/capacity wireless technologies;

hence, it is extremely necessary to develop efficient methods to transmit/access

the spectrum. Once all wireless spectrum is ruled by an specific agency - FCC

is case of United States of America or Anatel (Agência Nacional de Telecomu-

nicações - Brazilian National Telecommunications Agency) in case of Brazil -

recent studies are aiming to develop efficient technologies to increase number of

active users without increasing the necessary bandwidth. Additionally, spectrum

has been proved to be underutilized. For example, (MCHENRY; LANE-ROBERTS,

2004) shows that, even during peak time, only 13% of all spectrum opportuni-

ties are effectively used. In order to overcome this problem, many researches

proposed a powerful alternative, the CRN, which allows the implementation of

dynamic spectrum access (BIGLIERI; GOLDSIMITH; GREENSTEIN, 2012).

This work aims to develop and obtain efficient analysis and optimization tools

applied to cognitive radio in order to optimize spectrum and power usage. Capac-

ity, performance, computational complexity and power/spectrum usage have to

be studied so all proposed methods/technologies are able to actually implement

useful changes/improvements to CRN.

1.4 Developed Topics in Cognitive Radio

This Dissertation is intended to study CRN architectures, its characteristics and

develop mathematical tool to be applied on future Cognitive Radio systems. The

studies with CRN were started during the under graduation period. After com-

mencing this Masters, the following topics have been closer considered:

� Spectrum Sensing in Cognitive Radio Networks;

� Analysis of realistic channels for CRN;

� Non-linear optimization techniques applied to problem solving in CRN;

� Precoding optimization for Cognitive Radio Networks;

� Study of channel estimation techniques for CRN;

This work has firstly analyzed single band Spectrum Sensing (SS) methods for

CRN and compared its complexity and performance. The study of SS methods
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worked as an introduction to CR technologies and helped to develop the next

step of this work, which is the performance analysis of Hadamard Ratio Sensor

used as spectrum sensor for cognitive radio networks.

The third study of this Masters project consists of applying non-linear opti-

mization techniques to maximize the sum capacity of a CRN. As an outcome of

this study, a methodology of cancelling interference between SUs and PUs and

also optimally allocation power between all SUs has been developed. The perfor-

mance of this technique has been evaluated in terms of performance and capacity

figures. In addition, we have used the capacity results to design a tool for choos-

ing the optimum number of secondary users to achieve maximum capacity for a

given scenario with nbs transmission antennas and M primary users.

The fourth study consists of analyzing a realistic threat present in CRN: the

imperfect channel estimation. Once the precoding design is based on knowledge

of channel matrix; if this matrix is poorly estimated, harmful impacts may arise.

This study is responsible for identifying techniques to accurately estimate the

channel between SUs and PUs and offer the best estimative possible for SUs

design an optimal precoder and avoid great capacity/performance losses.

The rest of this text is divided in chapters, where each one presents results

and findings obtained in an specific article and also gives all necessary theory for a

complete understanding of such results. Chapter 2 introduces some basics about

SS techniques, popular performance metrics used to compare different methods

and results obtained with this research, which has been presented in both articles:

a) Spectrum Sensing Methods for Cognitive Radio Networks - A Review and b)

Hadamard Ratio Sensor in Realistic CRN Scenarios (Appendix A.1 and A.2).

Chapter 3 gives a basic understanding regarding precoding techniques and the

respective findings have been reported in the paper Efficient ZF-WF Strategy for

Sum-Rate Maximization of MU-MISO Cognitive Radio Networks (Appendix A.3).

Chapter 4 summarizes the two investigated channel estimation techniques, and

the effect of imperfect channel state information on design of precoders. Finally,

Chapter 5 offers the main conclusions and possible future directions to further

develop the research.
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2 Spectrum Sensing in Cognitive
Radio Networks

This chapter consists of a broad research about SS techniques applied CRN. Four

different topologies were chosen to be compared: Energy Sensor (EnS) (BIGLIERI;

GOLDSIMITH; GREENSTEIN, 2012), Matched Filter Sensor (MfS) (CARDOSO et

al., 2010), Covariance Absolute Value Sensor (CaV) (ZENG; LIANG, 2009) and

Hadamard Ratio Sensor (HrS) (TUGNAIT, 2012). These sensors were chosen due

its main characteristics and computational complexity: EnS is a very low complex

sensor and relies only on the energy of received signals; the MfS is expected to

present better performance but needs a strong knowledge about primary signals;

the CaV is a medium complex and needs some statistical knowledge about pri-

mary signals. Finally, the HrS is a complex but highly efficient and very robust

detector.

SS is one of the most important steps in CRN, once it is responsible for

checking the scenario and deciding whether a SU should or not transmit. After a

sensing phase, the cognitive device is ready to select adequate transmission tech-

niques (power, modulation, coding, precoding) in order not to interfere/harm any

current primary communication. Additionally, SS is also extremely important to

guarantee correct spectrum alternatives for a CR transceiver perform adequate

spectrum handoff without dropping connection with any secondary users (HER-

NANDES; KOBAYASHI; ABRAO, 2016).

SS may also be divided in two categories: Single Band Spectrum Sensing

(SB-SS) and Multi Band Spectrum Sensing (MB-SS). In SB-SS there is an entire

sensing process for each desired band; consequently, if a device wishes to sense

a wide band, multiple spectrum sensors will be necessary. In contrast, MB-SS

is able to sense a wide band with a single sensor. MB-SS are mainly focused

on estimating the PSD and identifying idle bands. This chapter deals only with

SB-SS.

The first part of this chapter is referred to Appendix A.1, which consists of
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a tutorial about basic SS SISO (Single Input Single Output) architectures, its

characteristics, performance metrics, sample complexity and other parameters.

Next, numerical experiments are proceeded aiming to compare performance figure

of all analysed architectures. All results obtained in the article are also detailed

in section 2.2.

The second part of this chapter consists of a more detailed analysis of HrS

applied to realistic MIMO CR scenarios, which included influence of path loss and

multipath fading. This part is based on Appendix A.2, where a brief mathemat-

ical background is given and simulations are performed to compare performance

figures of HrS and a classical EnS in Rayleigh fading channels. This analysis is

valid to help a designer to choose which SS technique is more indicated to be

implemented under certain constrains (i.e. QoS (Quality of Service), capacity

and BER).

In order to develop a method to verify the state of a certain frequency band,

lets consider that a signal y(t) is being observed by a secondary user at instant

k; indeed, this signal may be classified as (CARDOSO et al., 2010):

y(k) =

{
n(k) : H0

h · s(k) + n(k) : H1

(2.1)

where h represents the channel multiplicative effect and n(k) ∼ N (0, σ2
n) is

AWGN (Additive White Gaussian Noise). As stated in (2.1), there are two hy-

pothesis: absence of PU (H0) of presence of primary signals (H1).

Once the signal of interest has been defined, it is possible to calculate the

reception SNR γ, in case where the SU needs to identify the transmitted signal

s(k):

γ =
h · s(k)

η(k)
(2.2)

Or, in cases where the sensor is not able to distinguish between signal and

interference, the above equation is treated as signal to interference plus noise

ratio (SINR)

γ′ =
h · s(k)

h · s′(k) + η(k)
(2.3)

where the portion h · s′(k) is referent to all undesired signals.

The situation here consists of designing a system able to present high chances

of correct detection (Pr {H1|H1} or Pr {H0|H0}) and low rates of false alarms

(Pr {H1|H0}) while receiving only N samples (the fewer samples the better and
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more efficient the detector is).

2.1 Contributions

The main contributions of the work in this chapter are:

1. Study of the main SS techniques;

2. Performance analysis of various SS methods;

3. Comparison between various SS architectures;

4. Analysis of realistic CR scenarios;

2.2 Numerical Results: Spectrum Sensing tech-
niques

In order to corroborate the above theory, numerical experiments were proceeded

under different constraints and scenarios. All necessary theory, mathematical

background, numerical experiments about every studied sensor is detailed in Ap-

pendix A.1 and the main results are also analysed in this section. Performance of

each sensor is studied in terms of ROC (Receiver Operating Characteristics), 3D

surfaces which involves sample complexity, SNR, Pd and SNR Wall. Individual

results will be firstly presented and then a comparison with all sensor will be done

under different circumstances.

It is important to notice that results of sections 2.2.1, 2.2.2 and 2.2.3 are

based on AWGN scenarios, whereas sections 2.2.4 and 2.3 also include two cases

of Rayleigh fading scenarios: slow and fast fading. For slow fading cases, the

channel state changes at each block of Nc samples and for fast fading cases the

channel changes at every sample.

2.2.1 Energy Detector

As stated in Appendix A.1, detection probability for an Energy Sensor in AWGN

channel is given by:

P ed
d = Q

(
λed − µ1

σ2
1

)
(2.4)

where λed is an energy threshold, µ1 = σ2
n(1 + γ), σ2

1 =
σ2
n√
N

√
2 · γ + 1 and σ2

n is

the noise variance. Consequently, it can be seen that changes in SNR, threshold
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and number of samples will somehow affect performance of a EnS.

Figure 2.1 presents ROC results for an EnS in AWGN channels, where SU

is acquiring 1000 samples to sense the spectrum. As expected, increase in SNR

positively affects the sensor, once a higher P ed
d can be achieved with much lower

P ed
f .

Figure 2.1: ROC for an Energy
detector with N=1000 samples.
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Figure 2.2: P ed
d dependency on N and

SNR for P ed
f = 0.1.

A target detection probability P ed
d = 0.8 is desired for a P ed

f not greater than

0.1. Indeed, from figure 2.2, it is seen that an acceptable performance is obtained

with samples ranging from 500 to 1500 for γ > −10dB.

Once an EnS relies on signal’s strength (energy), it is expected that low SNR

scenarios are not indicated for this sensor. However, EnS is known to be one of

the most simple sensors to be implemented, which is the reason for many works

to choose it.

2.2.2 Matched Filter Sensor

Similar simulations were proceeded for a MfS in AWGN channel; results in terms

of ROC and 3D surfaces were obtained in order to give an overview about the sen-

sor’s performance and influence of the threshold λmf, number of samples and SNR.

Probability of detection in AWGN channels may be written as (MCDONOUGH et

al., 1995; BHARGAVI; MURTHY, 2010):

Pmf
d = Q

(
λmf − ε√

εσ2
n

)
(2.5)

where ε =
∑N

k=1 x
2[k] is the pilot signal’s power.

Observation of figure 2.3 shows a much lower range of SNR. This is expected
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because, differently from EnS, a MfS does not rely only on energy of a signal. A

matched filter detector makes use of a pilot sequence to analyse if there is a real

signal or if the measurement consists of noise only. Additionally, the range of

number of samples in figure 2.4 is similar to the EnS case, which indicates that

both have the same sample complexity; however, MfS is able to work in much

lower SNR scenarios.

Figure 2.3: ROC for a MfS detector.
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MfS has already showed to present better performance results for low SNR

scenarios; however, there is a tradeoff between performance and computational

complexity in this case. MfS requires a replica of a pilot sequence at the sec-

ondary user so the detector is able to correlate a received signal with the pilot

sequence. This fact not only increase computational complexity but also makes

necessary the presence of pilot sequence, which is not always available in wireless

transmissions.

2.2.3 Covariance Absolute Value Detector

CAV detectors are based on second order statistics of the sensing signal. Out of

all N received samples, the sensor analyse the correlation matrix of L consecutive

samples, where L is known as smoothing factor. As a consequence, the vector

form of signals in (2.1) have to be analyzed here:

y(k) = [y(k) y(k − 1) · · · y(k − L+ 1)]T (2.6)

s(k) = [s(k) s(k − 1) · · · s(k − L+ 1)]T (2.7)

n(k) = [n(k) n(k − 1) · · · n(k − L+ 1)]T (2.8)

The point is, if there actually exists a primary signal on these samples, the
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correlation matrix Ry = E
[
y(k)y(k)T

]
= E

[
s(k)s(k)T

]
+E

[
n(k)n(k)T

]
= Rs +

σ2
ηIL will present its off-diagonal elements correlated. In contrast, if the signal is

absent, Rs = 0 and Ry has all off-diagonal elements equals to zero.

In practice, N samples are received, but the system is usually limited to work

with L samples at a time. The covariance matrix Ry is then estimated via the

sample covariance matrix:

R̂y =




β(0) β(1) · · · β(L− 1)

β(1) β(0) · · · β(L− 2)

...
... . . . ...

β(L− 1) β(L− 2) · · · β(0)




(2.9)

where β(`) =
1

N

N−1∑

n=0

y(n)y(n− `), ` = 0, 1, ..., L− 1 (2.10)

Two test metrics are consequently deployed:

T̂1 =
1

L

L∑

i=1

L∑

j=1

|r̂ij| (2.11)

T̂2 =
1

L

L∑

i=1

|r̂ii| (2.12)

where r̂ij is the ij-th element of the sample covariance matrix, R̂y. In fact, T̂1
has all non-negative elements of Ry and T̂2 presents only the diagonal ones.

As a consequence, P cav
d and P cav

f will also depend of a correlation strength fac-

tor ΥL, as illustrated in equations (2.13) and (2.14) (ZENG; LIANG, 2009; GEETHU;

NARAYANAN, 2012).

P cav
f = Pr

{
T̂1

T̂2
> λcav

∣∣∣∣∣H0

}
= 1−Q




L− 1

λcav

√
2

Nπ
− 1

√
2/N


 (2.13)

P cav
d = Pr

{
T̂1

T̂2
> λcav

∣∣∣∣∣H1

}
= 1−Q




1

λcav
+

ΥLγ

λcav(γ + 1)
− 1

√
2/N


 (2.14)

where the correlation strength ΥL and the correlation coefficient Υ̂L are given,
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respectively, by (2.15) and (2.16):

ΥL , 2

L

L−1∑

`=1

(L− `)|α`| (2.15)

Υ̂L =
ΥL

σ2
sσ

2
η

(2.16)

and

α` =
E[s(n)s(n− `)]

σ2
s

=
Rs(`)

σ2
s

(2.17)

A primary analysis of figures 2.5 and 2.6 shows that SNR range is between

EnS and MfS cases. However, it is worth to emphasize that ΥL is plays an

important role in performance of CAV detectors. Indeed, estimation observation

of correlation strength in CRN scenarios is extremely important decide whether

a CAV detector is suitable or not.

Figure 2.5: ROC for a CAV detector
with L = 10, ΥL = 2 and N = 10000.
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Figure 2.6: ROC for a CAV detector
with L = 10, ΥL = 3 and N = 10000.
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For this sensor, P cav
d dependency on N and γ has also been analyzed. Figure

2.7 confirms the SNR range described before; additionally, it shows that a much

higher number of samples is needed to achieve the same detection probabilities

of EnS and MfS. It is expected because second order statistics usually have to be

acquired over a long observation of signals. Indeed, even with a higher smoothing

factor L, many samples will still be needed.

2.2.4 Hadamard Ratio Based Spectrum Sensor

The HrS is a relatively new spectrum sensing method, even tough it is based on

the well known Generalized Likelihood Theory, its literature is a little limited for

CR scenarios. The HrS relies on spatial diversity of signals at receiver antennas
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Figure 2.7: P cav
d dependency on N and γ for P cav

f = 0.1.
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(MARIANI; GIORGETTI; CHIANI, 2012; HUANG et al., 2015). This ends up, as shown

in Appendix A.1, offering better results and enhances performance when more

users/antennas are sensing the spectrum.

All statistic tests for a HrS are derived based on a MIMO CRN configuration

with M and K transmit and receive antennas, respectively. Indeed, all variables

in equation (2.1) have to be transformed into its vector form:

s(k) = [s1(k) s2(k) · · · sM(k)]T (2.18)

n(k) = [n1(k) n2(k) · · · nK(k)]T (2.19)

y(k) = [y1(k) y2(k) · · · yK(k)]T (2.20)

And the received signal is written as:

y(k) =

{
n(k) : H0

Hs(k) + n(k) : H1

(2.21)

The observation vector is assumed to be Gaussian distributed y|Hi ∼ N
(

0,Σ(i)
)
,

i = 0, 1, where Σ(i) is the received signal covariance matrix. Under H0 (with-

out primary signals) Σ(0) becomes Σ(0) = diag (σ1, . . . , σK), which is a diagonal

matrix. However, under H1, Σ(1) , (σij)K×K .

Following these assumptions, the likelihood function of all received samples

under a general hypothesis Hi is expressed by (HUANG et al., 2015; MARIANI;

GIORGETTI; CHIANI, 2012):

L
(
Y|Σ̂(i)

)
=

1
∣∣∣Σ̂(i)

∣∣∣
N

exp

(
−N · tr

([
Σ(i)

]−1
Σ̂

))
(2.22)

where Σ̂ = 1
N

YYH is the sample covariance matrix and Y = [y1, . . . ,yN ]. It is
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important to notice that Σ̂
(0)

= diag
(
Σ̂
)
and Σ̂

(1)
= Σ̂.

The Generalized Likelihood Ratio Test (GLRT) accounts probabilities of these

two hypothesis and compare them with a preset threshold λhr:

ξhr =
L
(
Y|Σ̂(0)

)

L
(
Y|Σ̂(1)

) =

∣∣∣Σ̂(1)
∣∣∣

∣∣∣Σ̂(0)
∣∣∣

H0

≷
H1

λhr (2.23)

The exact behavior of ξhr may assume complex values; however, its moments

can be easily expressed and matched with a beta distribution. Indeed, the first

and second negative moments of beta distributed random variable Z is defined

as (JOHNSON; KOTZ; BALAKRISHNAN, 1995):

M−1 = E
{
Z−1

}
=
α + β − 1

α− 1
(2.24)

M−2 = E
{
Z−2

}
=

(α + β − 1)(α + β − 2)

(α− 1)(α− 2)
(2.25)

(2.26)

where α and β are the Beta distribution parameters.

Solving (2.24) and (2.25) for α and β:

α =

M−1 −
2M−2
M−1

+ 1

M−1 −
M−2
M−1

(2.27)

β = (1−M−1)(1− α) (2.28)

Finally, the probability of detection for a HrS is defined as (HUANG et al.,

2015):

P hr
d , Pr (ξhr < λhr|H1) =

Bx(α, β)

B(α, β)
(2.29)

where B(α, β) is the beta function and Bx(α, β) is the incomplete beta function.

Figures 2.8 and 2.9 show ROC performance of a HrS under AWGN channels.

Comparison of both figures presents an important fact which wasn’t mentioned

until now is the performance enhancement due to higher spatial diversity. This

result allows us to closer study this fact and also analyze HrS under different

channels and scenarios.
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Figure 2.8: ROC for HrS with
N = 1000 and M = 1.
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Figure 2.9: ROC for HrS with
N = 1000 and M = 3.
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2.2.5 SNR Walls in CR-SS

Another important contribution of this work is the analysis and correct formula-

tion of SNR Walls for spectrum sensors. This asymptotic behavior has already

been pointed out for SS devices (TANDRA; SAHAI, 2008; SAHAI; TANDRA, 2009).

Theoretically, decrease in SNR could be mitigated by increase in number of

samples; however, this it not what actually happens. At some limit point, the

"sample complexity blows up to infinity as the detector sensitivity approaches cer-

tain critical values" (TANDRA; SAHAI, 2008). For example, observing Fig. 2.10, a

SNR wall is seen at −46dB and the black dashed line indicates the hypothetical

sensor’s behavior.

Figure 2.10: SNR Wall characteristics.
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Observing equations of each sensor, it is possible to relate Pd, Pf , and γ to

find N .
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The sample complexity for an EnS is found with help of a factor ρ = 10x/10,

which quantifies the level of uncertainty in the noise power, where the noise

variance has xdB of uncertainty. As a result, the sample complexity for an EnS

is given by (TANDRA; SAHAI, 2008):

Ned =
2
[
Q−1(P ed

f )−Q−1(P ed
d )
]2

[
γ −

(
ρ2 − 1

ρ2

)]2 (2.30)

Consequently, the SNR wall is the point of discontinuity of (2.30):
[
γ −

(
ρ2 − 1

ρ2

)]2
= 0 ⇒ ∴ SNRED

wall =
ρ2 − 1

ρ2
(2.31)

Similarly, authors of (TANDRA; SAHAI, 2007) states that MfS is divided such

that the signal is coherently sensed within a coherence block with Nc samples

and then detected via an energy sensor. Indeed, the sample complexity for a MfS

is a modified version of (2.30) with addition of a variable θ ∈ R|0 ≤ θ ≤ 1 that

represents the fraction of a pilot tone power and Nc representing the influence of

coherence time:

Nmf =
2Nc

[
Q−1(P ed

f )−Q−1(P ed
d )
]2

[
θNcγ −

(
ρ2 − 1

ρ2

)]2 (2.32)

Similarly, the SNR wall for a MfS is found with analysis of the denominator

of (2.32):
[
θNcγ −

(
ρ2 − 1

ρ2

)]2
= 0 ∴ SNRMF

wall =
ρ2 − 1

θNcρ2
(2.33)

For the CAV, Pd and Pf are given respectively by (2.14) and (2.13); as a

consequence, λCAV can be isolated from both equations:

λcav =
1 + (L− 1)

√
2

Nπ

1−Q−1(P cav
f )

√
2/N

(2.34)

λcav =

1 +
ΥLγ

1 + γ

1 +
√

2/NQ−1(P cav
d )

(2.35)

Combining (2.34) and (2.34), the sample complexity for a CAV detector is

obtained as:
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Ncav =
2φ2

(
δ −

√
δ2 − 2∆φ

)2 (2.36)

where:

δ = Q−1(1− P cav
d ) +

(L− 1)√
π

+Q−1(Pf )

[
1 +

ΥLγ

1 + γ

]

φ =
2(L− 1)√

π
Q−1(1− P cav

d )

∆ = − ΥLγ

1 + γ

The SNR wall for CAV detectors is also extracted from (2.36):
(
δ −

√
δ2 − 2∆φ

)2
= 0 ⇒ ∴ 2∆φ = 0

2

(
ΥLγ

1 + γ

)
·
(

1(L− 1)√
π

Q−1(1− Pd)
)

= 0 (2.37)

There are two possibilities for the denominator to be set to zero: a) L = 1;

b) ΥL = 0. This shows that, for fixed and valid values of L and ΥL, the sample

complexity for a CAV detector will not present a discontinuity point in terms of

SNR.

Exact calculation of SNR Wall values based on limit analysis of the above

equations is more detailed in Appendix A.1. Numerical results are depicted in

figure 2.11, where it is possible to observe a wall located at -13.4dB for EnS and

-43dB for MfS. However, CAV dos not presents an SNR Wall. This fact had

already been pointed ou by Tandra (TANDRA; SAHAI, 2007), which stated that

feature detectors, like CAV, do not present a wall when working in certain types

of channels. This has now been confirmed by analysis of equation (2.36) and

observation of figure 2.11.

Figure 2.11: Sample complexity for CRN sensors.
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2.3 Numerical Results: Hadamard Ratio Sensor

This study of HrS technologies started at the graduation’s final project, where

the student performed an extensive research on likelihood theory, which is basic

knowledge for a HrS. Additionally, performance metrics and basic results were

also developed at that stage. Later, at the Master’s step, more realistic scenarios

were studied and deeper comparison/analysis of HrS topologies was proceeded.

In order to allows a better understanding of HrS’ operation, figure 2.12 exempli-

fies a basic spectrum sensing process of a Hadamard Ratio-based SS. Firstly, M

PUs generate and transmit their data over a channel H, which is d meters aways

from a SU. The sensing device collects N samples and group them into a matrix

YK×N , where K is the number of SU’s receiver antennas. Then, a sample covari-

ance matrix is calculated and the maximum likelihood of this received signal is

estimated. Indeed, the test statistic ξed is calculated and the final decision (H0

or H1) is taken based on a threshold γed.

Figure 2.12: Block diagram for a generic HrS.
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HrS methodology does not provide a closed expression probabilities of detec-

tion and false alarm involving all variables, as all previous studied sensors. In

contrast, a moment matching strategy is needed. Observing ξed, a great simi-

larity to a Beta distributed random variable (r.v.) could be detected (HUANG

et al., 2015; TUGNAIT, 2012; MARIANI; GIORGETTI; CHIANI, 2012; ABOURIZK;

HALPIN; WILSON, 1994). As a consequence, via calculation of first and second

positive/negative moments of ξed probabilities are calculated via p.d.f (prob-

ability density function) integration, which is the C.D.F (Cumulative Density

Function) of a Beta r.v.

The studied scenario modelling allows insertion of a Doppler spread factor

fd, which represents mobility of secondary users. Indeed, simulations with slow

and fast fading could be designed. Additionally, in wireless systems, distance
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Table 2.1: Reference values used for simulations

Parameter Value
Avg. PU power Pt ∈ [−100, −20]dBm
PU-SU dist. d = 1000m
Noise power Pnoise = −100dBm
SNR γ ∈ [−3, 7]dB
# samples N ∈ [32, 1024]
# SU antennas K = 12
# PU M = 5
Doppler freq. fd ∈ {5, 200}Hz
Path-loss exponent ψ = 4

between transmitter and receiver does not significantly harm the transmission;

however, it demands more transmission power. In order to calculate a path loss

effect, the distance d was considered to be the average SU-PU separation. Table

2.1 presents all values and parameters used on simulation runs in this section.

Results are next presented if terms of ROC. Firstly, figure 2.13 compares

HrS and EnS for a fast fading environment, where the maximum Doppler shift

fd = v
c
fc = 200Hz (v is the user’s velocity, fc is the carrier frequency and c is the

light velocity and d = 1km. As stated in results of section 2.2.1, an EnS already

presents excellent performance at γ = −3dB in AWGN scenarios; however, figure

2.13 shows that EnS performs poorly in fading channels even at γ = 7dB. In

contrast, HrS presents acceptable performance (Pd ≥ 0.1 and Pf ≤ 0.2) at fading

scenarios with γ = −3dB (as shown in the blue dashed curve of figure 2.13).

Figure 2.13: ROC comparison for EnS and HrS.
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This result justify utilization of HrS as a SS method to be applied in CRN,

once the secondary user is usually a portable device, which is in constant move-
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ment (fading channel). Next, difference between slow and fast fading and how

number of samples affect performance of detection in HrS in described. For the

slow fading case, all N samples are subject to the same channel state, while on

fast fading there is a change in channel state at each received sample.

The following simulation has been proceeded for a fixed transmitting power

equals to -20dBm, K = 12 antennas, M = 5 users and d = 1000m, which results

in γ = 0dB. The scale of x-axis has been changed to logarithmic in order to

provide a closer view of the effect of changing the number of samples. Firstly,

the slow fading case (2.14 shows that a marginal increase in number of samples

effects minimally the performance (change from 128 to 150 samples); however, a

great change in N also poses a great increase in Pd). The fast fading case is a

little different: it seems to present a limit performance with N = 128. This is

proved by abruptly increasing samples from 128 to 1024 and, as a consequence,

negligible performance improvement is observed. This may indicate the existence

of a SNR wall at around 128 samples.

Figure 2.14: Slow fading.
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Figure 2.15: Fast fading.
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3 Precoding Techniques in
Cognitive Radio Networks

Previous chapter has studied efficient spectrum sensing techniques and how it

affects a cognitive communication. After the SS stage, a CR has to effectively

adapt its transmission strategies (power, code, frequency etc.) to enhance QoS

while avoiding interference to PUs. This chapter is devoted to analyze an access

strategy based on precoding designing, which is able to reduce/avoid interference

between two or more SUs and to PUs.

Precoding is a strategy based on optimization techniques which applies pre-

processing on any transmission data aiming to reduce effects of wireless channels.

Via exploiting Channel State Information at the Transmitter (CSIT), a precoding

matrix W (or vector w in MISO scenarios) is designed to encode the information

such that overall quality of transmission is enhanced. Precoding is widely used

in transceiver design (either at cognitive scenarios or not) to simplify different

design criteria and transform the problem into a diagonal/parallel architecture

(DANIEL P. PALOMAR, 2007).

The vector w is usually designed to optimize some transmission character-

istics, i.e. capacity, BER, SER, spectrum/power efficiency. The chosen design

criteria is the sum rate (SR) optimization for the entire secondary cognitive net-

work, which may have more than one user. A MU-MISO (Multi User MISO)

cognitive underlay network was considered. As illustrated in figure 3.1, the net-

work has a central cognitive BS (Base Station) broadcasting information toK SUs

while M PUs are also transmitting over the same bandwidth. Each k-th BS-SU

link has a channel response modeled by hk ∈ Cnbs×1, k ∈ K = {1, , 2, . . . , K} and
each m-th BS-PU link is represented by gm ∈ Cnbs×1, m ∈ M = {1, , 2, . . . , M}
and is considered a form of interference for any PU. Also, all PUs are constantly

transmitting; consequently, their signal is seen as interference at SUs, and the

channel vector qm,k relates each m-th PU and k-th SU.

Given the above scenario, it is possible to assume flat fading channel for all
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Figure 3.1: Proposed MISO Cognitive Radio scenario.
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cases. Additionally, as described in (QIU et al., 2012), a CR device usually has

a high processing power, which, allied with CSIT, allows and stimulate design

of precoding processing techniques to enhance overall quality of communication.

Indeed, the work proposed in this chapter is very valid and pertinent to this

scenario.

Once the underlay CRN scenarios has been chosen, it is important to adequate

every k-th link transmission power in order not to overcome a certain interference

limit to anym-th primary user, which is given by Im. From figure 3.1, the received

signal at the k-th SU is written as:

yk = hHk wkxk +
∑

i∈K,i 6=k
hHk wixi +

M∑

j=1

qHj,kzj + ηk (3.1)

where ηk ∼ CN (0, σ2
k) is the AWGN (Additive White Gaussian Noise), xk ∼

CN (0, 1) is a normalized transmitted symbol and wk is the precoding vector. By

doing so, wk is also responsible for allocating power. Also, there is a transmitted

signal zj for all M PUs; however, SUs do not have any information about primary

users characteristics or its transmitted symbols.

As mentioned before, in an underlay CRN, all PUs are constantly transmitting

and SUs do not have any power upon primary transmissions. If all PUs transmit

over the entire period of time, for sake of simplicity, an average interference power

Ip can substitute calculation of E
[∑M

j=1

(
qHj,kzj

)2]. This constant Ip can be now

incorporated into the noise term as nk ∼ CN (0, σ2
k + Ip). Consequently, the
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received signal at k-th SU is re-written as:

yk = hHk wkxk +
∑

i∈K,i 6=k
hHk wixi + nk (3.2)

Observe that the first term of yk in equation (3.2) is relative to the actual

information of user k and the second term is referent to interference from other

secondary users.

As mentioned before, a transceiver is usually designed to optimize the trans-

mission. This research is focused on optimizing the SR of an entire secondary

network constrained by interference and transmission power figures. Indeed, the

problem formulation has a general form as follows:

max
{w1,...,wK}

K∑

k=1

C(wk) (3.3a)

s.t : f1(wk)∀k ∈ K (3.3b)

f2(wk)∀k ∈ K (3.3c)

Where f1(wk) and f2(wk) represent interference limit and BS transmission power

constraints and C(wk) is the k-th user channel capacity given by the Shannon’s

equation (TSE; VISWANATH, 2005):

C(wk) = log2 (1 + γk) (3.4)

where γk is the Signal to Interference plus Noise Ratio (SINR), which is formulated

as:

γk =
hkwkw

H
k hHk∑K

j 6=k hkwjwH
j hHk + σ2

k + Ip
∀k ∈ K (3.5)

Differently from other articles that aim to minimize any interference from

SUs to PUs as a protection, this work uses interference as a constraint. As

stated before, in architecture from figure 3.1, there are basically three types of

interference: PUs→SUs, SUs→SUs, SUs→PUs, which will all be considered in

the problem formulation. The denominator of (3.5) has already incorporated

any interference to secondary users; however, interference to primary users still

needed to be considered as a constraint, which is:

f1(wk) =
∑

k∈K
gmwkw

H
k gHm ≤ Im, ∀m ∈M (3.6)
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In addition, as the great majority of wireless transmission systems, a CRN

also has limited transmission power Pbs. Indeed, it is possible to write another

constraint to our optimization problem:

f2(wk) = wH
k wk ≤ Pbs ∀k ∈ K (3.7)

which states that all allocated power resultant from precoding design must stay

below the available power resources.

Grouping all the above equations together, the initial resource allocation op-

timization problem is finally written as:

max
{w1,...,wK}

K∑

k=1

log2 (1 + γk) (3.8a)

s.t : wH
k wk ≤ Pbs, ∀k ∈ K (3.8b)
∑

k∈K
gmwkw

H
k gHm ≤ Im, ∀m ∈M (3.8c)

As every optimization problem, the first step to solve it is the proof of convexity.

Appendix A.3 brigs an extensive discussion about it, and shows the non-convexity

of the cost function (3.8a), which motivate us to transform the problem and

identify, at least, a suboptimal solution.

3.1 Zero Forcing-Water Filling Technique

Zero Forcing (ZF) technique is largely applied as precoding/decoding strategy

to minimize channel effects in wireless transmission systems. In order to divide

channel effect cancellation and power allocation, the precoding vector was re-

written as wk =
√
pktk such as hHi tk = 0, ∀i ∈ K, i 6= k and gHmtk = 0, ∀m ∈

M. The ZF criterion implies in an interference free system only if the following

equation is held:

FH
−ktk = 0 (3.9)

where F−k , {g1, . . . ,gM ,h1, . . . ,hk−1,hk+1, . . . ,hK} ∈ Cnbs×(M+K−1). If the

above criterion is respected, the original problem is simplified and the cost func-

tion becomes convex (for more details, the reader should refer to Appendix A.3).
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Indeed, the optimization problem is simplified to:

max
{tk},p

K∑

k=1

log2 (1 + γk) (3.10a)

s.t :
K∑

k=1

pktk
Htk ≤ Pbs, ∀k ∈ K (3.10b)

FH
−ktk = 0 (3.10c)

1. When (M + K − 1) < nbs, rank (F−k) < nbs; consequently, FH
−ktk = 0,∀k

presents an infinite number of solutions, including the optimal W∗ = T ·
diag (

√
p∗), where T is the classical ZF solution: T∗ = T′

(
T′T′H

)−1, where
T′ =

(
I−GHG

)
HH and p∗ is an optimal power allocation. Note that

H = [h1, . . . ,hk] is the collection of all BS-SU channel vectors and G =

[g1, . . . ,gM ] refers to BS-PU power linkage link.

2. When (M + K − 1) > nbs, rank (F−k) = nbs and F−ktk = 0 only has the

trivial solution t∗k = 0, which implies that all SUs are deactivated. In order

to avoid this effect, we will ensure that a set S ⊂ K of active SUs is used

to keep (M +K − 1) < nbs.

After finding tk, the problem is narrowed down to optimally allocating power,

which has a well known solution given by the Water Filling (WF) algorithm:

max
p≥0

∑

k∈S
log2(1 + γk) (3.11a)

s.t :
∑

k∈S
pk |t∗k|2 ≤ Pbs (3.11b)

where:

pk =
1

bk
[µ− bk]+ , for

∑

k∈S
[µ− bk]+ = Pbs (3.12)

bk denotes the k-th diagonal element of
(
HHH

)−1, µ is the water level and [·]+ =

max {0, ·}

This two step optimization problem is the proposed Zero Forcing-Water Fill-

ing (ZFWF) technique to sub-optimally maximize the SR of a CRN under certain

physical constraints. The sub-optimality comes from the fact that, given the set

of all possible solutions to the original problem (3.8a), we have selected a special

case of wk that guarantees an interference-free transmission, has a closed form

solution and narrows down the problem to a simple power allocation strategy.

This proposed solution turns out to be more complicated with increasing

number of primary or secondary users. Considering the zero-forcing constraint
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(3.9), it is possible to observe that, if K or M become very large, it will be

very difficult to find a precoding vector lying in the null-space of F−k, which

turns out not to completely force interferences to zero. This fact may harm the

transmission in a way that, if more users are present in the network, capacity will

actually decrease, which is the opposite from what we are designing the precoding

for.

3.2 Contributions

The main contributions of the work in this chapter are:

1. Characterization of a MISO-CR scenario;

2. Complete convexity analysis of a SR problem in MISO-CR;

3. Design of SR maximization techniques for CRN;

4. Comparison of different precoding techniques and power allocation strate-

gies.

5. Proposition of linear/exponential approximations of the optimal number of

SUs for a given CRN configuration, where only information about nbs and

SINR is available.

3.3 Numerical Results

Basically, an optimization problem can be modeled/solved in two ways: robust

optimization and stochastic optimization. Wireless systems are usually very sen-

sitive to small interferences and changes (BEYER; SENDHOFF, 2007). Robust

optimization techniques seek a complete description/modeling (either additive

and multiplicative) (BEN-TAL; GHAOUI; NEMIROVSKI, 2009), while stochastic op-

timization leads with estimation errors according to some statistical distributions

(KALL; WALLACE, 1994).

The theory developed in previous section is based on stochastic optimization,

once noise uncertainty was modeled as AWGN and primary interference to SUs

was considered a constant. Other works aim to more precisely model these pa-

rameters and also other uncertainties in CRN (XU; ZHAO; LIANG, 2015); however,

this is not the focus of the proposed study/methodology.
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3.3.1 Capacity comparison

The instantaneous capacity for any simulation trial is given by equation (3.4),

which assumes perfect channel state information at receiver and transmitter. As-

suming a WSS channel (Wide-Sense Stationary), the ergodic capacity C(·) is

computed via taking the expected value over all calculated instantaneous capac-

ity (equation (3.13)) (COSTA; HAYKIN, 2010). Indeed, taking the expectancy from

a sufficient number of trials, we approach the ergodic capacity of the channel.

C(wk) = E [C(wk)] (3.13)

This section will now present all relevant obtained results. As the initial

proposition is to maximize the SR of an CRN, an important performance figure

is the actual SR, which is calculated after designing a precoding vector and prop-

erly allocating power. Later, another figure used to evaluate performance of a

transmission system is the Bit Error Rate (BER), which is the number of error

bits divided by the total number of transmitted bits. As seen in equation (3.13),

our results become valid if a minimum number of trials is used to simulate the

transmission. All following results were obtained via Monte Carlo simulations

with 106 trials.

Capacity of MIMO channels is directly related to number of antennas (TSE;

VISWANATH, 2005). Specifically in this work, capacity is dependent on num-

ber of secondary users (K) and BS antennas (nbs). Therefore, it is essential to

demonstrate all optimization results for various scenario configurations. The fol-

lowing result plotted on figure 3.2 are based on setups of Table 3.1, where we are

aiming to vary nbs and K to analyze how the SR of a CRN is affected.

Table 3.1: Reference values used for simulation 1

Parameter Value
SINR γ ∈ [−15, 35]dB
Secondary users K ∈ {3, 5, 10, 15}
Primary users M ∈ {1, 2}
CR-BS antennas nBS ∈ {8, 16}
PU interference Ip = 0dB
Modulation 4-QAM

The value of Ip appear in decibel scale, which represents 1 watt of interference

at any secondary user. Considering that in such CR scenario there is n more than

two primary users and secondary users are spread over a certain coverage region,

this reference value used for simulation represents a consistent interference power

that does not significantly impacts SUs’ transmission but limits the sum capacity.
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All result following presented will compare performance figures between the

proposed ZFWF scheme and the ZFEP (Zero Forcing Equal Power), which is a

method that does not make use of optimal power allocation.

Figure 3.2: Sum capacity for ZFWF and ZFEP power allocation schemes.
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The first important analysis of figure 3.2.a) consists of observing that the

proposed algorithm outperforms the case of a transmission that only cares about

avoiding interferences on the network. The main idea behind ZFWF is to create

a way of doing two important jobs in a CR transmission: interference zeroing and

optimal power allocating. Indeed, we are able to see that zero forcing by itself does

not offer great advantages for capacity enhancement; however,after applying zero

forcing, we are able to deal with parallel channels and apply water filing power

allocation, which significantly increases the SR of a secondary network.

The second important analysis of figure 3.2.b) comes from the red and ma-

genta curves, that have two primary users. In both cases, either ZFWF and

ZFEP, there is a possible capacity limit. This is probably due to interference

constraint imposed by each PU. Even though the SUs have available power, they

are limited by an interference threshold, which ends up limiting their capacity.

Also, the constant interference Ip increases whenM > 1 and SUs do not have how

to avoid it. This phenomenon is actually prone to happen in cases with M = 1;

however, for much higher SINR values.

Lastly, it is possible to observe the effect of increasing the spatial diversity.
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If nbs or K increases, the water filing algorithm is able to use only the non-faded

channels. This is observed by the fact that, as K increases, the ZFWF curve

detaches even more from the ZFEP ones (green, black and blue curves).

3.3.2 Optimum number of secondary users

In every wireless transmission network, there are some limiting parameters i.e.

transmitting power, number of antennas or even distance from BS. In the specific

case of an underlay CR MISO broadcasting network, the aim is to attend as much

secondary users as we can without interfering primary transmissions. However,

there exists a certain number of secondary users that maximizes the SR of the

network. A basic explanation is that, the more users are transmitting, the more

interference inter SUs will happen, and instead of increasing, the sum capacity

will actually decrease. This is seen in figure 3.3, which plots C as a function of

nbs and K for different values of SINR.

Figure 3.3: Ergodic capacity for a ZFWF transmission with varying K, nbs

and SINR.

0

10

00

20

30

40

50

C
 [b

ps
/H

z]

60

70

1010

80

nBSK

2020
3030

SINR=0dB
SINR=5dB
SINR=10dB
SINR=15dB

(M+K-1) < nBS

This existence of a optimum K∗ is explained by two major facts. Firstly, as

SUs are generally low-cost, low-power radios, when K increases, an unavailable

amount of transmission power is required to guarantee quality communication for

all users, which ends up reducing the secondary sum capacity. Secondly, as the

precoding matrix has been designed based on F−k and its dimension, if K and
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nbs increase, the dimension of F−k also increases; as a consequence, there exists

fewer solutions that guarantee a precoding matrix lying in the null space of F−k

and the ZF algorithm is not able to completely null the interference.

As observed in Figure 3.3, for every value of SINR and nbs there is an optimal

K∗ that maximizes the sum capacity of the entire cognitive network. For massive

MIMO architectures it is common to analyze the asymptotic capacity behavior

as both nbs and K are usually very large, which simplifies the process of finding

a closed expression of K∗ (BAI; HEATH, 2014). However, as in CR technologies

K is not greater than 20, this asymptotic analysis is invalid. Consequently, it is

unfeasible to derivate the sum capacity expression and identify an exact formula

for K∗. Differently, we have approximated this value via linear interpolation.

Figure 3.4 presents the same ergodic capacity plotted above for the case with

γk = 15dB and also the points of maximum capacity, which corresponds to a

specific value of nbs and K.

Figure 3.4: Ergodic capacity for a ZFWF transmission with varying K, nbs

and γk = 15dB.
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Previous simulation was done for γk = 15dB, whose linear approximation

(red line in Figure 3.4) resulted in the following equation:

K∗ = 0.6712 · nbs + 0.2299, @γk = 15[dB] (3.14)

which gives a solution with mean squared error (MSE) equal to 0.0825. Note
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that, in real architectures, K∗ can only be an integer number. Indeed, using

the function round, a more accurate and realistic result is obtained, with mean

squared error equals to 0.0333. Both obtained models and its respective MSE are

enumerated in table 3.2.

Table 3.2: Obtained fitting and respective mean squared errors.

Model MSE
K∗ = 0.6712 · nbs + 0.2299 0.0825

K∗ = round (0.6712 · nbs + 0.2299) 0.0333

Every linear approximation of K∗ is somehow dependent on SINR; conse-

quently, there is a different equation for every value of SINR:

K∗ = 0.3071 · nbs + 0.5429, @γk = 0[dB]

K∗ = 0.5357 · nbs + 0.3143, @γk = 8[dB]

K∗ = 0.6893 · nbs + 0.2190, @γk = 16[dB]

K∗ = 0.8143 · nbs − 0.0476, @γk = 24[dB]

The next step is to observe how the angular coefficient and the constant term of

K∗ behave according to SINR and finally get to a general equation as follows:

K∗ = tan (ϕ(γk)) · nbs + β(γk) (3.15)

which narrows down the job to analysing the slope (related do the angle φ of the

line) and the constant β (FARIN; HANSFORD, 2004).

Via plotting various lines of K∗ and separately all ϕ and β, it is possible to

visually identify their behaviour and then interpolate them to get an equation for

ϕ (γk) and β (γk).

Figure 3.5.a) presents four obtained linear approximations of K∗ and their

respective angle. Subsequently, all obtained angles and constant terms are plot-

ted respectively in figure 3.5.b) and 3.5.c) in order to illustrate their behaviour

according to SINR. The red curves of figures 3.5.b) and 3.5.c) were obtained with

an exponential fitting where the SINR is the independent variable:

ϕ(γk) = a1 · SINRb1 + c1 (3.16)

β(γk) = a2 · SINRb2 + c2 (3.17)

With help of the Matlab Curve Fitting Tool, all necessary parameters to
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Figure 3.5: Fitting of K∗.
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approximate ϕ and β were accurately obtained as follows:

a1 = −0.5189

b1 = −0.2608

c1 = 0.8107

a2 = −3.2938

b2 = 0.0360

c2 = 3.8715

which are now substituted in (3.15):

K∗ = tan (ϕ(γk)) · nbs + β(γk)

= tan
(
−0.5189 · γ−0.2608k + 0.8107

)
nbs

− 3.2938 · γ0.0360k + 3.8715 (3.18)

Equation (3.18) offers a simple alternative for near-optimally choosing the

adequate number of secondary users in a cognitive radio scenario and presents a

mean squared error equals to 0.0958.

All results presented until now helped us to find out an alternative way to

make use of basic characteristics (number of BS antennas and SINR) to calcu-

late K∗. As observed in (3.14) and (3.18), K∗ is linearly dependent of nbs and
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exponentially dependent of SINR. This behavior is plotted in surface of Fig. 3.6

All results presented above presented that the proposed maximization scheme

Figure 3.6: Sum capacity of a CRN with optimum number of SUs.
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achieves a maximum SR of a given CRN. This maximization is valid only if both

techniques (Zero Forcing and Water Filing) are combined, in order to null in-

terference between users, transform the system into parallel channels and finally

optimally allocate power for a certain number of secondary users.

3.3.3 Bit Error Rate Comparison

Wireless transmission networks have various parameters that need to be carefully

addressed, i.e. transmission power, bit error rate, frame error rate, bandwidth,

transmission time and capacity. This work has proposed a method to enhance

capacity of an entire CRN, which resulted in a combined optimization strategy,

where a zero forcing stage is deployed to properly null inter-users interference

and a water filing power allocation is used to optimally allocate the available

power in order to achieve maximum capacity. This technique has been proved

above to correctly solve the initial problem (3.8). However, another important

performance metric has to be analyzed in this case: the Bit Error Rate, which

indicates how many bits are lost in a certain period of time for a give value of

SINR.

It is practically impossible to optimize all parameters of a wireless transmis-
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sion. If greater capacity is used, it might result in more package loss; if less power

is employed, capacity and BER may be degraded. As previous subsections fo-

cused on maximizing SR, it is important to analyze the impact of this precoding

technique in BER figures.

In order to make such comparison, at the same time that an algorithm to max-

imize SR is run, we transmit a data vector under both pre-processing strategies

(MMSE and ZFWF) in order to calculate the BER along 106 Rayleigh channel

realizations. The result is plotted in figure 3.7, where various scenario configu-

rations are tested in the same transmission scheme. Firstly, it is important to

Figure 3.7: BER for ZFWF and ZFEP power allocation schemes.
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notice that, even though ZFWF was designed to maximize sum capacity, it min-

imally affects BER values. Also, as expected, BER is dependent on number of

users/antennas (spatial diversity order), which is seen from the great separation

between the case where nbs and K = 15 and all other curves. Also, for all cases

with one primary user, the ZFWF presents higher BER than ZFEP for high

SINR.

The most interesting result extracted from this simulation is related to curves

where there is more than one primary user. Curves red and orange present a BER

floor from γk ≈ 15dB. There are a few reasons for this phenomenon: firstly, PUs

represent a very strong and unavoidable interference to secondary transmission,

which confuses SUs channel estimation, decreases SINR and degrades signal de-

tection. Also, once PUs hold transmission license, they have preference over
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the bandwidth and, as soon as any PU wish to transmit, SUs must give space

or reduce transmission power to avoid overcoming the interference temperature

threshold. Both situations, as a consequence of a great need for more transmit

power, end up causing an unavoidable BER floor. In order to eliminate, mitigate

it or achieve lower BER in scenarios whereM ≥ 2, active interference cancellation

is usually required.

3.3.4 MMSE Precoder Comparison

A few precoding techniques have been applied to CRN in order to enhance per-

formance, like Bivariate Probabilistic Constrained Programming (BPCP) (LAW;

MASOUROS; PESAVENTO, 2017), where the pre-processing matrix is designed to

improve Quality of Service (QoS) by considering presence of constructive interfer-

ence at secondary transmissions and taking advantage of it. Also, Leakage Rate

Limiting (LRL), which, instead of using an interference temperature constraint,

deals with interference leakage rate limiting to sustain a certain QoS (AL-ALI; HO,

2016). However, the classic Minimum Mean Squared Error (MMSE) approach

to BER minimization can also be applied to CRN, under certain considerations,

and offers a simple option to be compared to our proposed ZFWF scheme (ZHOU;

THOMPSON, 2008; LEE; LEE, 2011).

ZFWF and MMSE are two distinct precoding approaches: one tries to null

interference and achieve maximum capacity without care of correct bit detection,

and other looks for the minimum error possible at receiver without taking care

of inter user interference or capacity figures. As the main purpose of this work

is to maximize the sum capacity of a secondary network, ZFWF’s BER figures

will not be compared to the MMSE results, once the second is known to present

much lower BER and consequently, better performance.

In contrast, the next simulation compares capacity of ZFEP (no optimal

power allocation), ZFWF and MMSE precoding techniques, with the MMSE

precoding matrix being calculated only with the SU’s channel matrix WMMSE =

H ·
(
HHH + IK · η0

)
does not present a power allocation strategy. Once seen in

previous subsections, presence of more than one PU causes significant BER floors

and capacity debasement; as a consequence this simulation does not consider

cases where M ≥ 2 and all other reference values used for generation of figure 3.8

are presented in Table 3.3.

As expected, combination of zero forcing interference nulling and water filing

power allocation brings significant capacity improvement, as seen from the dis-
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Table 3.3: Reference values used for simulation 2

Parameter Value
SINR γ ∈ [−5, 35]dB
Secondary users K ∈ {10, 15}
Primary users M = 1
CR-BS antennas nBS = 16
PU interference Ip = 0dB
Modulation 4-QAM

Figure 3.8: Sum capacity for Zero Forcing and MMSE beamforming
techniques. K = 10 and K = 15 SUs.
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tance between ZFWF and ZFEP/MMSE curves for both scenario configurations.

Also, if greater spatial diversity is deployed (red curves), this improvement be-

comes even more significant. However, as seen in subsection 3.3.2, the optimum

K∗ must be respected, otherwise the sum capacity will actually decrease, once

the null space in which WZF must lie on is drastically reduced. Also, as observed

in Fig. 3.8, does not present much improvement from simple ZFEP, once none

sort of power allocation is employed. Hence, as previous analysed, the combined

strategy ZF and WF has proved again to be the optimal choice when aiming to

maximize sum capacity of cognitive radio networks.
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4 Channel Estimation Error
Effect in Cognitive Radio
Networks

4.1 Introduction

The wireless network has taken a great turn over when MIMO architectures were

introduced, which brought a whole new scenario for development of transmissions

strategies able to make efficient use of spatial diversity and/or multiplexing. The

emerging cognitive radio technologies also aim to develop transmission methods

able to adapt each link of a MIMO channel in order to achieve better overall

performance. This efficient use is usually employed if accurate channel state

information (CSI) is available at the transmitter, which is obtained via channel

estimation procedures.

A popular and recent example of application of channel estimation is the

introduction of IEEE 802.11n network standard (BING, 2008), which is known

to achieve much greater transmission rate and make efficient use of unlicensed

spectrum bands. Even though this protocol destined for indoor scenarios, it is a

very popular and simple example for explaining the main functionality of training

and channel estimation timings. This high throughput standard offers several en-

hancements to medium access control (MAC) layer and plays an important role in

popularization of MIMO technologies. The 802.11n employs high throughput or-

thogonal frequency division multiplexing (HT-OFDM) by using technologies such

as MIMO, channel biding, beamforming and space-time block coding (STBC).

In order to provide means for an accurate channel estimation, the IEEE

802.11n has two operation modes: mixed and green field modes. As illustrated in

Fig. 4.1, there are basically one structural difference between these modes: the

time period destined to training and channel estimation, and the data transmis-

sion event.

Even though training periods bring possibility of performance enhancement,
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PREAMBLE AND TRAINING PERIOD DATA TRANSMISSION

Tt > 36µs

PREAMBLE AND TRAINING PERIOD DATA TRANSMISSION

28µs < Tt < 36µs

Mixed mode

Green mode

Figure 4.1: IEEE 802.11n HT-PLCP (Physical Layer Convergence Protocol)
frame formats.

it also causes spectral/power efficiency loss. Spectral efficiency is defined as the

net bit rate over the channel bandwidth. The longer preamble is used, the lower

net bit rate is achieved. Consequently, it is desired to keep the training period as

low as possible.

The high throughput mesh networks is a promising scenario for cognitive ra-

dios (BIGLIERI; GOLDSIMITH; GREENSTEIN, 2012). Also, our previous analysis

(CLAUDINO; ABRAO, 2017) have demonstrated that accurate (virtually perfect)

CSI estimations bring significant improvements in capacity, once correct inter-

ference cancellation and power allocation can be applied together. Indeed, the

optimization techniques are deployed in (CLAUDINO; ABRAO, 2017) to design CR

precoding strategies aiming at maximizing the sum capacity of a multiple input-

single-output cognitve radio networks (MISO-CRNs). The chosen technique is

zero-forcing waterfilling (ZFWF). To maximize the sum capacity, the number of

secondary users to be supported in a certain CRN is optimally determined. The

choice of K∗ is based only on the number of basestation (BS) antennas and SINR.

This might be very useful when designing and controlling the network, once the

BS can select the best quality links and discard the poor ones.

Other studies have proved that different beamforming techniques may cause

improvements on the spectral efficiency (KHATAMI; MOHAMEDPOUR; ANDAR-

GOLI, 2017) and also SINR maximization (TOUTOUNCHIAN; VAUGHAN, 2016).

Therefore, the following facts are enough reasons to motivate the study of chan-

nel estimation techniques and its impact on the performance of CR networks:

• Accuracy in the CSI estimations brings huge improvements to wireless

transmissions;

• Accurate CSI estimations allow CR devices to successfully explore powerful

interference cancellation techniques;

• The imperfections of the CSI estimations is due to the miss-detection of

signals;



4.1 Introduction 43

• Study of imperfect CSI effects brings means of analyzing possible errors and

extrapolation of interference thresholds;

• Current communication protocols allow transmission periods dedicated to

training and channel estimation;

• Use of known pilot sequences allows SUs to estimate both SU’s and PU’s

channel matrix.

4.1.1 Contributions

CRN is a recent and promising field of study that needs a closer look and some

special analysis. As a consequence of its topology, cognitive transceivers must

always be working under high interference. The knowledge of channel character-

istics or statistics is essential for precoding design and performance optimization.

Hence, this work comes to contribute with the literature on the following CRN

aspects:

• Mathematical determination of Linear MMSE (LMMSE) channel estima-

tion for underlay CRN mode with simultaneous transmission of PUs and

SUs;

• Proof that knowledge of both primary and secondary pilot sequences are

necessary to apply LMMSE channel estimation;

• Simultaneous estimation of both PU and SU channels for underlay CRN,

where all users are transmitting over the entire period of time;

• Analysis of impact of imperfect channel estimation on capacity of secondary

users;

• Quantification of capacity loss of the underlay CRNs due to imperfect chan-

nel estimations.

The reminder of this Chapter is divided as follows: Section 4.2 presents the

adopted underlay MU-MISO-CRN system model, evidencing the channel estima-

tion problem in underlay CRNs. In Section 4.2.4 the linear MMSE MU-MISO

CRN channel estimator is derived for synchronous scenarios. Numerical results

in in Section 4.3 demonstrate the effectiveness of the proposed LMMSE chan-

nel estimation method for underlay MU-MISO-CRNs in both asynchronous and

synchronous scenarios.
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4.2 System model

A single-cell underlay multiuser (MU) MISO-CRN will be considered, where a

CR-BS with nbs antennas is communicating with K SUs and M PUs. The sec-

ondary transmission is established via a half-duplex link where the CR-BS has

means of properly estimating all necessary channel characteristics and make the

best use of it to enhance its transmission.

This work consists of separately analyzing uplink (UL) and downlink (DL)

of a single cell underlay MU-MISO-CRN. The channel training occurs at uplink,

while the data transmission is at the downlink. During uplink, the CR-BS is si-

multaneously receiving PUs and SUs pilot sequences and estimating both channel

matrix. After receiving and processing the data, the CR-BS makes the best use of

it to design efficient precoders according to the strategy developed in (CLAUDINO;

ABRAO, 2017).

A possible time-slot structure is depicted in Fig. 4.2, where the channel

estimation is composed of two stages that must be no longer than N symbols.

Firstly, the CR-BS receives all transmitted pilot sequences and then process it to

estimate the channel matrix and design efficient transmission precoders according

to theory of (CLAUDINO; ABRAO, 2017). Subsequently, the CR-BS transmits the

estimated channel to allow the CR node to properly decode the following message;

finally, the CR-BS transmits all desired data. An essential condition is that the

period T must be smaller than the channel’s coherence time (∆t)c. This constraint

guarantees that all estimated channel parameters at the uplink can be reasonably

used on the following downlink data transmission.

Figure 4.2: Frame structure.
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For sake of simplicity and compactness, the system model presented in this

work relies on synchronous transmission and assumes orthogonal training se-

quences, which is not the most realistic case in the uplink direction, once it

is impractical to synchronize all PUs and SUs such that its transmitted pilot se-

quences will be simultaneously received at CR-BS and without overlapping of two
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or more consecutive symbols. However, some asynchronous practical cases will be

analyzed numerically in Section 4.3, where the pilot sequence is quasi-orthogonal

and some overlapping is accepted at the CR-BS.

Next, uplink channel estimation and downlink data transmission will be de-

scribed. The uplink underlay CRN is used for training and channel estimation,

and a few estimation techniques will be studied and hereafter compared. In

this case, research of LMMSE technique adapted to MISO-CRN came up with

a novelty to prove that knowledge of primary and secondary pilot sequence and

noise variances are strictly necessary. Moreover, the downlink data transmission

subsection explains how the channel estimative will be used to efficiently design

optimal precoders according to the analytical findings in (CLAUDINO; ABRAO,

2017).

4.2.1 Uplink - training and channel estimation

The considered uplink configuration is depicted in Fig. 4.3.a), where vectors hi,

gj ∈ Cnbs×1, with i ∈ K = {1, . . . , K} and j ∈M = {1, . . . , M} are, respectively,
secondary and primary channel vectors.

Figure 4.3: Uplink and Downlink underlay MU-MISO-CRN scenarios.
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Observe that, even though both primary and secondary signals may be inter-

fering on other users signals, our interest herein is to collect the received signal at

CR-BS, which is composed by PUs’ and SU’s pilot sequences. Once an underlay

CR transmission is considered, both PUs and SUs are simultaneously transmitting
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their training sequence and the CR-BS receives a signal y ∈ Cnbs×1 as follows:

y =
K∑

i=1

hipi +
M∑

j=1

gjpj + n (4.1)

where pi is an arbitrary pilot symbol and n ∼ CN (0, σ2
n) is the complex Additive

White Gaussian Noise (AWGN).

Alternatively, eq. (4.1) can be re-written with the channel matrix H ∈ Cnbs×K

, G ∈ Cnbs×M and the pilot sequences ps ∈ CK×1 and pp ∈ CM×1:

y = Hps + Gpp + n (4.2)

A certain number of training realizations is usually required to properly es-

timate the channel in MIMO systems (HASSIBI; HOCHWALD, 2003). The lower

bound of training symbols is known to be the number of receiving antennas. In

this work, the training length N will be larger than nbs, such as N � nbs, in

order to avoid possible channel estimation uncertainties. However, as explained

before, training sequence length directly affect energy/spectral efficiency. Also,

as mentioned before, the total frame length must be smaller than the coherence

time of the channel.

As a consequence, the pilot symbol vectors ps and pp can be substituted by

its respective matrix form Ps ∈ CK×N and Pp ∈ CM×N , which results in the

following received signal:

Y = HPs + GPp + N (4.3)

Where Y ∈ Cnbs×N is the received signal, the wireless channels H and G are

complex Gaussian variables and Rayleigh flat fading assumed to be constant for

(∆t)c > T symbols.

4.2.2 Estimating PU’s and SU’s channel matrices in under-
lay CRNs

The main idea is to make use of one training period to simultaneously estimate

both primary and secondary channel matrix. However, the problem herein is

that, for underlay CRN scenarios, PUs are constantly transmitting (and usually

SUs are also aiming to do so). As a consequence, the estimators Ĥ and Ĝ have

to deal with a constant interference: when estimating H, there is the primary

term GPp and, when estimating G, there is an interference referent to HPs.
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All researches until now focus on estimating H and G separately or only one

of them. However, the precoder studied in (CLAUDINO; ABRAO, 2017) relies on

knowledge of both Ĥ and Ĝ, and the fastest way of doing such estimation is to

only one received signal of length N to estimate both channel matrix.

Underlay CRNs do not need a spectrum sensing stage, which allows all SUs

to make use of the training period only to estimate the channel; consequently,

the proposed frame structure of Fig. 4.2 still valid for the underlay MU-MISO

CRN scenario.

It is known that some estimation techniques present better results for cer-

tain network configuration or are less computationally complex. Indeed, in the

following, the least squares (LS) and the linear minimum mean squares error

(LMMSE) estimation techniques will be briefly presented, in order to allow a

future analysis of the impact of the use of such estimators on sum capacity and

error performance. The classical LS estimator will be firstly introduced and can

be straightforwardly adapted to MU-MISO CRN channel estimation application

scenarios. However, the LMMSE case can not be easily adapted and some new

inferences are presented.

4.2.3 Least Squares MU-MISO CRN Channel Estimator

The LS channel estimator is intended to find a parameter θ to minimize the

function Jls(θ):

Jls(θ) = (Y − θPi)
2

= (Y − θPi)
H(Y − θPi)

= YHY −YHθPi − θHPH
i Y + θHPH

i Piθ (4.4)

The gradient of Jls(θ) is then calculated and set to zero as:

∂Jls(θ)

∂θ
= −PH

i Y + PH
i Piθ = 0

PH
i Piθ = PH

i Y

θ =
(
PH
i Pi

)−1
PH
i Y (4.5)

where the training matrix Pi can be referent to SUs (Ps) or PUs (Pp); the

pseudo-inverse matrix of Pi is given by P†i =
(
PH
i Pi

)−1
PH
i .

It is important to remember that, differently from other traditional MIMO

architectures, an underlay CR has to use the same received signal Y to estimate
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two distinct channel matrices, which may result in poor performance. Conse-

quently, estimative of H has to lead with interference from PUs and vice-versa.

From (4.5), each LS estimator (secondary and primary) can be written as (KAY,

1993):

Ĥls = YP†s (4.6)

Ĝls = YP†p (4.7)

4.2.4 Linear MMSE MU-MISO CRN Channel Estimator

The LMMSE estimator has a general form Ĥlmmse = YA∗, where the matrix A∗

is responsible for minimizing the difference between H and Ĥlmmse as follows:

A∗ = arg min
A

E
{
||H− Ĥlmmse||2F

}

= arg min
A

E
{
||H−YA||2F

}
(4.8)

This approach is named Linear MMSE because the estimated channel matrix

is a linear weighted combination of received signals.

The classical solution for problem (4.8) is applicable for SISO, SIMO and

MIMO scenarios. In these cases, an arbitrary estimated channel matrix Ĥa is

calculated based on the cross-correlation between Ha and the received signal Y,

namely matrix RHaY , the inverse of the autocorrelation of Y, i.e.,R−1Y Y , and the

proper received signal Y (BIGUESH; GERSHMAN, 2004):

Ĥa = RHaY R−1Y Y Y (4.9)

A more detailed description of the classic LMMSE definition is written on

Appendix A.4.

The novelty regarding the CRN channel estimation is the adaptation of eq.

(4.9) to MU-MISO-CRN scenarios. Such analysis presents some peculiarities

that must be properly unveiled. Considering the ideal synchronized received

signal with orthogonal training sequences1, eq. (4.3). It is necessary to adapt the
1Note that this case is specific for synchronized SU’s and/or PU’s transmitters, once no

overlapping between consecutive samples is considered in such received signal expression. Even
though this characterizes a not completely realistic configuration, it makes simpler the process
of developing mathematical expressions for both estimated channels. The numerical results in
Section 4.3 will present some analysis regarding non-synchronized transmitters and also non-
orthogonal training sequences.
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classic cross-correlation2 and autocorrelation matrix from (4.9) for the MISO-

CRN, where there exists two major series of pilot sequences and channel matrix.

Indeed, the following has to be calculated:

Ĥlmmse = RHY R−1Y Y Y (4.10)

Ĝlmmse = RGY R−1Y Y Y (4.11)

where the correlation matrix RHH , RY Y , RHY and RGY have the following spe-

cific forms:

RHH = E
{
HHH

}
= σ2

hIK (4.12)

RY Y = E
{
YYH

}
= σ2

hPsP
H
s + σ2

gPpPp + σ2
nIN (4.13)

RHY = E
{
HYH

}
= σ2

hP
H
s (4.14)

RGY = E
{
GYH

}
= σ2

gP
H
p (4.15)

The above result, even though obtained for a synchronous case, describes that

for underlay CRN it is strictly necessary knowledge of both primary and secondary

pilot sequences and channel variances. This interesting result puts some serious

constraints regarding possible standards to regulate the CR transmission scheme:

primary users, apart from allowing secondary users to transmit over a specific

bandwidth, must at least share its pilot sequence indexes in order to allow SUs to

efficiently design precoders/decoders while avoiding (or smartly reducing) possible

interferences.

Until now, two estimation methods have been studied: the classic LS and

LMMSE. The LS can be straight forwardly applied to MISO-CRN; however, the

above research unveiled that LMMSE needs some special care regarding knowl-

edge of pilot sequences and signals statistics. The next step is to apply these

results to precoder ZFWF studied in (CLAUDINO; ABRAO, 2017), which requires

knowledge of H and G to optimally design a precoder to maximize the sum

capacity of a CRNs.
2The analysis of effect of non-orthogonal training sequences will be done with help of Gold

sequences, which has already been proved to offer better performance results in realistic asyn-
chronous scenarios if compared to other non-orthogonal sequences (KOBAYASHI; ABRAO, 2017).



4.2 System model 50

4.2.5 Downlink: Data Transmission

This work has already revealed that SUs must know the primary pilot sequence

and channel variance, apart from its pilot sequence, to accurately estimate the

channel matrix via LMMSE estimation. Additionally, this Section intended to

study the effect of channel estimation error on the CR transmissions. Notice

that two estimation algorithms can be derived for UL channel estimation from

the previous section 4.2.1, which results in four CR channel estimation matrices,

Ĥls, Ĝls, Ĥlmmse and Ĝlmmse. These results will now be used to design efficient

precoders according to (CLAUDINO; ABRAO, 2017), which is summarized by the

optimization problems in eqs. (15)–(17) of such reference.

Even though the channel estimation is proceeded during the uplink transmis-

sion, all collected data and estimated channel matrix can be used for a downlink

transmission, once the coherence time has been considered greater than a frame

transmission period. This is known as the uplink-downlink duality, which says

the channel matrix estimations obtained during uplink can be transposed and

deployed for a downlink transmission purpose, with sum power constraint modi-

fication (SCHUBERT; BOCHE, 2004; WIESEL; ELDAR; SHAMAI, 2006).

In the DL transmission, for the purpose of data transmission, the nbs antennas

CR-BS broadcasts the signal toK SUs, whileM PUs are constantly transmitting,

as described in Fig. 4.3.b). With the purpose of maximizing the sum capacity, the

CR-BS employs a ZFWF precoder Ŵ based on the previous obtained channel

matrix estimations Ĥ and Ĝ in a same way of (CLAUDINO; ABRAO, 2017, eq.

(13)), having the following form:

Ŵ = diag
(√

p̂
)

T̂† (4.16)

where the pseudo-inverse matrix T̂† is the ZF solution given as:

T̂† = T̂
(
T̂T̂H

)−1
(4.17)

and T̂ =
(
I− ĜĜ

)
Ĥ is based on the estimated PU’s and SU’s channel matri-

ces. Besides, the vector p̂ is an optimal power allocation resultant from the WF

algorithm, which has been described by (CLAUDINO; ABRAO, 2017, eq. (17)).

The above precoder is a sub-optimal solution for the sum capacity problem.

Once the optimal one is based on perfect channel state information at the trans-

mitter, if an estimated version of H or G is used, the ZF does not completely

forces inter users interferences and, consequently, the WF algorithm is erroneously
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applied to non-parallel channels. Hence, the received signal at k-th SU when the

ZFWF precoder is not perfectly designed presents interference from others SUs

and PUs and is given by:

ỹk = hHk ŵkxk +
∑

i∈K,i 6=k
hHk ŵixi +

M∑

j=1

qj,kzj + ηk (4.18)

where xk a transmitted symbol destined to SU k, ŵk is the associated sub-optimal

precoder, zj is the j-th PU transmitted symbol, qj,k is the complex channel gain

relating PU j and SU k and ηk ∼ CN (0, σ2
k) is the AWGN. All information

symbols are normalized, i.e., xi ∼ CN (0, 1); hence, the kth transmitted power is

determined only by the precoder ŵk.

An important point to be considered in CRN is the absence of knowledge

about primary transmission information. Indeed, SUs have to lead with a con-

stant interference coming from PUs. For sake of simplicity, once PUs are consid-

ered to be always transmitting, an average constant interference power Ip can be

used instead of determining E
[∑

j∈M qj,kzj

]
. For a large number of PU’s or an-

tennas, the interference can be considered Gaussian distributed. Even though this

assumption is not so accurate for fewer antennas/users, it will be used to model

the interference power, which will be incorporated into the noise term in (4.18),

such that the noise variance is increased, nk ∼ CN (0, σ2
k + Ip). Consequently, the

received signal at k-th SU can be simplified as:

ỹk = hHk ŵkxk +
∑

i∈K,i 6=k
hHk ŵixi + nk (4.19)

As seen in (4.19), every k-th SU link is subject to interference from SU’s and

additive noise. Hence, the signal to interference plus noise ratio (SINR) of SU k

is ready defined as:

γ̂k =
hHk ŵkŵ

H
k hk∑

j 6=k hHk ŵjŵH
j hk + σ2

k + Ip
(4.20)

where the notation ·̂ comes from the channel error estimation impact on the

precoder vector calculation. Consequently, the sum capacity of the K active SUs

is written as:

Ĉ =
K∑

k=1

Ĉk =
K∑

k=1

[log2 (1 + γ̂k)] (4.21)

Notice that, when perfect channel state information is attained at the transmitter

side, Ĥ = H, Ĝ = G and the precoder is optimally designed (Ŵ = W). As a

consequence, the ZF stage will perfectly force interferences to zero and (4.20) will
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be reduced to:

γk =
hHk wkw

H
k hk

σ2
k + Ip

(4.22)

The impact of imperfect channel estimation will be quantized and compared

to the ideal case in the next section. As mentioned before, all mathematical

discussion was based on synchronous transmission at the uplink and use of or-

thogonal pilot sequences, which eases the process of finding a closed solution for

all channel estimators. However, this is not a realistic scenario. In order to cor-

roborate our theoretical findings and verify how harmful the imperfect channel

estimation actually is, the presented numerical results considering asynchronous

reception and non-orthogonal pilot sequences are analyzed in the sequel and com-

pared to the ideal case.

4.3 Numerical results

All numerical results presented in this section aim to analyze and quantify the

effect of imperfect channel estimation on the sum capacity optimization problem.

In order to do so, a block fading channel model will be considered, where the chan-

nel coefficients remain static for a period of at least T + 1 symbols (MARZETTA;

HOCHWALD, 1999). Indeed, results from channel estimation during N symbols

can be fairly used on downlink transmission.

Basically two scenarios will be analyzed in this Section. Firstly, a potential

market for CR technologies, which is the use of white spaces to offer reliable

bandwidth to emergency and public safety communications (VILLARDI; ABREU;

HARADA, 2012). In such scenario, there exists few users allocated around the

city, but they need a reliable and constant link to communicate in case of an

emergency. Secondly, a network with greater spatial diversity will be considered,

which illustrates, for example, a sensor network with many sensors and one central

multi antenna CR-BS.

Apart from considering two potential markets for CRN, this section will also

analyze the effect of asynchronous transmitter, where the received pilot sequences

at CR-BS arrive delayed and overlapped. A comparison between the classical LS

and the adapted LMMSE for synchronous and asynchronous transmitter with

two different pilot sequences sets, Walsh-Hadamard (W-H) and Gold codes will

be employed to simulate the results in terms of sum capacity and capacity loss.

For all synchronous cases, the Walsh-Hadamard code sequences have been used,

once it was proved in (KOBAYASHI; ABRAO, 2017) to present the better perfor-
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mance. However, for the asynchronous situation, W-H codes actually degrades

the transmission. As a consequence, for all asynchronous CRNs scenarios simu-

lations the Gold sequences were deployed.

Table 4.1 presents the main parameters and its reference values used to sim-

ulate both scenarios, here named not crowded and sensor network :

Table 4.1: Reference values for simulations

Parameters Not Crowded Sensor Network

SINR γ ∈ [−10, 20]dB γ ∈ [−10, 20]dB

SUs K = 4 K = 30

PUs M = 1 M = 1

CR-BS antennas nBS6 nBS40

PU interference Ip = 0dB Ip = 0dB

Pilot sequence N = 64 N = 64

4.3.1 White Spaces – Not Crowded Scenarios

The first simulation makes use of the ideal case with synchronous transmission

and orthogonal pilot sequence. The chosen pilot sequence set is the W-H with

N = 64 symbols for a configuration with K = 4, M = 1 and nbs = 6 with varying

uplink SINR (estimation). It is expected that higher uplink SINR scenarios lead

to more accurate channel estimative; consequently, the precoder matrix is more

efficiently designed and higher capacity is achieved. In order to analyze this effect,

Fig. 4.4.a) presents the sum capacity for a MU-MISO CRN, where the channel

estimation has been proceeded with LS or LMMSE methods. For this simulation,

the capacity curves were averaged over 1000 Monte Carlo trials.

The perfect CSI case in Fig. 4.4 (blue solid line) consists of designing the

precoder matrix T∗ assuming Ĥ = H. As expected, a channel estimation in lower

uplink SINR scenarios leads to poorer capacity for the downlink transmission. It

is firstly observed that channel estimation causes a great decrease in the sum

capacity. As expected, the lower uplink SINR is used, the poorer capacity. Usu-

ally, transmission systems seek to operate at high SINRs to estimate the channel,

which imposes less interference and, consequently, a more accurate estimative.

The asynchronous case presented in Fig. 4.4.b) considers 10% delayed re-

ceived signals and non-orthogonal pilot sequences. Comparison of both solid and

dotted lines of Fig. 4.4.b) corroborates, as expected, de-synchronization and

correlated sequences significantly negatively impact the sum capacity.
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Figure 4.4: Sum capacity for different values of γ at the uplink channel
estimation process for a MU-MISO CRN with nbs = 6, K = 4,M = 1.
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Figure 4.5: Capacity loss for different values of γ at the uplink channel
estimation process for a MU-MISO CRN with nbs = 6, K = 4,M = 1.
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Considering the perfect CSI capacity as C and that capacity Ĉ achieved us-

ing precorders with imperfect channel estimations ŵ; hence, the capacity loss is

expressed simply by:

L = 1− Ĉ(γ̂, Ĝ, Ĥ)

C(γ,G,H)
(4.23)

Fig. 4.5 expresses the capacity loss for every CRN system configuration pre-

viously analyzed. It is observed that, the more accurate channel estimator is

used, the higher capacity is achieved (Fig. 4.4), and the lower capacity loss is

resultant. However, once all cases with use of estimated channels limit the maxi-

mum system capacity, for high downlink SINR values the capacity loss increases

significantly. Fig. 4.5.a) shoes that there is not a significant improvement from

LS to LMMSE in therms of capacity loss. In addition, comparing the capacity

losses in Figs. 4.5.a) and 4.5.b), one can conclude that for high quality SINR sce-

narios the de-synchronization does not poses great harm; however, it significantly

impacts on the capacity loss when the CRN system operates under low SINR

scenarios. Indeed, under low γ’s the capacity losses in Fig. 4.5.b) are significant

when compared with the synchronous case of Fig. 4.5.a).

Analysis of both figures shows that the uplink SINR imposes a capacity limit

on downlink transmissions. In all cases, for higher downlink SINR values, the

capacity loss increases significantly. Even though the estimation is done with

γ = 20dB, the capacity loss overcomes 10%. This comes from the fact that, with

perfect channel estimation, the precoder optimally allocates power for all users;

however, LS and LMMSE estimators necessary imply in imperfect PU’s and SU’s

channel matrix estimations, and consequently, they are not optimal.

Previous analyses of Figs. 4.4 and 4.5 prove that channel estimation poses

a very important point on CRN, once it significantly impacts the results of pre-

coder design; consequently, performance and capacity will also be affected. Once,

in real scenarios, the synchronization is impossible to be achieved, transceivers

and CR-BS must design robust precoders and decoders able to tackle with such

unavoidable interference.

4.3.2 Sensor Network – Great Spatial Diversity

Similarly to previous results, in this subsection the effect of channel estimation

under a few different circumstances will be analyzed, i.e., under massive number

of CR-BS antennas and a high number of SU’s nodes. However, we will explore

a greater diversity scenario, where the asynchronous transmission condition has
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chances of lowering even more the sum capacity.

Firstly, from Fig. 4.6, it is observed that not only the overall DL capacity

increases remarkably, but also the difference between the curves resultant from

LS and LMMSE. Previously, both techniques had similar impact on sum capacity

C. However, in this scenario the LMMSE algorithm shows a significant decrease

in capacity performance compared to LS estimator. Such LMSE difference in

performance is even more pronounced for low SINR’s.

Figure 4.6: Sum capacity for different values of γ at the uplink channel
estimation process for a MU-MISO CRN with nbs = 40, K = 30,M = 1.
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Also, observation of Fig. 4.7 reinforces that, for CRN systems with greater

spatial diversity the use of Gold sequence sets, which has been proven to be better

than W-H sets for asynchronous transmission system (KOBAYASHI; ABRAO, 2017),

result in similar sum capacity for MU-MISO CRN. Simulations proved that, for

this scenario configuration, the LMMSE has been presented better results in

terms of sum capacity. As consequence, if only sum capacity is desired to be

maximized, LMMSE showed to be the best option due its greater resultant sum

capacity. Its However, the tradeoff capacity and complexity has to be analyzed,

once the LMMSE algorithm needs some extra knowledge about pilot sequence

and channel statistics if compared to LS technique.
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Figure 4.7: Capacity loss for different values of γ at the uplink channel
estimation process for a MU-MISO CRN with nbs = 40, K = 30,M = 1.
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5 Conclusion

The first part of this Dissertation analyses the main single band spectrum sensing

technologies. Many characteristics of all detectors are brought together and an up

to date and detailed description of the state-of-art of SS in CRN is created. As ob-

served during simulations, each sensor has a specific parameter that dramatically

affects its performance. Results of Chapter 2 demonstrate the non-robustness of

EnS for noisy environments, mainly because this sensor relies on the energy of

a received signal. Results also demonstrated that MfS is the one which presents

better performance between all studied detectors. However, knowledge of a pilot

sequence is necessary, which is not always available. The comparison presented

in Chapter 2 gives an overview about the detectors and opens possibility for a

designer to analyze the one that most suits the application scenario.

Also in Chapter 2, a promising SS has been chosen to be applied into more

complex scenarios. The HrS is a complex, but efficient likelihood-based spec-

trum sensor and deserves closer attention. Simulations showed that HrS is robust

to multipath fading, once minimal degradation due to multiplicative effect of

Rayleigh fading has been observed on performance figures. Additionally, even

though a considerable difference between slow and fast fading scenarios, the re-

sults are still promising presenting high detection probabilities for low false alarm

rates. The most interesting fact comes from observation of the necessary num-

ber of samples. For scenarios with −3 ≤ γ ≤ 0dB, HrS achieves Pd ≥ 0.95 for

Pf = 0.1 with a considerably low number of samples: 120 ≤ N ≤ 1024.

The second area of this study consisted of an optimization technique to max-

imize sum capacity of a MISO-CRN. Chapter 3 presents a consistent mathemati-

cal description of the convexity analysis of SR in broadcast underlay MISO-CRN.

This problem was sub-optimally solved via a classical interference zeroing tech-

nique known as Zero Forcing, which cancel both SU-PU and inter SUs interference

and gives space for the optimal power allocation water filling algorithm. Another

important achievement in this study was the linear dependence between k and nbs

to achieve maximum sum rate. Finally, an approximation to find the optimum
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number of secondary users was obtained with K∗ (nbs, γ).

A full duplex MISO-CRN wireless transmission has been studied in Chapter

4, where channel estimation are proceeded at the uplink in order to offer means

for accurate precoding design at the downlink side. As observed, the precoder

performance is directly related to the channel estimative accuracy; this makes a

reliable channel estimation process indispensable for CR communications. Nu-

merical simulation results demonstrated that the estimation process must be done

under high values of uplink SINR in order to offer means for an accurate estima-

tion. This is seen from the difference on capacity loss for cases with γ = 10dB

and γ = 20dB, where the lower SINR case resulted over 20% of capacity loss.

The theory beyond LMMSE has been firstly adapted in such way to show

that any cognitive device that wishes to make use of ZFWF precoder proposed

in (CLAUDINO; ABRAO, 2017) must know primary and secondary pilot sequences

and its statistics. This finding has been proved to happen when orthogonal code

sequences and synchronous transmitters are deployed; However, numerical results

proved that case with asynchronous transmitters and Gold sequence sets do not

offer great deterioration on the sum capacity.

To sum up, this Master project has studied many different aspects of CRN.

The SS research has showed some positive and negative points of each sens-

ing technique, while the SR optimization has presented significant results and

techniques to enhance the transmission of SUs. Finally, the impact of channel

estimation error has been studied in order to show that accurate training process

is essential to design optimum precoders.
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Appendix A -- Developed researches

This Appendix presents all publications related to this Master’s research. A

review of SS techniques was firstly published and gave space to a more complex

analysis of SS techniques, which was published in a conference paper. The third

publication is result of the studied non-linear optimization techniques applied to

CRN in order to maximize the sum capacity of a MISO-CRN.

The following three sections present all published papers and developed works.

[A] Full paper - review: Claudino, L.; Abrão, T. Spectrum Sensing Meth-

ods for Cognitive Radio Networks - A Review. Wireless Personal Communica-

tions, v. 95, p.5003-50037, August 2017. ISSN 0929-6212.

[B] Conference paper: Claudino, L.; Kobayashi, R.; Abrão, T. Hadamard

Ratio Sensor in Realistic CRN Scenarios. XXXIV Simpósio Brasileiro de Teleco-

municações e Processamento de Sinais, Set. 2016.

[C] Conference paper: Kobayashi, R.; Claudino, L.; Hernandes,A.; Abrão,

T. Multiband Spectrum Sensing via Edge Detection Using a Wavelet Approach.

XXXIV Simpósio Brasileiro de Telecomunicações e Processamento de Sinais, Set.

2016.

[D] Full paper: Claudino, L.; Abrão, T. Efficient ZF-WF Strategy for Sum-

Rate Maximization of MU-MISO Cognitive Radio Networks. International Jour-

nal of Electronics and Communications, v. 84, p.366-374, February 2018. ISSN

1434-8411.

[E] Full paper: Claudino, L.; Abrão, T. Linear MMSE Channel Estima-

tion for Underlay Cognitive Radio Networks. AeU - International Journal of

Electronics and Communications (submitted, Feb. 05th 2018).
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Main contributions: this article is a great contribution to the cognitive radio

state of art, once is tries to bring together the main spectrum sensing techniques

and also compares them. Various performance metrics are used to evaluate the

effectiveness of all detectors and to point out its strengths and weakness. This

article not only presents various detectors, but also they are all extensively stud-

ied. Results of this article try to cover all parameters that can affect detector’s

performance and finally, the 3D surfaces give the reader an option to compactly

understand each sensor.
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1 Introduction

In order to optimize the spectrum utilization, cognitive radio (CR) principles establish for a

secondary user (SU) a methodology of co-transmitting with primary users via either

spectrum hole access or low power transmission over used frequencies. Spectrum hole is

defined as an unused spectrum band that can be used by unlicensed user; spectrum holes

are basic resource for cognitive radio systems. Most of existing contributions detect

spectrum opportunities by sensing whether a primary signal is present or not and then try to

access them so that CRs and primary users use the spectrum band either at different time
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slots or in different geographic locations [43]. Specifically, a CR system has a high-level of

environmental awareness so that it is able to recognize available band and to adapt its

transmission (frequency, waveform and protocols) to achieve a better performance within a

certain quality of service (QoS) [5, 42].

A CR has to constantly monitor the spectrum and look for opportunities either in bands

or channels and investigate interference levels. This monitoring stage is not only important

for CRs to detect white spaces in spectrum, but also to keep control of all interference

which may harm any primary transmission [31].

Based on the above characteristics, cognitive radio operation is basically divided in

three ways: underlay, overlay or hybrid modes. The underlay method for spectrum sharing

allows the secondary user to transmit over all primary frequencies, as long as all inter-

ferences caused by this transmission do not harm the primary system’s performance. In

overlay approach, secondary users must use spectrum sensing (SS) techniques to detect

unused frequencies; then, the unlicensed user access these frequencies to transmit its data

without interfering PU’s transmission. Additionally, hybrid CR mixes both underlay and

overlay approaches. Spectrum sensing is also performed in hybrid access; however, when a

PU is detected, underlay constraints for transmission power and interference levels are

taken into consideration [9, 27, 33].

Figure 1 shows basic operation modes for a CR system. Basically, for every scenario,

there will be N available channels to be sensed and shared between PUs and SUs. When

transmitting with underlay access strategies, channel status is not required, but transmis-

sion power upper limits must be respected, so all interference levels are kept under a

certain threshold over all transmission time. A SU transmission without SS is depicted in

Fig. 1a, where unlicensed user is transmitting over all the time T without impinging

interference to PU’s signal. Differently, in overlay access mode, Fig. 1b, SU firstly divides

the available time-slot T in a sensing part (s) and a transmission part (T � s). Then, every

channel is sensed; in case of absence of primary signals, SU is allowed to transmit with its

full power; however, in case of presence of a PU, this channel must be left free to all
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current primary transmissions. Finally, a hybrid access strategy mixes both underlay and

overlay modes. The hybrid sensing is depicted in Fig. 1c, where SU also divides the

available time into two parts, i.e., s and (T � s); when a PU is not detected in that specific

channel, the secondary transmitter adapts its technique to transmit over the channel with a

maximum power Pm that does not harm the licensed signal. In case of a free channel, full

power is used for secondary transmissions.

A chronological perspective for representative spectrum sensing methods applied to

CRNs is presented in Table 1. This is a sample for the state-of-art in SS-CRNs, covering

from spectrum sensing detectors to capacity aspects, single-band and multi-band power

spectral density (PSD) estimation scenarios, compressive sub-Nyquist sensing methods, as

well as cooperative SS applied to CRNs.

This paper is divided as follows: Sect. 2 explains all basic access methods for CR, its

characteristics and operation. Basic processes of spectrum sensing and how each access

method uses them are shown in Sect. 3. Section 4 studies the four main methods for

sensing primary signals. An important performance metric, namely SNR Wall, is explained

and applied to SS-CR methods in Sect. 5. Finally, representative numerical results are

analyzed in Sect. 6, whereas main conclusions and final remarks are offered in Sect. 7.

2 Access Methods for Cognitive Radio

As stated before, there are three basic ways a CR can operate: underlay, overlay and hybrid

modes. The next subsections are devoted to explain each of them.

2.1 Underlay CR Networks

In underlay mode, the whole available spectrum is shared by primary and secondary users.

From the primary user’s point of view, any secondary signal is seen as a kind of inter-

ference. Hence, when measuring the primary’s signal-to-interference plus noise ratio

(SINR), the interference level must be less than a pre-determined value. This interference

constraint means that total power of any secondary signal must respect a spectral mask

bounded by the power spectral density (PSD) interference over all frequencies under the

sensing band. Alternatively, for low variant interference constraints scenarios, the

threshold might be simply set according to an average value of the PSD interference taken

across all licensed frequencies [5].

Considering xi as channel input for a secondary user instant i, yi is the correspondent

channel output at the primary user. Hence, the average interference power due to secondary

users at primary receiver under underlay mode is limited by a threshold c:

1

n

Xn

i¼1

E jyij2
��xi

h i
� c ð1Þ

where E½�� is the expectation operator. Equation 1 means that the interference’s average

power is given by the conditional expectation function of all received interference at PU

receiver in relation to transmitted secondary signal.

In order to quantize how harmful the interference is in a certain transmission, the

Federal Communications Community (FCC) established a metric to measure interference

caused by SUs in a primary transmission, named Interference Temperature (IT) [12], which

is defined as:
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Table 1 Contributions in spectrum sensing methods for CRNs

Year References Description

2004 [6] Matched filtering, energy detection and cyclostationary feature detectors in CR are
investigated; the goal is to evaluate the ability to sense the spectral environment and
the flexibility to adapt transmission parameters aiming to maximize system capacity
while coexisting with legacy wireless networks. Cyclostationary detection has
advantages due to its ability to differentiate modulated signals, interference and noise
in low SNRs

2006 [36] Wideband spectrum sensing via wavelet transform (WT) approach is studied. WT is
used to identify spectrum irregularities and characterize frequency bounds of each
subband, and also estimate the spectrum mask, which defines used subbands and
white spaces. The proposed PSD estimation scheme showed to be simple and
efficient while is able to detect white spaces in wideband scenarios. However, when
noise floor increases, multiscale product method is required to increase accuracy and
consequently, computational complexity is also increased

2007 [21] CR Capacity is defined when transmitter and receiver have different, but correlated,
spectrum hole estimations. An analysis on the distributed and dynamic nature of CR
channels is made aiming to evaluate all channel availability uncertainties. Using
derived capacity expressions and results about the effect of correlation of spectral
activity, the authors analyze how important is/isn’t to add overhead of periodic
feedforward and/or feedback about spectrum occupancy on secondary transmissions

2007 [37] Authors propose a sub-Nyquist sampled compressed sensing technique based on
wavelet edge detection. White space detection is performed by: (1) compressing
random sub-Nyquist sampling of the spectrum, (2) linear PSD reconstruction via
Basis Pursuit technique, (3) number and width of subbands and spectrum spaces; (4)
estimation of the amplitude of each subband and classification in black, gray or white
spaces. A technique to directly estimate each suband’s characteristics (location,
width and amplitude) directly from the compressed sampled data is proposed

2008 [28] Overview about existing challenges and possible solutions for collaborative wideband
SS in CR networks, including a SS techniques review and the main challenges, i.e.,
SS reliability and high-resolution requirement for wideband sensing. A methodology
of combining SS of distributed nodes operating over narrowbands is proposed and
two fusion schemes are analyzed: hard decision fusion and summary statistics
combination. Also, a multiband joint detection is studied, where the wideband SS
jointly optimizes a group of narrowband sensors. A few considerations on physical
layer issues that emerge while designing a wideband CR network are made

2008 [8] Security aspects os SS: this contribution investigates the effect of primary user
emulation (PUE) attack, which is when a certain secondary user tries to copy PU’s
transmissions in order to confuse other SUs. Numerical results demonstrate how
harmful this action is and quantizes its influence on SS. A solution called LocDef
(location-based defense) is formulated to estimate location and other characteristics
of the transmitted signal while identify whether it is a legitimate PU or not

2008 [14] A SS methodology based on filter banks is proposed. Authors formulate a PSD
estimation technique for multiband CR using filter banks and compare its
performance with other former SS known as Thomson’s multipaper method (MPM).
Even though MTM has shown better performance and less signal’s samples are
needed, it has a very high computational burden. On the other hand, filter bank has
presented very accurate results for higher number of samples and presents much
lower computational complexity

2009 [29] A technique to jointly detect PUs over multiple bands is proposed. Differently from
other methods, authors formulate the SS problem as aggregate opportunistic
throughput maximization problem and use the interference limit to PUs as a
constraint of the main problem. Additionally, exploitation of spatial diversity is used
to propose a cooperative wideband SS to enhance detection rates when single SUs
are not able to reliably detect white spaces due to channel uncertainties (fading/
shadowing).
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Table 1 continued

Year References Description

2009 [18] Multipaper method and cyclostationarity are investigated as strategies to enhance
spectrum sensing. MPM is theoretically studied and proved, via numerical results, to
be real-time computationally feasible, able to process multiband cases and present
cyclostationarity features that provide effective white space detection. Additionally,
it was proved that MPM may be formulated based on filter banks, which is a possible
solution to reduce complexity while preserve high detection rates

2010 [3] A joint cooperative multiband SS method to estimate the PSD at different locations is
proposed. This joint estimation allows SUs to have an overview about white spaces
at arbitrary locations, what may ease the spectrum management in CRNs. Indeed,
CRs cooperatively estimate the PSD and locate positions of different transmitters.
This architecture is useful in large CR areas, where an arbitrary PU signal does not
reaches all SUs. Results showed that implementation of an online D-Lasso
cooperation scheme stabilizes the PSD estimative over the entire network; as a
consequece, each SU is able to obtain a reliable PSD estimation. The overhead for
implementation of the D-Lasso procedure and its effect over the SU’s capacity have
not been considerered

2011 [40] Challenges in wideband cooperative SS-CRNs are discussed. Given the wideband
structure, compressive sensing is applied to reduce the necessary sampling rate.
Collaborative SS among spatially distributed CRs is exploited in order to make use
of spatial diversity principles. A decentralized decision algorithm is proposed to
manage all individual CR’s and obtain high performance with low computational
complexity or power overhead. Simulations are proceeded for cases with and without
channel knowledge

2012 [2] Overview on CRN structure and principles is carried out. Basic theory of energy
detection, feature detection, second order statistics-based, cyclostationarity-based,
covariance-based, filter bank-based and blind detectors is explained and a few
comparison points are enumerated. Authors also study wideband SS, compressive
and cooperative sensing

2013 [32] Analyses on various wideband SS methods, including Standard ADC (Analog-to-
Digital Conversion), Sweep-tune/filter bank sampling, Compressive sensing and
Multichannel sub-Nyquist sampling. Further discussion on the sub-Nyquist methods
as a solution to attend all necessary sampling rates of wideband CR networks. Also,
challenges of implementing feasible wideband SS for CR networks are addressed.
All analysis aim to explain, categorize and compare wideband SS methods. No
simulation or test results are provided to illustrate and quantify the comparisons

2014 [11] A detection scheme based on reconstruction of power spectrum of sub-Nyquist
sampled signals is proposed. Both sparse and non-sparse signals are considered as
well as, for the case of sparse signal, blind and non-blind detection schemes. For
each case, a minimal sampling rate and PSD reconstruction technique are proposed
(for noise-free environments). Numerical results, in therms of reliable (or not) PSD
reconstruction and ROC for each case are presented. Also, influence of SNR, number
of samples and number of frames is analyzed for different cases. Results demonstrate
that all sub-Nyquist PSD reconstruction proposed schemes are reliable solutions and
have similar performance, under a certain limit of SNR, if compared to detectors
implemented with Nyquist sampled signals

2015 [13] Wideband multichannel SS methods via FFT or filter-bank-based methods for
spectrum analysis are investigated under fine-grained spectrum analysis facilitating
the optimal energy detection in practical scenarios (non-flat spectrum). Such sensing
schemes can be tuned to the spectral characteristics of the target primary user signals,
allowing simultaneous sensing of multiple target primary signals with low additional
complexity. Model extension includes: specific scenario of detecting a reappearing
PU during secondary transmission, as well as in SS scenarios where the frequency
range of a primary user is unknown. The concept of area under the receiver
operating characteristics (RoC) curve is introduced for evaluating the overall
performance of the SS algorithms and scenarios
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TI ¼
PI

jW
ð2Þ

where PI is the average interfering power, W is the bandwidth and j ¼ 1:38 � 10�23 J/K is

the Boltzmann’s constant. Specially, if a system allows a certain interference limit TL, SU

is allowed to generate a maximum interference power of jWTL.

Section 3 discusses more specifically about how a CR system senses the interference

temperature level and decides whether the transmission is within the acceptable limit or

not.

2.2 Overlay CR Networks

The overlay CRN is a method where secondary users are known as opportunistic users.

Unlicensed users are constantly monitoring the spectrum in order to detect any PU

occupancy in frequency, space or time dimensions. Once a temporary white space is

detected, SUs opportunistically communicate over it via orthogonal dimensions with

minimum interference [5].

The main constraint of overlay CR protocols is that all unlicensed users must accurately

detect a white space, otherwise its transmission power will harm the PU’s signal. It means

that the SU’s spectrum sensing phase has to be able to always keep a very low miss-

detection rate. These factors are well discussed in spectrum sensing techniques, once the

user has to develop a reasonable method to correctly identify spectrum holes.

Another important factor is to identify the maximum capacity for an overlay trans-

mission. Considering a network with one primary Tx–Rx pair and one secondary Tx–Rx

pair; the capacity for each channel is dictated by the Shannon capacity equation. Thus, Cp

is the primary user’s Shannon capacity (for a transmission where SUs are in silent) and Cs

is the associated SU’s capacity, considering a transmission with silent primary user.

Now, supposing both primary and secondary users sharing the same spectrum band-

width; each one has its own fraction of time for transmitting. Hence, a is the PU’s

transmission time. Indeed, primary channel’s capacity is given by aCp, whereas SU’s

capacity is given by ð1 � aÞCs. Then, the rate region for this time sharing strategy is

defined by the 2-tuple:

½Rp;Rs� ¼ ½aCp; ð1 � aÞCs�

Expanding the system for Kp primary users and Ks secondary users (Kp þ Ks ¼ K),

Shannon capacity for the i-th PU is Ci, while Cj is the j-th SU’s capacity with associated

Table 1 continued

Year References Description

2016 [23] Smart grids (SGs) require reliable, intelligent and energy/spectrum efficient
communications network; indeed, SGs are a very promising scenario for CR
technologies. CR should be able to provide reliable communication over all
frequency bands available for SG. This paper provides an extensive discussion about
SG architecture, communication network requirements and possible solutions/
implementations of CR for this scenario. Additionally, a study of SS methods
(energy detection, feature detection) and management architectures for SS is done.
Authors also explain possible solutions to integrate CR and SG, summarize
IEEE.802.22 standard and relate it to SG architectures. Also, a study on interference
mitigation for CR-based SG is showed and possible solutions are proposed
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time slots api and asj respectively. Furthermore, the capacity region is the union over all api
and asj :

[
R1 ¼ a1Cp1

; . . .; RKp
¼ aKp

CKp
; RKpþ1

�

¼ as1
Cs1

; RK ¼ asKs
CsKs

g
ð3Þ

where
PKp

i¼1 api þ
PKs

j¼1 asj � 1 guarantees the spectrum sharing between secondary and

primary users.

3 Spectrum Sensing in CRNs: Basic Principles

Spectrum sensing is one of the necessary steps of cognitive radio networking. SS is

responsible for analyzing the medium and giving an overview about the spectrum scenario,

so the CR will be able to deploy these informations and adapt its techniques to co-transmit

with a primary user. Hence, understanding how SS works will be very useful for a more

accurate analysis of CR networks. Next, general spectrum sensing formulation in CRNs is

explored [7].

The spectrum sensing is based on signal detection techniques, which can be simply

stated by the following hypothesis test:

yðkÞ ¼
gðkÞ : H0

sðkÞ þ gðkÞ : H1

�
ð4Þ

where y(k) is the sample to be analyzed at each instant k; gðkÞ is additive noise and s(k) is

the transmitted signal. H0 and H1 are the two possible hypothesis: noise-only and signal-

plus-noise. In a more developed and realistic form, it can be re-written considering fading

and shadowing wireless channel effects, given by the complex random variable h:

yðkÞ ¼
gðkÞ : H0

h � sðkÞ þ gðkÞ : H1

�
ð5Þ

Figure 2 depicts all four possible cases of signal detection:

1. Declaring H0 when H0 is true ðH0jH0Þ
2. Declaring H1 when H1 is true ðH1jH1Þ
3. Declaring H0 when H1 is true ðH0jH1Þ
4. Declaring H1 when H0 is true ðH1jH0Þ

H1

H0H0

H1

P(H0|H0)
P(H

1 |H
0 )

P(H
0
|H 1

)

P(H1|H1)

Fig. 2 Hypothesis tests and
possible solutions for detection
problems
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Case 3 is known as the missed detection, while case 4 is the false alarm, and cases 1 and

2 are correct detection. Basically, a detector targets a high number of correct detections

while keeping false alarm and the missed detection rates as low as possible.

3.1 SS in Underlay CR

A method of measuring the spectrum for cognitive underlaying mode is related to

Sect. 2.1. In this technique, the CR device has to be able to select a bandwidth and a power

level for transmitting its data without violating the interference temperature constraints.

Hence, the goal is to monitor transmission power levels in order to keep them under a pre-

defined limit and hence follow all interference temperature constraints [10]. Furthermore,

the work in [10] explores spectrum sensing models for underlay CR networks leading with

interference temperature.

3.2 SS in Overlay CR

According to Sect. 2.2, for overlay CR networks, the cognitive radio has to sense a white-

space in the spectrum and then use it for a secondary transmission. Hence, the sensing

systems must be able to do it without any help of the primary user, since in this work

relying on cooperative networks has not been considered. Many different techniques for

signal detection have been studies in CR context, i.e. energy detection (ED) sensing (EnS),

coherent sensing, cyclostationary-based sensing, matched filter sensing (MfS) [5] [7],

Hadamard ratio-based spectrum sensing (HrS) [20, 38], among others.

3.3 SS in Hybrid CR

Hybrid networks are a mix of underlay and overlay networks. Once SS is also necessary for

hybrid networks, all SS techniques studied for overlay CR will also be applied to hybrid

CR. The only difference is that, if no white space are detected, the CR transceiver may

adapt its transmission strategies to remain within a certain interference limit (underlay CR

mode).

4 Spectrum Sensing Methods

Correct detection of (un)occupied spectrum bands is extremely important in CR, once all

secondary transmission strategies are based on outcomes of this stage. Indeed, SS must

overcome all challenges and uncertainties like noise, channel effects and multipath fading

[15]. Several methods can be used for sensing those white-spaces, such as energy detection

(ED) sensing (EnS), coherent sensing (CS), cyclostationary-based sensing (CsS), matched

filter sensing (MfS) [5, 7, 19], Hadamard ratio-based spectrum sensing (HrS) [20, 38],

combined sensors like energy-based maximum likelihood [24] among others. Each one has

its own characteristics, complexity and accuracy of detection. A brief comparison of basic

sensors in terms of accuracy and complexity is depicted in Fig. 3.

In this section, the main methods commonly deployed to sensing CRNs are explained

and analyzed in order to give theoretical base for results obtained in Sect. 6.

5010 L. Claudino, T. Abrão

123



4.1 Energy Detection Method

An Energy Detector has to basically measure the energy of all signals present on the

medium and than compare it with a suitable threshold. The decision metric nED for this

sensor is formulated as:

nED ¼ 1

N

XN�1

k¼0

jyðkÞj2 ð6Þ

Or, using the definition of signal energy:

nED ¼
Z

jyðtÞj2dt; ð7Þ

where N is the total number of samples and y(n) is the sampled received signal, as

formulated in (5). Thus, the calculated signal energy is compared to a threshold cED and

finally hypothesis are chosen as H0 if nED\cED and H1 when nED � cEDð.

Energy detector method is a very simple and easy to implement, if compared to other

sensors; however, it may be very susceptible to noise floor, presence of interferences in the

band, presence of frequency-selective fading and also its performance is very dependent on

the sample rate.

Once the sensor has already estimated the decision metric nED, it has to compare it with

an optimized threshold and evaluate if the transmission is within the interference levels or

not.

The performance of a detector can be analyzed via probabilities of false alarm and

missed detection. A simple model for ED without high noise effects is formulated in [5].

Indeed, the probability of false alarm (Pf ) is given by:

PED
f ¼ E½nED�P

1

N

XN�1

n¼0

jynj2 [ cED

�����H0

 !

¼ E½nED�P
2

r2
y

XN�1

n¼0

jynj2 [
2NcED

r2
y

�����H0

 ! ð8Þ

EnS

MfS
HrSCAV

CsS

Complexity

Ac
cu

ra
cy

Fig. 3 Comparison of SS
methods in therms of complexity
� accuracy
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where the random variable (r.v.) nED �N cð0; r2
nÞ and Pð�j�Þ is the conditional probability;

consequently, the total sum in the conditional probability’s argument results in a chi-

squared distribution with 2N degrees of freedom.

Additionally, Eq. (8) can be re-written using a few notations:

PED
f ¼ QðN;NcED=r

2
yÞ ð9Þ

where Qð�; �Þ denotes the generalized Marcumm Q-function.

Similarly, the probability of detection is given by:

PED
d ¼ Q

ffiffiffi
k

p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NcED=r2

y

q� �
; ð10Þ

where

k,
2

r2
x

XN�1

n¼0

jxnj2 ð11Þ

4.1.1 Energy Detection in AWGN Channels

There are three important measurements for a EnS model: probability of false alarm PED
f ,

probability of detection PED
d and threshold of detection cED, defined as:

cED ¼Q�1 PED
f

� �
r2

0 þ r2
g ð12Þ

PED
f ¼Q

cED � r2
g

r2
0

 !
ð13Þ

PED
d ¼Q

cED � l1

r2
1

� 	
ð14Þ

where r2
0 ¼

r2
gffiffiffiffi
N

p , l1 ¼ r2
nð1 þ SNRÞ and r2

1 ¼ r2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � SNR þ 1

p
.

Majority of researches on energy detection in CR apply uniform sampling; however,

random sampling was proved to be a good alternative to channel uncertainties and for-

bidden band restriction [30]. Herein, even though random sampling has been proven to

enhance performance, it will be focused on using uniform sampling of signals due to ease

on implementation and mathematical analysis.

4.2 Matched Filter Detection

In scenarios where there is a previous knowledge about some information of the primary

users transmission, MfS can enhance the sensing process. Basically, a prior knowledge

regarding some PU’s information is needed, usually a pilot sequence. This received signal

is then correlated with a pilot sequence at SU’s receiver device and a channel status

response is generated based on a certain preset threshold. An important point, which is

considered in this work, is the formulation of a threshold level that maximizes probabilities

of detection. Hence, the MfS uses this threshold value to decide between hypothesis H0 and

H1.
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In a continuous form, the statistical test comes from the correlation between received

signal y(t) and a replica of pilot sequence x(t); hence, the signal to be compared with a

threshold [26] is given by:

bsðtÞ ¼
ZT

0

x	ðt � sÞyðsÞds ð15Þ

Or, in discrete time [7]:

bs½n� ¼
XN

k¼1

x	½n� k� � y½k� ð16Þ

where N ¼ T
Ts

, with Ts being the sampling period and T the total sensing time.

Figure 4 shows an example of MF-based spectrum sensing signals to be compared with

a threshold. In Fig. 4a PU’s transmitted pilot pulse can be identified, while in Fig. 4b an

usual replica of pilot pulse in the MF filter, which is a mirrored version of the transmitted

pilot pulse. Graphic in Fig. 4c is a delayed version of this signal, while Fig. 4d is the

received signal (pilot pulse plus the additive noise), typically at low SNR. After a con-

volution operation step, the MF output signal identified by plot in Fig. 4e shows a peak of

energy, which is supposed to be at least the pilot signal replica’s energy.

Indeed, MF’s decision region is given by:

Decidefor ¼
H0; if bs\cMF;

H1; if bs � cMF:

�
ð17Þ

where cMF is the threshold energy of detection in for MfS devices.

Furthermore, the probabilities of detection and false alarm for a MF spectrum sensing

detector are given by [4, 26]:

(a)

(b)

(c)

(d)

(e) kEx

A

A

A

A

T

T

T

T

t0

 Peak SNR

Fig. 4 Example of a MF
detection signals
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Pmf
f ¼P bs[ cMFjH0f g ¼ Q

cMFffiffiffiffiffiffiffi
er2

g

q

0
B@

1
CA ð18Þ

PMF
d ¼P bs[ cMFjH1f g ¼ Q

cMF � effiffiffiffiffiffiffi
er2

g

q

0
B@

1
CA ð19Þ

where e ¼
PN

k¼1 x
2½k� and r2

g is the additive noise’s variance.

4.3 Covariance Absolute Value

The covariance absolute value (CAV) spectrum sensing detector is based on second order

statistics of received signal samples. Considering L consecutive samples, the received

signal, data and noise vectors can be defined, respectively, as:

yðkÞ ¼ yðkÞ yðk � 1Þ � � � yðk � Lþ 1Þ½ �T ð20Þ

sðkÞ ¼ sðkÞ sðk � 1Þ � � � sðk � Lþ 1Þ½ �T ð21Þ

gðkÞ ¼ gðkÞ gðk � 1Þ � � � gðk � Lþ 1Þ½ �T ð22Þ

where L is known as smoothing factor length. Additionally, received and transmitted

signals covariance matrices are obtained as the expected values:

Ry ¼ E yðkÞyTðkÞ

 �

ð23Þ

Rs ¼ E sðkÞsTðkÞ

 �

ð24Þ

while the following equality holds:

Ry ¼ Rs þ r2
gIL ð25Þ

If there is a signal, and its samples are sort of correlated, some of the off-diagonal elements

of Ry are non-zero. In contrast, if the signal is absent, then Rs ¼ 0; hence, Ry has all the

off-diagonal elements equals to zero. With this understanding, it is possible to create two

tests aiming to define presence or absence of signal. Denoting rij as the ith row and jth

column element of Ry, the following test metric can be deployed:

T1 ¼ 1

L

XL

i¼1

XL

j¼1

jrijj ð26Þ

T2 ¼ 1

L

XL

‘¼1

jr‘‘j ¼
tr½Ry�
L

ð27Þ

where tr½�� is the trace matrix operator; indeed, T1 metric has all the elements of Ry, while

T2 presents only the diagonal ones. Thus, if there is no signal, the ratio T1

T2
¼ 1. However, if

the signal is present, T1

T2
[ 1.
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In practice, N samples are received, but the system is usually limited to work with L

samples. The covariance matrix Ry can be estimated via the sample covariance matrix:

bRy ¼

bð0Þ bð1Þ � � � bðL� 1Þ
bð1Þ bð0Þ � � � bðL� 2Þ
..
. ..

. . .
. ..

.

bðL� 1Þ bðL� 2Þ � � � bð0Þ

2
66664

3
77775

ð28Þ

where bð‘Þ ¼ 1

N

XN�1

n¼0

yðnÞyðn� ‘Þ; ‘ ¼ 0; 1; . . .; L� 1 ð29Þ

Also, the statistics T1 and T2 can be adjusted according to bRyðNÞ [16]:

bT1 ¼ 1

L

XL

i¼1

XL

j¼1

jbrijj ð30Þ

bT2 ¼ 1

L

XL

i¼1

jbriij ð31Þ

where brij is the ijth element of the sample covariance matrix, bRy.

In order to analyze the efficiency of a CAV detector, probabilities of detection and false

alarm have to be calculated [17, 41]:

PCAV
f ¼ P

bT1

bT2

[ cCAV

�����H0

 !

¼ 1 � Q

L� 1

cCAV

ffiffiffiffiffiffiffi
2

Np

r
� 1

ffiffiffiffiffiffiffiffiffi
2=N

p

0
BBB@

1
CCCA

ð32Þ

PCAV
d ¼ P

bT1

bT2

[ cCAV

�����H1

 !

¼ 1 � Q

1

cCAV

þ � LSNR

cCAVðSNRþ 1Þ � 1

ffiffiffiffiffiffiffiffiffi
2=N

p

0
BB@

1
CCA

ð33Þ

where � L is the overall correlation strength:

� L,
2

L

XL�1

‘¼1

ðL� ‘Þja‘j ð34Þ

and the normalized form of (34), namely normalized correlation coefficient, is given by

b� L ¼ � L

r2
sr

2
g

ð35Þ
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and

a‘ ¼
E½sðnÞsðn� ‘Þ�

r2
s

¼ Rsð‘Þ
r2
s

ð36Þ

Applying the inverse Q function, the value of the threshold cCAV is found based on an

estimation of PCAV
f :

cCAV ¼
1 þ ðL� 1Þ

ffiffiffiffiffiffiffi
2

Np

r

1 � Q�1ðPCAV
f Þ

ffiffiffiffiffiffiffiffiffi
2=N

p ð37Þ

4.4 Hadamard Ratio-Based Robust Spectrum Sensing

Hadamard ratio (HR) test is a robust method to provide signal detection in multivariate

analysis which is able to deal with non-independent and identically distributed (IID) noise

[20]. Recently, the HR test has been exploited for robust spectrum sensing in CR [38]. This

subsection is devoted to analyze Hadamard ratio method for robust spectrum sensing

purpose. By computing the first and second exact negative moments for the signal-presence

hypothesis along with employing Beta distribution approximation, authors of [20] derived

accurate analytical expression for detection probability, enabling to theoretically evaluate

the detection behavior of the Hadamard ratio test. The analytic formula for the detection

probability of the Hadamard ratio test derived in [20] allows us to theoretically evaluate the

HrS performance.

Remembering that, according to (5), a received signal at instant k is y(k) , s(k) is the

transmitted symbol and gðkÞ is a zero mean complex Gaussian noise. Aiming to decide

between the two main hypothesis H0 and H1 the HrS detection method starts with a general

likelihood ratio test (GLRT) derivation.

For this purpose, a MIMO (Multiple Input Multiple Output) CR network where the SU

is equipped with nR antennas has been considering sensing the data from nT PUs; hence, a

hypothesis test has to be adjusted in (5), where now the observation vectors are given by:

sðkÞ ¼ s1ðkÞ s2ðkÞ � � � snT ðkÞ½ �T ð38Þ

gðnÞ ¼ g1ðkÞ g2ðkÞ � � � gnRðkÞ

 �T ð39Þ

yðkÞ ¼ y1ðkÞ y2ðkÞ � � � ynRðkÞ½ �T ð40Þ

while the channel matrix established between SU and PUs is denoted by H 2 CnR�nT .

Besides, we have assumed that elements of vector sðkÞ are Gaussian-distributed values

with siðkÞ�N ð0; r2
si
Þ; i ¼ 1; . . .; nT and giðkÞ�N ð0; r2

gi
Þ for i ¼ 1; . . .; nR. Indeed, the

binary hypothesis can be re-written as:

yðkÞ ¼
gðkÞ : H0

HsðkÞ þ gðkÞ : H1

�
ð41Þ

Assuming that the observation vector follows a Gaussian distribution yjHi �N 0;RðiÞ� 

,

i ¼ 0; 1, where RðiÞ is the covariance matrix. The covariance matrix under H0 becomes

Rð0Þ ¼ diagðrv1
; ::; rvmÞ, while under H1 is given by Rð1Þ

,ðrijÞnR�nR
. According to these
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assumptions, the likelihood function under a general hypothesis Hi is expressed by

[20, 25]:

L YjRðiÞ
� �

¼ 1

jRðiÞjN
exp �N � tr RðiÞ

h i�1bR
� 	

ð42Þ

Or even the log-likelihood function (LLF) of Y:

L YjRðiÞ
� �

¼ N log RðiÞ�� ��þ N � tr RðiÞ
h i�bR
� �

ð43Þ

where bR ¼ 1
N
YYH is the sample covariance matrix and Y ¼ ½y1; . . .; yN � with N being the

number of samples. Note that, under hypothesis H0, bR
ð0Þ ¼ diagðbRÞ, and under H1

becomes bR
ð1Þ ¼ bR. Moreover, the GLRT, which takes into account the relationship

between probabilities of the two hypothesis, is computed and compared it with a preset

threshold in order to determine presence or absence of a PU, which is expressed by:

L YjRð0Þ� 


L YjRð1Þ� 
 ð44Þ

The Hadamard Ratio is now obtained substituting (43) into (44):

nHR ¼
bR
ð1Þ���
���

bR
ð0Þ���
���
?

H0

H1

cHR ð45Þ

The exact distribution for this GLRT may assume complex values; however, its moments

can be easily expressed. Also, values for GLRT are always between 0 and 1, what allows

us to adopt a Beta distribution to approximate the test probabilities [25]. For this solution, a

moment determination for nHR is needed. Indeed, first and second exact negative moments

are computed and detection probability is obtained by matching these moments with the

Beta distribution ones. Hence, let’s firstly define the PDF of a Beta distribution with

parameters a and b [39]:

fZðhÞ ’
ha�1ð1 � hÞb�1

Bða; bÞ ; 0� h� 1

0; otherwise

8
<

: ð46Þ

where Bða; bÞ ¼ CðaÞCðbÞ
Cðaþ bÞ is the Beta Function.

Given the k-th negative moment of a random variable Z defined as M�k,E½Z�k�, the

first two negative moments of a Beta-distributed r.v. are defined as [22]:

M�1 ¼ aþ b� 1

a� 1
ð47Þ

M�2 ¼ ðaþ b� 1Þðaþ b� 2Þ
ða� 1Þða� 2Þ ð48Þ

Now, solving (47) and (48) for a and b:
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a ¼
M�1 �

2M�2

M�1

þ 1

M�1 �
M�2

M�1

ð49Þ

b ¼ ð1 �M�1Þð1 � aÞ ð50Þ

FðxÞ ¼ 1

Bða; bÞ

Zx

0

ha�1ð1 � hÞb�1
dh ¼ Bxða; bÞ

Bða; bÞ ð51Þ

where Bxða; bÞ ¼
R x

0
ha�1ð1 � hÞb�1

dh is the incomplete Beta function.

Hence, whenever the moments of the test statistic in (45) be matched to the ones of the

Beta distribution, the behaviour of nHR can be then be approximated by the Beta distri-

bution, as discussed in [20].

Finally, probability of detection for a Hadamard ratio-based spectrum sensor is

expressed as:

PHR
d ,P nHR\cHRjH1ð Þ ¼ FðcHRÞ ð52Þ

The next step is to define the probability of false alarm for the Hadamard Ratio-based

sensor. For this case, [25] studies the first two positive moments of (45) and proceeds

similarly to the abode mathematical methods. For this case, the two variables a2 and b2 are

given as a function of two positive moments of a beta distributed random variable:

a2 ¼M1 M2 �M1ð Þ
M2

1 �M2

ð53Þ

b2 ¼ 1 �M1ð Þ M2 �M1ð Þ
M2

1 �M2

ð54Þ

Indeed, given the definition of a probability of false alarm PFA,Pr nHR\cHRjH0f g and

using (46), we have:

PFA ’
ZcHR

0

1

Bða2; b2Þ
ta2�1ð1 � tÞb2�1

dt

¼ ~Bða2; b2; cHRÞ ¼
Bcða2; b2Þ
Bða2; b2Þ

ð55Þ

5 Performance Metric: SNR Walls

In order to properly sense a frequency channel, the sensor has to lead with a tradeoff

between prior knowledge of the signal, sensibility and computational complexity [35]. In

CR, system performance is usually evaluated via receiver operating characteristics (ROC)

analysis, which plots the dependency between probability of detection and false alarm.

Real-world scenarios need the highest Pd possible for a given Pf (usually Pf ¼ 0:1).

Figure 5 shows a region that every CR sensor should target. Moreover, [1] and [35]
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analyze a few ways of increasing performance in CR sensing; however, due to real case

uncertainties, a new effect turns in when looking at the sample complexity. At some limit

point, the ‘‘sample complexity blows up to infinity as the detector sensitivity approaches

certain critical values’’ [1]. This phenomenon is known as SNR Wall. Figure 6 illustrates a

generic sensor with a SNR wall located at �46 dB; the black dashed line indicates how this

sensor should hypothetically behave.1 Figure 6 also leads to an interpretation that a sensor

with SNR wall is non-robust to noise, once it needs an infinity number of samples to

achieve a desirable performance for SNRs below the wall.

It is also possible to quantize this sample complexity by isolating the number of samples

in function of the usual variables of a CR spectrum sensing, including Pf , Pd , SNR and rg.

Herein, we are going to apply the SNR wall metric for EnS, MfS and CAV; however, the

Hadamard Ratio sensor, as seen in Sect. 4.4, does not have a closed expression for Pd and

Pf as a function of the number of samples, which precludes us to plot it together with the

other spectrum sensors.

5.1 SNR Wall for EnS

Given probabilities (13) and (14), the goal is to eliminate cED and find the value for N.

Authors in [35] also insert a factor q ¼ 10x=10, which quantifies the level of uncertainty in

the noise power, scaling rg in an interval ½rg=q; qrg�, where noise variance is allowed to

have x dB of uncertainty. The uncertainty modeling of a noise is used to give an idea of

approximated Gaussian noise (and not a precise one). The approximation consists in dis-

tributing the White noise (ga) moments over a closed interval

E g2i
a


 �
2 1

qi
E g2i

 �

; qiE g2i

 �� �

; 8i ¼ 1; 2; . . ., with g�Nð0; r2
gÞ, such approximated
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0
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0.2

0.3

0.4

0.5
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0.8

0.9

1

P
f

P
d

Desired operation

Fig. 5 Desired operation for a CR sensor

1 In terms of linear dependence of the number of samples (log scale) increasing with the SNR (in dB)
decreasing.
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moments are close enough to nominal moments.2 Hence, the following modified version of

the probabilities emerge from this approximation:

PED
f ¼Q

cED � qr2
gffiffiffiffi

2

N

r
qr2

g

0
BB@

1
CCA ð56Þ

PED
d ¼Q

cED � ðSNRþ r2
g=qÞffiffiffiffi

2

N

r
� ðSNRþ r2

g=qÞ

0
BB@

1
CCA ð57Þ

From (56), cED ¼ qrg 1 þ
ffiffiffiffiffiffiffiffiffi
2=N

p
Q�1ðPED

f Þ
� �

, and from the false alarm probability

Eq. (57), cED ¼ Pþ r2
g=q

� �
1 þ Q�1ðPED

d

ffiffiffiffiffiffiffiffiffi
2=N

p
Þ

� �
.

Eliminating cED, by assuming that in the interest region ð1 þ SNRÞ 
 1, we finally get

the Sample Complexity for an Energy Detector:

NED ¼
2 Q�1ðPED

f Þ � Q�1ðPED
d Þ

h i2

SNR� q2 � 1

q2

� 	� �2 ð58Þ

which grows with the inverse of SNR. Notice that the denominator of (58) is fixed;

however, at some point it goes to zero (depending on SNR and q values) and the number of
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N
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Sample Complexity

Hypothetical
Sample

Complexity

Fig. 6 SNR Wall characteristics

2 For a better detailed description of the noise model and uncertainty models used in this work, please refer
to [35].
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samples tends to infinity. This simple mathematical analysis shows that, for SNR values

around and below this discontinuity the EnS is unrealizable.

In order to find the exact point of discontinuity, we have to set the denominator of (58)

to zero:

SNR� q2 � 1

q2

� 	� �2

¼ 0 ) ) SNRED
wall ¼

q2 � 1

q2
ð59Þ

5.2 SNR Wall for MfS

Similar to Sect. 5.1, a formula relating sample complexity and usual parameters is obtained

for a matched filter-based CR sensor. In this case, one more parameter may influence the

necessary number of samples, which is the percentage (h) of total power present in the pilot

tone. It is worth noting that SNR wall is an effect related to real world scenarios; hence,

[35] suggests that, in many cases, PU’s signal is multiplexed in time, what strongly limits

the coherence time. Also, [34] says that MfS should be divided in coherence blocks, each

one with Nc samples. So, when analyzing the sample complexity of a MfS, it is fair enough

to divide it into two steps: firstly the signal is coherently sensed within each coherence time

(it keeps the noise uncertainty and boosts signal power by Nc). Secondly, the boosted signal

is detected via an Energy sensor.

A modification of (58) comes from the addition of variables h representing the fraction

of pilot tone power and Nc corresponding to the influence of coherence time:

NMF ¼
2Nc Q�1ðPED

f Þ � Q�1ðPED
d Þ

h i2

h � Nc � SNR� q2 � 1

q2

� 	� �2 ð60Þ

A simple analysis of MfS states the ‘‘Energy Sensor’’ part still non-robust to noise

uncertainty; however, the coherent part boosts performance by a factor of Nc � h, where

h 2 Rj0� h� 1f g is a fraction of the pilot tone’s total power. Similarly to the EnS case,

(60) also has a discontinuity where the number of samples tends to infinity, but this value is

also dependent on Nc and h. This dependence shifts the limit SNR to the left, meaning an

improvement of MfS detector performance regarding the ED.

To find the exact point of discontinuity, the denominator of (60) has been set to zero:

hNcSNR� q2 � 1

q2

� 	� �2

¼ 0 ) ) SNRMF
wall ¼

q2 � 1

hNcq2
ð61Þ

5.3 SNR Wall for CAV

For the covariance absolute value spectrum sensing detector, probabilities of detection and

false alarm are given by (33) and (32), respectively. Firstly, isolating cCAV in both

equations:

cCAV ¼
1 þ ðL� 1Þ

ffiffiffiffiffiffiffi
2

Np

r

1 � Q�1 PCAV
f

� � ffiffiffiffiffiffiffiffiffi
2=N

p ð62Þ
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cCAV ¼
1 þ � LSNR

1 þ SNR

1 þ
ffiffiffiffiffiffiffiffiffi
2=N

p
Q�1 1 � PCAV

d

� 
 ð63Þ

Now, both equations are combines and a closed expression for sample complexity of a

CAV spectrum sensor is obtained:

NCAV ¼ 2/2

d�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 2D � /

p� �2 ð64Þ

where:

d ¼Q�1 1 � PCAV
d

� 

þ ðL� 1Þffiffiffi

p
p þ Q�1ðPf Þ 1 þ � LSNR

1 þ SNR

� �

/ ¼ 2ðL� 1Þffiffiffi
p

p Q�1 1 � PCAV
d

� 

and D ¼ � � LSNR

1 þ SNR

The exact point of discontinuity is obtained when the denominator of (64) is set to zero:

d�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 2D/

q� 	2

¼ 0 ) ) 2D/ ¼ 0

2
� LSNR

1 þ SNR

� 	
� 1ðL� 1Þffiffiffi

p
p Q�1ð1 � PdÞ

� 	
¼ 0

ð65Þ

There are two possibilities for the denominator to be set to zero: a) L ¼ 1; b) � L ¼ 0. This

shows that, for fixed and valid values of L and � L, the sample complexity for a CAV

detector will not present a discontinuity point in terms of SNR.

Authors of [35] and [34] extended their investigation on SNR wall optimization in and

showed that, for flat fading channels,3 feature detectors are robust to noise uncertainty and

don’t have a SNR wall.

It is worth noting that Eq. (64) is proposed herein for first time; the numerical results

discussed in Sect. 6.5 demonstrate accuracy with the above analysis, once there is no

abrupt asymptotic behavior in sample complexity. This means that for our case of study,

the CAV does not present a SNR wall.

6 Numerical Results

This section firstly brings an individual analysis for representative spectrum sensing

detection schemes. Performance versus complexity analysis is carried out starting with

ROC graphics, i.e. detection � false alarm probabilities, as well as detection probability �
threshold, considering specific AWGN scenarios. The advantages and disadvantages or

each one method have been highlighted. For every realization, a zero-mean Gaussian

distributed data sequence is generated and its variance is chosen to be r2
x . In order to

simulate a simple channel, AWGN is added to transmitted data sequence and then all

analysis are evaluated using the received signal.

3 The channel scenario case studied herein for the CAV detector.
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Additionally, as more realistic representation of real world scenarios, multipath Ray-

leigh channels have been introduced and SS detection schemes such as HrS and EnS are

compared in term of ROC and computational complexity.

Firstly, individual results for each sensor are comprehensively discussed. Subsequently,

a broad comparison with all sensor is done under AWGN effect. Finally, HrS and EnS are

analysed and compared considering more realistic Rayleigh channels.

6.1 Energy Detector

Detection probability dependence is given by Eq. (14). Indeed, the most significant

parameters are threshold and SNR. Figure 7 shows that SNR is an extremely important

factor, once for lower SNR values the probability of detection reaches 1 only when PED
f is

close to 1. Therefore, higher system effectiveness is achieved for better values of SNR,

because for low Pf the detector has already achieved PED
d 
 1.

Equation (14) firstly shows that somehow the threshold affects probabilities of detection

and false alarm. A basic understanding is that l1 and r2
1 are constants dependent on noise

and cED is varying; hence, as cED increases, PED
d decreases. The relationship on these

variables is depicted in Fig. 8. Therefore, a correct threshold is set based on test statistics

and correct estimation of the SNR. From this graph, it is observed that if the threshold is

too high and transmitted signals have not enough energy to overcome this value, the

spectrum sensor will identify every signal as a noise; consequently, the channel will always

be sensed as idle.

Variation of PED
d according to values of SNR is shown in Fig. 9. For this simulation a

target PED
f ¼ 0:1 has been set in order to find an adequate value for cED and assumed a

sensing period with N ¼ 2000 samples. Threshold levels for EnS are directly related to

noise variance and consequently the actual SNR value. Indeed, each SNR value sets a cED

aiming to establish a suitable detection probability for the system. Also, under the system
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Fig. 7 ROC for an Energy detector with N ¼ 1000 samples
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configuration of Fig. 9 (number of samples and false alarm probability), one can conclude

that ED is not recommended for scenarios where the SNR is less than �15 dB, once the

probability of detection is lower than 0.5.

Finally, in order to have a broad view about the behavior of PED
d , all main variables are

related in a single 3-D surface on Fig. 10. The simulation has been done for a target

probability of false alarm PED
f ¼ 0:1. For an EnS detector, a reasonable number of samples

ranges from 500 to 1500, but also SNR has a strong effect on PED
d . For instance, if the CR is

working in a �10 dB scenario, a sensing with N ¼ 1000 samples should result in
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Fig. 8 Relationship between threshold and probability of detection
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Fig. 9 PED
d dependency on SNR and set threshold for N ¼ 2000 and PED

f ¼ 0:1
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PED
d 
 0:6; however, it is desirable a greater rate of detection. So, a sensing phase with

1500 samples could achieve PED
d 
 0:1.

6.2 Matched Filter

Similarly to EnS, behavior of MfS and its various parameters have been analyzed in order

to identify their influence on sensor’s performance. Firstly, probabilities of detection and

false alarm for AWGN channels have been evaluated in terms of ROC. Figure 11 offers an

overall performance idea of a MfS. A first comparison already pointed out that MfS can

easily operate in much lower SNR scenarios than a EnS, once MfS ranges from SNR

¼ �30 dB to �20 dB, while EnS results in the same characteristics for �15\ SNR

\� 9 dB. Corroborating this found, [4] states that an energy sensor is much more

degraded due to noise uncertainty than a traditional matched filter.

Figure 12 relates probability of detection and SNR for a MfS. From (18), cMF is directly

related to probability of false alarm and noise variance. So, in a real scenario, for an

optimal detection, the threshold has to be recalculated at each sensing process, once it is a

function of the noise strength at (SNR ¼ r2
x

r2
n
), which may have an instantaneous fluctuation.

Hence, for this simulation, at each new SNR value, a cMF is calculated and then inserted

into (19), generating the performance curve of Fig. 12.

Figure 13 depicts how PMF
d behaves with changes in number of samples and SNR.

Comparing to EnS case, the MfS is able to work satisfactorily under low SNR scenarios

(�30 dB). Indeed, for the same N ¼ 1500 samples needed for EnS, MfS is able to provide

a good performance under a �20 dB scenario. As a conclusion, matched filter spectrum

sensing presents a working margin 10 dB greater than EnS.

Fig. 10 Probability of detection for EnS considering dependency on number of samples N and SNR and

fixed PED
f ¼ 0:1
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6.3 Covariance Absolute Value Sensor

The CAV detection presented in Sect. 4.3 has its own probabilities of detection and false

alarm. Equations (32) and (33) show explicitly that system’s performance is highly related

to threshold, number of samples, SNR and also the correlation coefficient of received

samples. Hence, it is important to analyze how these factors affect the quality of spectrum

sensing.
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Influence of SNR on ROC curves is presente in Fig. 14. Indeed, for values of SNR

around �13:5 dB, CAV sensing method almost reaches an ideal detection, with PCAV
f ¼ 0

and PCAV
d ¼ 1. Additionally, comparing Figs. 7 and 14, one can identify which system has

better ROC performance. An EnS reaches an excellent performance under SNR ¼ �9 dB,

while a CAV sensor does it with much less energy, as indicated in Fig. 15, i.e., under

SNR ¼ �13:5 dB.

Notice that not only SNR affects CAV spectral sensing detector. Also smoothing factor

and the preset threshold do it. A CAV sensor is based on how strong correlated the samples

are. Hence, if there is a scenario with a fixed SNR, the higher � L is, the more efficient the
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detection will be. Figure 16 illustrates it. With a graph of PCAV
d � SNR and different values

for the overall correlation strength � L , for example, if SNR ¼ �16 dB a system with a

correlation strength of 2 has PCAV
d ¼ 0:1, while the detector with � L ¼ 4 has Pd ’ 1.

Previous results in the literature have already pointed out that CAV spectrum sensing

detectors need much higher number of samples when compared to EnS and MfS. Aiming

to corroborate it, Fig. 17 relates the main factor that may influence CAV performance in

terms of PCAV
d . This numerical result has been obtained for middle correlated AWGN

channels, i.e., � L ¼ 3, while the normalized correlation coefficient b� L changes according

to the SNR level. Indeed, from Fig. 17, given SNR ¼ �14 one can identify the CAV

sensor needs at least 9 times more samples than EnS and MfS. If SNR increases 2 dB,

around �12 dB, \6000 samples would satisfy a PCAV
d [ 0:8; however, it still a huge

number of samples, which may exceed the sensing time and consequently shorten the

transmission phase.

6.4 Hadamard Ratio Test

Literature for Hadamard ratio spectrum sensing is yet very limited; performance results for

this sensor are different from the ones present on previous sessions. A HrS performance for

a system with one primary signal operating under SNR ¼ ½�15;�8� dB, nR ¼ 4 SUs and

N ¼ ½1000� samples is presented in Fig. 18.

In order to compare the ROC with all previous cases d has been set to 1 in Fig. 19a. As

analyzed in Sect. 4.4, performance of this sensor is enhanced according to number of PUs

and SUs present in the system. Hence, an analysis with nT ¼ 1 will not make use of HrS’

full performance. Figure 19b shows how a simple increase in the number of PUs nT ¼ 3

may enhance overall sensor’s performance.
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6.5 SNR Walls in Cognitive Radio Sensors

At this point, seen each sensor characteristics and ROCs curves have already been studied,

what gives an overview about its performance in scenarios of interest. Now, the next step is

to analyze the sample complexity for each sensor via SNR wall graphs and study which

presents better performance in a specific scenario. From the definition, a SNR wall is the

SNR limit for which each analyzed spectrum sensing detector is able to perform without

the necessity of using a number of sample tending to infinity. Figure 20 depicts the SNR

walls for three sensors: EnS, MfS and CAV. A SNR wall for HrS is impractical because a

few approximation have been done; hence, there is no theoretical expression relating

number of samples and SNR.
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Firstly, a greater susceptibility to noise interference is observed in the EnS case, once its

SNR wall is located at around �13:5 dB and it has to use an extremely high number of

samples to keep its characteristics within an acceptable limit.

On the other hand, MfS’ characteristics shows that the sample complexity boost of the

coherent stage shifts SNR wall by around �30 dB, what gives an expressive working

margin before sample complexity tends to infinity. For example, in very low-SNR sensing

scenarios, i.e., ½�30; �25� dB, MfS is a suitable choice if a number of samples as large as

100,000 or 10,000 is available inside the sensing time period.

Finally and differently from the other cases, CAV sensor does not have a SNR wall;

however, more samples are needed than MfS for low-SNR sensing scenarios. Another

important analysis similarly presented in is that the EnS does not require any assumptions

of the signal; consequently, the SNR wall is located at higher SNR. In contrast, MfS needs

several assumptions4 of the signals under spectrum sensing; however, it presents a SNR

wall much lower than EnS. Presenting an intermediate sample complexity, CAV spectrum

sensor only makes structural assumption of the signal (medium/high correlated signals),

what may be the best choice as CRN Spectrum sensor in several practical scenarios of

interest.

Next Sect. 6.6 provides numerical analysis for four sensors applied to some real case

constraint scenarios.

6.6 Performance Analysis of ED, MF CAV and HR Sensors

A spectrum sensing system is usually applied to a real CRNs. Indeed, performance of SS

methods under some specific constraints is one of the most important points while

designing a CR network. In order to fairly compare previous analyzed sensors, optimal

parameter values for each sensor have been selected and compared. The adopted system
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4 Actually MfS needs an entire pilot sequence.
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and channel configuration are described according to the values depicted in Table 2. The

simulation trial has considered a LOS (line of sight) AWGN channel transmission of a

microphone signal operating in a TV band with a power of 50 mW and bandwidth of

200 kHz. For this system configuration, the CAV correlation coefficient is then normalized

by the signal and noise variances, as defined in Eq. (35), so it ranges between jb� Lj � 1.

Performance analysis for SS detectors operating under realistic mobile NLOS channels,

such as Rayleigh fading are discussed in Sect. 6.7.

Figure 21 depicts the spectrum sensing performance for several sensors under AWGN

interference hypothesis. The correlation coefficient is set to 0:09\b� L\0:15. Again,

notice that EnS is not efficient for low SNR scenarios, once it is based on an accurate
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estimation of the noise power. On the other hand, CAV and MfS also depend on other

characteristics of the received signal. MfS requires a pilot sequence given by PU, while

CAV relies on sensing a correlated channel. The ROC performance curves demonstrated

that for low SNR scenarios, MfS is much more efficient than CAV; however, for high/

medium correlated channels, CAV is able to achieve higher probabilities of detection. For

the HrS detector, the above graph shows that utilization of a MIMO CRN may enhance
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Fig. 20 Sample complexity for CRN sensors

Table 2 Adopted parameters
values for the spectrum sensing
system

Parameter Adopted Value

SU: microphone signal

Tx power 50 mW

Channel AWGN, LOS

Frequency band TV sub-band, BW ¼ 200 KHz

General SS detector parameters

Number of samples N 2 ½1; 10� � 103

SNR range SNR 2 ½�30; �10�
Threshold Varies for each sensor

Target Pf 0.1

CAV detector

CAV correlation coefficient 0:09\b� L\0:15

Smoothing factor length L ¼ 10

HrS detector

nT f1; 3g
nR 3
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performance of spectrum sensing phase. For example, HrS with nT ¼ 3 presents a much

higher performance than for the case with nT ¼ 1 and same SNR range.

To sum up, the graph shows that, for the proposed channel, the best detector is the

Matched Filter Sensor, once the acceptable results of Pd and Pf are achieved under low

ranges of SNR (around �24 dB).

6.7 Performance Comparison Under Realistic NLOS Channels

This section is devoted to compare two former sensors applied to realistic wireless

channels. Section 6.6 has compared all previous studied sensors operating under AWGN

channels, which is not the most accurate representation of real transmission channels for

CRNs. For future 5G and CR systems, realistic MIMO channels must be studied in term of

SS performance. In order to analyze it, this section includes Rayleigh multipath fading and

AWGN noise in signal’s formulation, which are known to represent a more accurate

version of real scenarios. The path-loss influence can be overcome by increasing trans-

mission power; hence will not be deeply considered in this article.

Two sensors have been chosen for this simulation. EnS due its low computational

complexity and HrS because it is a robust sensor based on the accurate GLR theory,

although it is more complex to implement. Other sensors present intermediate results either

in terms of complexity or accuracy. All parameters necessary and respective values for this

simulations are shown in Table 3.

Numerical results depicted in Fig. 22 demonstrate that HrS presents higher performance

than EnS, in terms of detection probability. Considering the target Pf , EnS has not

achieved Pd � 0:8 for SNR ¼ 12 dB, while HrS presents Pd ’ 0:97 for SNR ¼ 5 dB. This

fact shows that statistic test based on likelihood function is actually much more accurate

than tests based only on signal’s energy. As a disadvantage, the HrS is known to be more

complex than EnS. Hence, the choice of which sensor should be used may depend not only

on detection probabilities, but also considering other factors, such as the available trans-

mission power and processing resources.
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7 Conclusion

This paper aims to analyze the spectrum sensing detectors available in the literature and

further compare them for specific scenarios. Each sensor has a parameter that dramatically

changes its performance. Numerical and analytical results demonstrate that EnS is not

designed to work in low SNR scenarios, mainly because it is based on received signal’s

energy; therefore, if noise levels are too high at receiver, the sensor may look at it as an

actual primary signal. On the other hand, CAV spectrum sensing detector is able to work in

low SNR scenarios; however, correlated primary signals are needed. A significant increase

in probabilities of detection for CAV is achieved by small gains in correlation b� , as seen in

results of Sect. 6.6.

MfS, as discussed in Sects. 6.2 and 6.6, results in better performance if compared to

EnS and CAV. The disadvantage of this SS technique is that a pilot sequence (or any

known signal) is needed at the receiver, which is not often available in CR networks.

Furthermore, one more factor to worry about is the SNR wall with results discussed in

Sect. 6.5. Results have confirmed that, for high-SNR scenarios, the EnS may be an

acceptable choice as a CRN spectrum sensor, once it has slightly higher sample complexity
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Table 3 SS system parameters
values deployed in more realistic
NLOS fading channels scenarios

Parameter Adopted value

Number of samples N ¼ 1024

SNR range SNR 2 ½0; 12�
Threshold Varies for each sensor

Target Pf 0.1

AWGN noise g�CNð0; 1Þ
PUs nT ¼ 3

SUs nR ¼ 12
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but does not rely on any knowledge of the signal. However, for medium/low-SNR sce-

narios, the MfS performs better than all others and even lower sample complexity is

needed.

If a MIMO CR network is suitable, the results from 6.6 have demonstrated that the more

PUs and SUs are actually sensing the spectrum, the higher performance is achieved by

HrS. Hence, for researches leading with MIMO systems, it is worth to have a close look at

this promising spectrum sensing technique. In order to motivate this direction of investi-

gation, realistic CRN scenarios have been analysed in Sect. 6.7. Numerical results indi-

cated that HrS is able to perform more accurate spectrum sensing under low SNR

scenarios; however, higher computational complexity is needed, if compared no EnS.
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Hadamard Ratio Spectrum Sensing in Realistic
CRN Channels

Lucas Claudino, Ricardo Kobayashi and Taufik Abrão

Abstract— Cognitive radio networks (CRN) are con-
stantly in need for new technologies able to improve
their performance. Hence, study of new spectrum sensing
(SS) techniques and devices is extremely important for a
development of more accurate and sensible devices. The
Hadamard ratio-based spectrum sensor (HrS) is a robust
method able to accurately sense the presence of a wireless
signal by applying a statistic test based on maximum-
likelihood (ML) of collected signal data. A further perfor-
mance analysis of HrS techniques under realistic MIMO
(Multiple-Input and Multiple-Output) fading channels is
the contribution of this work. As a result, simulations aim
to demonstrate its efficiency and how applicable would be
a HrS procedure when inserted in real non-line-of-sight
(NLOS) MIMO channel scenarios.

Keywords— Cognitive Radio; Spectrum Sensing;
Hadamard Ratio; Rayleigh fading; Path loss.

I. INTRODUCTION

Cognitive radio (CR) technologies aim to optimize
spectrum access by proposing methods for a licensed
user (PU, primary user) to share the spectrum with
a secondary user (SU). Many techniques try to de-
tect white-spaces (in spectrum, time or space) sensing
whether a primary signal is present or not and then try
to access them so both CR and PU use the spectrum band
either at different time or frequency slots or in different
geographic regions [1]. Several methods can be used
for sensing those white-spaces, such as energy detection
sensing (EnS), coherent sensing, cyclostationary-based
sensing, matched filter sensing [2], [3], among others.

A few authors [4]–[6] have devoted a long time to
study, develop and prove statistical models for a new
and promising technology based on generalized likeli-
hood ratio test (GLRT), known as HrS applied to CR;
however, the majority of results are valid for AWGN
channels, which represents a simplified condition for
real wireless channel scenarios. This article comes to
contribute to SS in cognitive radio by analyzing the HrS

L. Claudino, R. Kobayashi and T. Abrão. Department of
Electrical Engineering, Londrina State University, Londrina-
PR, Brazil, E-mails: lsclaudino@gmail.com, taufik@uel.br, ricar-
dokobayashi_5@hotmail.com.

under realistic wireless communication channels. The
proposed HrS detector has been characterized by Monte-
Carlo simulations considering Rayleigh fading and path-
loss channels effects, as well as thermal interference,
aiming to understand how this technology would behave
if inserted in a real cognitive radio hardware.

This paper firstly formulates important signals of a
typical HrS scenario, then basic HrS theory, operation
and sensing methods and merit figures are properly cal-
culated and explained. Section III analyses performance
of a HrS under Rayleigh fading, path loss and AWGN
channels via probabilities of detection (Pd) and false
alarm (Pf ) for different cases. A further extension of
works in [5], [6] has been done. In order tho show
the benefits of HrS, a comparison between HrS and
other former sensors has been simulated based on an
accurate estimation previously formulated. Additionally,
differently from [5], a realistic channel has been consid-
ered. Also, a further analysis of sample complexity for
HrS operating in fading channels has been considered as
another point to confirm the sensor’s robustness. Finally,
results, future study possibilities and applications are
discussed in section IV.

Notation: L(·) denotes the likelihood function, Pd

is probability of detection and Pf probability of false
alarm. An scalar variable is denoted as x, while x is
a vector and X represents a matrix form. Γ(·) is the
gamma function.

II. HADAMARD RATIO-BASED ROBUST SPECTRUM

SENSING

Hadamard ratio test is a robust method to provide
signal detection in multivariate analysis which is able
to deal with non-independent and identically distributed
(non-i.i.d.) noise [5]. Recently, Hadamard Ratio test has
been exploited for robust SS in CR [4], [6].

For the proposed problem, a transmission with nT pri-
mary antennas not necessarily co-located is considered.
At receiver’s side, N samples are received by M SU’s
antennas under two circumstances: H0 when PUs are
absent and H1 when they are active. Hence, a received
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signal can be written as:

x[n] =

{
η[n] : H0

Hs[n] + η[n] : H1
. (1)

Notice: n = 1, 2, . . . , N is the discrete-time index for all
signals. Also, the received signal x[n] has M complex
entries, one for each received antenna, i.e., x[n] ∈ CM .
Furthermore, H ∈ CM×nT is the MIMO channel matrix.
Transmitting signals are denoted as s[n] ∈ CnT , where
each entry stores a signal from one of the nT users,
considering si ∼ N

(
0, σ2si

)
. Finally, noise at receiver

side is represented by η[n] ∈ CM , where σ2ηi
is the

unknown noise variance on each antenna, i.e., , ηi[n] ∼
N

(
0, σ2ηi

)
.

If radio frequency chains on receiver’s side are un-
calibrated, noise will be different at each antenna, con-
sequently: σ2ηi

�= σ2ηj
for i �= j. Thus, the sensing

problem is to actually determine if X = [x[1] · · ·x[N ]]
is composed only by noise or both signal plus noise.

Fig. 1 depicts a block diagram for the proposed HrS.
Firstly, a transmitter (PU) generates data string s[n]
which is transmitted over a MIMO channel. At the SU,
ML estimator is obtained by calculating the received
signal’s covariance matrix under both hypothesis H0 and
H1, which allows the SS device to determine statistics
of a test variable ξ. Finally, the spectrum status is
determined based on a preset threshold: if ξ < γ → H1

or if ξ > γ → H0.

sntx1

H
Mxnt Path

Loss Σ(i)

L(X|Hi , Σ
(i))

^

ξ
if ξ>γ if ξ<γ

H0 H1

Tx Wireless channel

Secondary User

[n]

xMx1
[n]

Fig. 1. Block diagram for a generic HrS.

1) GLRT Derivation: The observation set (1) is as-
sumed to be Gaussian distributed and conditioned to the
ith (i = 0, 1) hypothesis test, x[n]|Hi ∼ N

(
0,Σ(i)

)
,

with Σ(i) ∈ CM×M being the covariance matrix defined
as:

Σ = E
[
XXH

]
=

⎡
⎢⎢⎢⎢⎣

Σ11 Σ12 · · · Σ1M

Σ21 Σ22 · · · Σ2M

...
...

. . .
...

ΣM1 ΣM2 · · · ΣMM

⎤
⎥⎥⎥⎥⎦

(2)

and Σij = ΣH
ij = E

[
xH
i xj

]
. The matrix Σ expresses

independence between every pair of channels [7].

Indeed, Σ(0) = diag(σ2η1
, · · · , σ2ηM

) represents the
noise-only observation hypothesis H0 and Σ(1) is a non-
diagonal matrix representing covariance between every
pair of secondary antennas under hypothesis H1.

According to [7], the conditional likelihood function
of X under Hi hypothesis may be defined as:

L (X |Hi ) =

exp

{
−N · tr

[(
Σ(i)

)−1
Σ̂

]}

πMN
∣∣∣Σ(i)

∣∣∣
N

(3)

Using ML estimation procedure, the derivative of (3)
is set to zero in order to find the ML estimator of Σ(0)

and Σ(1) as Σ̂
(0)

= diag(Σ̂) and Σ̂
(1)

= Σ̂, where
Σ̂ = (1/N)

∑N
n=1 x[n]x[n]H is the sample covariance

matrix. Finally, HrS’s GLR for is written as:

ξ =

max
Σ∈H0

L
(
X|H0,Σ

(0)
)

max
Σ∈H1

L
(
X|H1,Σ

(1)
) (4)

Hence, the Hadamard Ratio is finally obtained by
applying ML estimators and (3) into (4), i.e.:

ξ =

∣∣∣Σ̂(1)
∣∣∣

∣∣∣Σ̂(0)
∣∣∣

(5)

which is bounded by [0, 1], once
∣∣∣Σ̂

∣∣∣ dramatically de-
creases in presence of primary signals and presents its
maximum value of

∣∣∣diag(Σ̂)
∣∣∣ =

∣∣∣Σ̂(0)
∣∣∣ when under

H0. Hence, H1 is sensed if ξ is smaller than a chosen
threshold γ, otherwise, H0 occurs:

ξ
H0

≷
H1

γ (6)

Exact distribution for this GLRT may assume complex
values; however, its moments can be straightforwardly
expressed using a moment approximation. The test statis-
tic ξ can be approximated by a beta distributed random
variable (r.v.) defined in [θ1, θ2], with shaping parameters
α and β and a probability density function p.d.f.:

f(x) �

⎧
⎨
⎩

(x− θ1)
α−1(θ2 − x)β−1

B(α, β)
, θ1 ≤ x ≤ θ2

0, otherwise,
(7)

where B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
is the Beta Function.

Based on methods of [8]–[10], first and second mo-
ments of ξ can be calculated. Beta distribution is then
used to perform a moment matching, so probabilities of
detection and false alarm are accurately estimated [5].
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Indeed, authors of [5] and [6] have precisely derived
exact moments of ξ in order to provide a more accurate
approximation for the test’s distribution. For simulation
purposes, it is valid to numerically calculate moments
from available signal samples and use them as a beta
distributed r.v.

Probability of false alarm for ξ is defined as Pf �
Pr {ξ < γ |H0 } and, given the c.d.f. of a beta r.v.
bounded by [0, 1], Pf is calculated as:

Pf �
∫ γ

0

1

B(α0, β0)
zα0−1(1 − z)β0−1dz

=
Bx(α0, β0)

B(α0, β0)
= F (γ) (8)

where Bx(α0, β0) =
∫ x
0 z

α0−1(1 − z)β0−1dz is the in-
complete Beta function, α0 and β0 are shape parameters
for H1 approximated with the first two positive moments
of ξ.

Similarly, probability of detection for ξ(
Pd � Pr {ξ < γ |H1 }

)
was derived in [5] via

moment matching strategy:

Pd � Pr {ξ < γ |H1 } =
Bx(α1, β1)

B(α1, β1)
= F (γ) (9)

where shape parameters for hypothesis H1, i.e., α1 and
β1 are obtained as function of the test statistic’s first two
negative moments.

III. NUMERICAL RESULTS

This section is devoted to compare and analyze per-
formance of proposed HrS in realistic wireless channel
scenarios. Most researches on HrS, have been done on
performance analysis under AWGN channels [5], [6],
[11], [12]; however, for future 5G networks and CR pos-
sibilities, SS performance must be analyzed in realistic
MIMO channel scenarios, including path-loss influence,
non-line-of-sight Rayleigh fading and shadowing effects.

Firstly, sensor’s robustness must be tested and com-
pared to other SS techniques. Indeed, based on results
of [13], an Energy detector in realistic scenario has been
considered as a comparison metric for analyzing HrS’s
performance.

AWGN channels represent a very simple and unreal-
istic approximation of real wireless channel scenarios.
Hence, Clarke’s fading model is deployed [14], [15] to
create a Rayleigh fading channel matrix. This channel
model not only is a more accurate representation of a
wireless channel but also allows evaluation of user’s mo-
bility influence by inserting the maximum Doppler shift
factor fd. The constant fd depends on user’s velocity
v and carrier frequency fc, i.e., fd = v

cfc, where c is

TABLE I
REFERENCE VALUES USED FOR SIMULATIONS

Parameter Value
Avg. PU power Pt ∈ [−100, −20]dBm
PU-SU dist. d = 1000m
Noise power Pnoise = −100dBm
SNR SNR ∈ [−3, 7]dB
# samples N ∈ [32, 1024]
# SU antennas M = 12
# PU nT = 5
Doppler freq. fd ∈ {5, 200}Hz
Path-loss exponent ψ = 4

the light velocity. Hence, for slow fading channels, a
pedestrian user with fd ≈ 5Hz has been considered,
while for fast fading a vehicular user, fd ≈ 100Hz has
been adopted.

Additionally, an average PU-SU separation d has been
considered when calculating the path-loss effect, while
the average transmitted power was set to operate in range
Pt ∈ [−100; −20] dBm. Table I contains reference val-
ues for channel and signal estimation used on simulations
of this section. AWGN noise interference was modeled
mainly as thermal effect with Pnoise = −100dBm, which
allows us to calculate the receiver’s SNR dividing the
received power by the noise power.

Fig. 2 compares the simulation results for both con-
ventional EnS and Hadamard ratio SS techniques. All
simulations have been done for d = 1km, fast fading
fd = 200Hz, N = 128, samples and other parameters
according to Table I. In order to characterize the aver-
age CR system behavior, Monte-Carlo simulations with
106 realizations per performance point were proceeded,
guaranteeing a confidence interval of 98% and maximum
error of 5%.

Firstly, fig. 2 shows how harmful the channel is for
an EnS detection. For an AWGN scenario, EnS has an
expressive performance for SNR = −3dB; however,
fading processes severely degrades its performance, once
not even at SNR = 7dB an acceptable detection rate
is achieved. In contrast, proposed HrS has similar and
satisfying performance under both AWGN and fading
channels (red circled and blue dashed lines, respectively),
which indicates a certain robustness to fading for HrS-
based SS techniques.

Additionally, an analysis of user mobility effects on
SS is also important. In this sense, a ROC (Receiver
Operating Characteristics) comparison for transmissions
under slow and fast fading illustrates this process of
interference. A flat Rayleigh fading channel, i.e. hij ∼
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CN (0, 1)1, was considered. Also, channel matrix’s ele-
ments were normalized not to affect signal’s power, as it
is the path loss task; thus, the constraint E

[
|hij |2

]
= 1

must be respected.
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HrS, SNR=−3dB, AWGN
HrS, SNR=−3dB, fading
EnS, SNR=−3dB, AWGN
EnS, SNR=−3dB, fading
EnS, SNR=7dB, fading

Fig. 2. ROC comparison for EnS and HrS.

For the next scenario, a wireless transmission under
Rayleigh fading, path-loss and thermal noise effects will
be considered as a scenario for analyzing influence of
user’s mobility and total number of samples used in
SS. Two cases were considered: firstly a slow Rayleigh
fading scenario and secondly a fast fading, where the
channel is changing at every collected sample.

The performance of a HrS operating under different
channel scenarios and a variable number of samples in
range of N ∈ [32, 1024] is presented on fig. 3. For
this simulation experiment, the transmitting power was
fixed to −20dBm, M = 12 antennas, nt = 5 users
and d = 1000m, which results in SNR = 0dB. The
remaining parameters are set according to table I. Also, it
is noteworthy mentioning that a semilogx scale has been
used as an alternative to offer a better view of curves’
behavior, once they would all be compacted at the upper
left corner of a linear scale graphic.

Firstly, axes limits of fig. 3.a) show how HrS presents
an excellent performance for slow fading cases. Addi-
tionally, the samples variation suggests the absence of an
SNR wall for this case, once a small variation on sample
complexity causes a minimal performance enhancement,
but a double in sample complexity also doubles Pd.

A performance gap can be observed by comparing
figs. 3.a) and 3.b). Despite performance degradations
caused by fast fading, the HrS can still achieve a good
performance even with a low number of samples. For
example, at a 0dB SNR scenario, an acceptable perfor-
mance for a SS device is already guaranteed with 1024

1|hij | follows a Rayleigh distribution, while ∠hij is uniformly
distributed
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Fig. 3. ROC for a HrS with different sample complexities.

samples. Additionally, a closer look at fig. 3 suggests an
SNR wall at N ≈ 128 as performance improvements are
negligible if more samples are used.

An average upper power limit of 10W for an ur-
ban cellular tower has been established by the Federal
Communications Commission [16]. In case of a HrS,
an average transmitting power of −10dBm was used
for simulations of a sensor located 1km away; hence,
HrS’ performance under effect of fast fading channels,
path-loss and AWGN noise interference is hold in strict
accordance with requirements for realistic application
scenarios, confirming the sensor’s robustness for cog-
nitive radio networks.

IV. FINAL REMARKS

This paper aims to study a new and promising technol-
ogy based on the well established likelihood theory for
SS of cognitive radio networks: Hadamard ratio detector.
Current literature for this technique is yet very limited, as
it is based on studies of non-realistic AWGN scenarios.
A few work on performance of HrS in realistic cases has
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been done. Hence, an application of previous developed
statistic theory was considered in this paper. Monte-Carlo
simulations for HrS under Rayleigh multipath fading
channels have been proceeded for wireless setups under
effect of the path-loss.

Numerical results showed how basic detectors, such
as EnS may de inefficient when operating in realistic
scenarios. Additionally, HrS’ robustness was proved via
simulations of multipath fading channels, once a minimal
degradation due to multiplicative effect of Rayleigh
fading has been observed on performance figures of
section III. Additionally, simulations considered Tx-
Rx separation via inserting a model of path loss, so
transmission power level limits could be tested for both
EnS and HrS detectors.

A difference in performance of fast and slow fading
channels was observed; however, both situations show an
advantage of HrS: the low sample complexity. This first
results strongly encourage us to believe HrS is prone
to achieve high performance under real CRN channel
scenarios. Indeed, considering realistic wireless channel
scenarios (including path-loss effect with ψ = 4), HrS
has demonstrated suitable performance in terms of ROC,
achieving a Pd ≥ 0.95 for a Pf = 0.1 under low number
of samples in the range 128 ≤ N ≤ 1024 and low signal-
to-noise ratio, ranging −3 ≤ SNR ≤ 0 dB.

CR technology has been developed to allow systems
to work with very low transmission power and achieve
high performance levels. Even though path-loss effect
showed to be harmful to CRs, power levels remain very
low if compared to conventional cellular base stations
and terminals. For example, according to the Federal
Communications Commission, a transmission power op-
erating with Pt = 10W in urban regions is acceptable;
our simulations showed that, if considering an average
Tx-Rx separation d = 1km, spectral sensing device will
operate with high level of SS detection Pd ≥ 0.9 if PU
is transmitting with Pt ≥ −20dBm. Hence, the SS of
CRs may be a technology able to significantly increase
power efficiency of wireless transmissions.

Hence, this research enables many opportunities for
further studies beyond optimization of cell configura-
tions, performance of HrS in different and possibly
even more realistic as well challenging CR scenarios
and also identification of an optimal value of sample
complexity and transmission power that enhances even
more performance of CR networks.
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A B S T R A C T

This article presents an efficient quasi-optimal sum rate (SR) maximization technique based on zero-forcing
water-filling (ZFWF) algorithm directly applied to cognitive radio networks (CRNs). We have defined the non-
convexity nature of the optimization problem in the context of CRNs while we have offered all necessary con-
ditions to solve the related SR maximization problem, which considers power limit at cognitive transmitter and
interference levels at primary users (PUs) and secondary users (SUs). A general expression capable to determine
the optimal number of users as a function of the main system parameters, namely the signal-to-interference-plus-
noise ratio (SINR) and the number of BS antennas is proposed. Our numerical results for the CRN performance
are analyzed in terms of both BER and sum-capacity for the proposed ZF-WF precoding technique, and compared
to the classical minimum mean square error (MMSE), corroborating the effectiveness of the proposed technique
operating in multi user multiple input single output (MU-MISO) CRNs.

1. Introduction

The spectrum is a limited resource that, until nowadays, has been
regulated in a fixed spectrum access form. This means that each sub-band
of the total spectrum bandwidth is assigned to one specific owner (PU)
who has paid for the right to transmit over these frequencies; indeed, no
other user is allowed to exploit this preallocated spectrum, regardless if
the PU is using it or not. The problem is that, in the past decades,
wireless technologies have been significantly developed and these fixed
frequency bandwidths are becoming scarce. In recent studies, reg-
ulatory commissions, such as Federal Communications Commission
(FCC), have discovered that the spectrum is underutilized [1,2]. These
studies reveal the need for new and more efficient schemes of spectrum
management. Hence, researchers have been looking for strategies to
enhance spectrum utilization efficiency. A recent technology, known as
cognitive radio (CR) aims to solve the recurrent and critical spectrum
scarcity problem via proposing a wireless transceiver able to interact
with the environment and change its transmission parameters in order
to achieve a better performance [3].

The concept of CR has been firstly introduced in [4], where the
author stated that CR may be interpreted as an evolution of software
defined radio (SDR), where the various SDRs present a high level of
computational intelligence. Such intelligence makes them able to mimic

some human cognitive behavior like observation, orientation, planning,
decision and action, in order to derivate a broad view about the wireless
scenario and provide appropriate wireless services.

The CR is basically a system with high environmental awareness
able to dynamically access all available bandwidth. Therefore, a CR is a
special radio system with two main abilities: the cognition capability
and the reconfigurability [5]. Cognition of a CR is basically the ability
to sense the environment and observe the spectral opportunities so the
radio is able to identify the available spectrum bands. Reconfigurability
is related to the fact that a CR, after estimating the bandwidth usage, is
able to interactively adapt its transmissions values and plans in terms of
power, bandwidth and time availability.

A typical CRN layout consists of a series of PUs coexisting harmo-
niously with the CR devices, namely secondary users. PUs are also
known as licensed users, which are the ones who own the license to
transmit over some specific bandwidth. CR basically proposes that SUs
operate over the bandwidth, even though they do not hold a license. In
order to do so, a series of constraints must be followed, i.e., the SU may
only operate when the PU is not transmitting or, in case of PU activity,
the SU must not overcome an energy threshold in order not to affect the
PU’s transmission [5].

Some work has been done in CR scenarios regarding the SR max-
imization. This optimization problem is treated as a tradeoff between
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spatial multiplexing at SUs and interference avoidance at PUs in [6].
Also, authors in [6] propose sub-optimal SVD-based algorithms (Sin-
gular Value Decomposition) to maximize the sum capacity of secondary
transmissions. The work in [7] proposes a weighted SR problem with
solution based on iterative subgradient algorithms, once the resultant
relaxed problem cannot be solved with traditional iterative water-filing
techniques. Recently, a relaxed problem is proposed in [8], where all
constraints are transformed into a nonnegative matrix spectral radius.
This relaxation is then solved with polynomial-time iterative algo-
rithms. Also, physical quantities are analyzed and taken into account,
i.e. channel parameters, transmission power and achievable rates for
SUs.

Recently, a linear precoder design for an underlay cognitive radio
MIMO broadcast channel with multiuser interference elimination pro-
vided by zero-forcing is proposed in [9]. To develop an efficient pre-
coder design for multiuser MIMO-CRN under interference constraints,
the authors firstly apply a rank relaxation method to transform the
problem into a convex problem, and then deploy a barrier interior-point
method to solve the resulting saddle point problem. Solving a system of
discrete-time Sylvester equations, authors demonstrated with numerical
results a substantial complexity reduction compared to conventional
methods. Considering the multiuser interference alignment (IA) tech-
nique, the work [10] analyses the problem of SINR decreasing due to
channel conditions in IA-based CRNs, which reduce the quality of ser-
vice (QoS) of PUs. In this context, the authors propose a multiuser-
diversity-based IA scheme applicable to CRNs. Under small number of
SUs, the authors have found that the IA network can accommodate all
the users simultaneously without mutual interference; however, under
large number of SUs, the IA-based CRN is not effective, being not able
to accommodate all the PUs and SUs simultaneously with perfect
elimination of interferences.

Recent work has dealt with MIMO-CR downlink architectures and
developed a block matrix strategy to cancel interference between SUs
and to PUs to keep all interference levels under a certain threshold [11].
The authors use the second order Karush-Kuhn-Tucker (KKT) conditions
to design a precoder able to deal with this interference. Also, the sum
rate maximization problem in CRN is examined when imperfect
channel state information (CSI) is available, and come up with high
computationally complex but optimal power distribution scheme.

The SR maximization problem of CRNs has been a classical problem
in wireless system design [12,13]. Specifically, in [12] it was con-
sidered the weighted SR maximization problem for CRNs with multiple-
SUs MIMO broadcast channel under sum power constraint and inter-
ference power constraints. Authors have shown that optimization pro-
blem is a nonconvex problem, but can be transformed into an equiva-
lent convex MIMO multiple access channel problem. Moreover, the
work in [13] deals with the optimal resource allocation problem in
MIMO Adhoc CRNs; a semi distributed algorithm and a centralized al-
gorithm based on geometric programming and network duality were
introduced under the interference constraint at primary receivers,
aiming obtaining a locally optimal linear precoder for the nonconvex
weight SR maximization problem. It is worth to note that these SR
maximization algorithms in CRNs generally result in excessive com-
putational complexity combined to slow convergence.

This contribution is devoted to analyze an underlay MU-MISO CRN,
where all SUs are equipped with a single antenna and communicate
with a multiple-antenna base-station (BS). The goal is to design
beamforming vectors aiming to maximize the SU’s sum rate while re-
ducing (or even avoiding) interference levels seen at all PUs. The main
contribution of this paper consists in combining low-complexity power al-
location optimization design with a conventional precoding solution aiming
to alleviate the constraints requirements directly applicable to the max-
imization of CRNs SR capacity. We have provided a general fitting
expression capable to determine the optimal number of users as a
function of the main system parameters SINR and number of BS an-
tennas.

The work is divided as follows. Section 2 models the CRN system
scenarios, explaining basics of precoding techniques deployed in this
contribution. Section 3 states the optimization problem and analyzes its
convexity based on non-linear optimization theory and KKT necessary
conditions. Section 4 uses the well-known zero-forcing (ZF) precoding
technique to reduce the constraints and narrow down the problem to a
power allocation optimization problem. For this combined strategy, we
have provided a comprehensive analysis and details on the design when
applied to the CRNs. Moreover, corroborative numerical results and
respective analysis are presented in Section 5, demonstrating the im-
provement offered by the proposed combined optimization strategy in
terms of sum capacity of an entire secondary network constrained by
interference limits to PUs. Additionally, our numerical results also
emphasize system capacity improvements upon other classical beam-
former strategies, which are not designed to maximize capacity or do
not intend to cancel (or alleviate) interference to PUs. Final remarks
and future work are offered in Section 6.

To facilitate the readability of the paper, in the following we pro-
vide the notation and a list of symbols adopted in this work.

Notation: x represents a scalar variable, while x is a vector and X is
a matrix. Hermitian matrix is denoted by (·)H .∇f is the gradient of f and
∇ f2 is the respective Hessian matrix.

K number of SUs
∗K optimum number of SUs

K set of SUs
M number of PUs
M set of PUs
S set of active SUs
nBS base station’s number of antennas
Im interference limit to m-th PU
Ip interference from PUs to SUs
PBS SU-BS’s power constraint

kC capacity of user k
φ β, angular, linear coefficients of the linear fitting
yk received signal
ηk AWGN noise
nk AWGN noise plus constant interference from PUs
xk, x transmitted symbol (scalar) and signal vector
zj PU’s transmitted signal
h g q, ,k m m k, BS-SU, BS-PU, PU-SU link’s channel vectors
w t,k k general and ZF precoding vectors
p power allocation vector
H G, SU and PU channel matrices
W precoding matrix
−F k PU and SU channel matrices concatenated, except user k

2. System model

In this article a MU-MISO underlay1 A CR system is considered,
where K single antenna SUs are simultaneously transmitting with M
single-antenna PUs over the same frequency bandwidth. As illustrated
in Fig. 1, each k-th link between BS and k-th SU has a channel response

 ∈ ∈ = … ∈ ∈ = …× ×k K m Mh g, {1,2, , }, , {1,2, , }k
n

m
n1 1BS BSK M is the

channel matrix for the m-th BS-PU link, which is considered a form of
interference for any PU. Also, and all PUs are considered to be con-
stantly transmitting, their transmission signal is seen as interference at
SUs; consequently, there is a channel vector qm k, relating each m-th PU
and k-th SU.

In such scenario, the secondary BS is responsible for choosing each
k-th link’s appropriate transmit power in order to keep all interference
power under an upper limit Im, which varies for each m-th PU. The goal

1 Remember from the definition of underlay CR that any SINR measurement at PUs
must be below a pre-determined threshold [14].
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is to maximize the sum capacity via designing an optimal SU precoding
vector wk attending to per-antenna and interference power constraints.
Also, capacity depends on the interference level from PUs to SUs (re-
lated to channel vectors qm k, ), which will later be considered, for
computational simplicity, a constant with average power denoted by Ip
to be added to the denominator of the SINR expression.

Ideally, precoding relies on perfect CSI; hence, knowledge of hk at
BS is assumed. Even though this assumption is an ideal hypothesis, the
problem of imperfect CSI can be neglected with the purpose of in-
vestigating the potential of new transmission schemes combining re-
source allocation and precoding techniques. The perfect CSI assumption
has also been considered in recent contributions, including [7,9,15–17]
in order to ease studies of beamforming design for CR-MU-MIMO net-
works.

A downlink (DL) transmission is considered, where a baseband
signal x contains all transmitted symbols xk and beamforming vector

∈ ×wk
n 1BS associated to every ∈k K SU user:

∑=
∈

x w x
k

k k
K (1)

Received signal yk at k-th SU is then expressed as a function of the
signal destined to user k plus an interference from another secondary
transmissions and interference from PUs:

∑ ∑= + + +
∈ ≠ =

ηh w h w q zy x xk k
H

k k
i i k

k
H

i i
j

M

j k
H

j k
, 1

,
K (2)

where ∼η σ(0, )k k
2CN is the additive white Gaussian noise (AWGN) and

transmitted symbols have normalized power ∼x (0,1)k CN ; so, trans-
mitted power is set only by precoding vectors. Also, there is a trans-
mitted signal zj for all M PUs; however, SUs do not have any in-
formation about primary user characteristics or its transmitted symbols.

As mentioned before, all PUs are considered to be constantly
transmitting. This is an unavoidable matter, once SUs do not have any
power upon primary transmissions and must design strategies to lead
with this interference. Considering that all M PUs transmit over the
entire period of time, for sake of simplicity, an average interference
power Ip can be used instead of calculating ⎡⎣∑ ⎤⎦= q z( )j

M
j k
H

j1 ,
2 . Hence,

once this constant power interference has been considered, Ip can be
incorporated into the noise term in (2) as nk, such that
∼ +n σ I(0, )k k p

2CN . As a result, the received signal at k-th SU can be
re-written as:

∑= + +
∈ ≠

nh w h wy x xk k
H

k k
i i k

k
H

i i k
,K (3)

Given the received signal in (3) and perfect channel knowledge at
transmitter’s side, it is possible to design a precoder to optimize the
received signal in terms of power, signal integrity, QoS, bit error rate
(BER) or capacity. The optimization metric chosen in this work is the
sum capacity of the CRN. Indeed, the first part in this work focuses on
the analysis and comparison of different precoders in terms of sum
capacity.

3. Convexity analysis

The optimization problem consists of a SR maximization with re-
spect to all SUs in the CRN, constrained by power limit at BS, PBS, and a
maximum interference to any PU transmission, Im. For this case sce-
nario, every k-th SU transmission is subject to interference from others
SUs and additive noise. Hence, the SINR is defined as:

=
∑ + +

∀ ∈
≠

γ
σ I

k
h w w h

h w w hk
k k k

H
k
H

j k
K

k j j
H

k
H

k p
2

K

(4)

The SR maximization problem subject to power and interference
constraints is then defined as:

∑ +
… =

γmax log (1 )
k

K

kw w{ , , } 1
2

K1 (5a)

⩽ ∀ ∈P kw ws.t: ,k
H

k BS K (5b)

∑ ⩽ ∀ ∈
∈

I mg w w g ,
k

m k k
H

m
H

m M
K (5c)

The problem in (5) is said to be convex if both cost function and
inequalities constraints are convex. A few works say this is a non-
convex optimization problem, however they do not prove it [16,17].
Constraints (5b) and (5c) are both quadratic functions with domain
 →K , which are known to be convex [18]. Hence, the problem is
reduced to identifying whether (5a) is convex or not. Via composition
property, given an arbitrary function =f x h g x( ) ( ( )) is concave if g x( )
and h x( ) are concave and non-decreasing. Logarithmic functions are
concave non-decreasing, which brings us to analyze the concavity of the
γk expression.

A function is convex/concave if its Hessian matrix is positive/ne-
gative semidefinite. The multidimensional analysis of (5a) is quite
complex; however, if the unidimensional case is proved to be non-
concave, the cost function is non-concave for any dimension. In con-
trast, if the unidimensional case is concave, no further assumptions can
be made about the multidimensional one. Let us assume:

=
∑ + +

∗ ∗

≠
∗ ∗

f w
h w w h

h w w h σ I
( )k

k k k k

j k
K

k j j k k p
2

(6)

then, f w( )k is concave if and only if the Hessian matrix Hf is negative
semidefinite:

= ∇ ≜

⎡

⎣

⎢
⎢
⎢
⎢

⋯

⋮ ⋱ ⋮

⋯

⎤

⎦

⎥
⎥
⎥
⎥

⪯

∂
∂

∂
∂

∂
∂

∂
∂

fH 0f

f
w

f
w w

f
w w

f
w

2
K

K K

2

1
2

2

1

2

1

2

2 (7)

The partial derivatives with respect to the main diagonal of Hf are:

= ⎡
⎣⎢

⎤
⎦⎥

=

∂
∂

∂
∂ ∑ + +

∑ + +

≠

≠

f
w w

h w
h w σ I

h
h w σ I

2 | |
| | | |

2 | |
| | | |

k k
k k

j k k j k p

k

j k k j k p

2

2
2

2 2 2

2
2 2 2 (8)

which are all non-negative values.
Additionally, the partial derivatives with respect to the off-diagonal

elements are:

SU1

SUK

PU1

PUM

n1 nBS

h1

hK

g1

gM

q1,K

qM,K

Fig. 1. Typical MISO CRN scenario.
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= ⎡
⎣⎢

⎤
⎦⎥

=

= −

∂
∂

∂
∂ ∑ + +

− ∑

∑ + +

∑

∑ + +

≠

≠

≠

≠

≠

( )

( )

h w2 | |

f
w w w

h w
h w σ I

k k
h w h

h w σ I

h w w

h w σ I

2 | |
| | | |

2
2

| | | |

4 | |

| | | |

k j j
k k

j k k j k p

j k k j k

j k k j k p

k k j k j

j k k j k p

2 2
2 2 2

2 2 2 2

4

2 2 2 2
(9)

Analysis of (9) shows that the Hessian matrix is non symmetric:

= −

≠ = −

∂
∂

∑

∑ + +

∂
∂

∑

∑ + +

≠

≠

≠

≠

( )

( )

f
w w

h w w

h w σ I

f
w w

h w w

h w σ I

4 | |

| | | |

4 | |

| | | |

j j

j j p

j j

j j p

2

1 2

1 4 1 1

1 1 2 2
1
2 2

2

2 1

2 4 2 2

2 2 2 2
2
2 2

(10)

A simple property is that, a negative semidefinite matrix has all its
eigenvalues smaller or equal to zero. If a matrix is not symmetric, then
its eigenvalues are not necessarily in ; hence, this matrix is not ne-
gative semidefinite [19].

Additionally, numerical simulations aiming to corroborate this fact
have been proceeded. A set of matrices with negative main diagonal
and complex-normally distributed off-diagonal elements has been
generated. Indeed, some of such matrices showed to have both positive
and negative eigenvalues, which corroborates that the Hessian matrix
of γk, Eq. (4), is not negative semidefinite.

3.1. KKT necessary conditions and absence of closed expression

Convex problems can be straightforwardly solved applying KKT
necessary conditions. Indeed, a possible optimal point ∗wk would be
found setting the derivative of the Lagrangian of the problem (5) to
zero, where the Lagrangian is defined in Eq. (11).

∑ ∑

∑ ∑

⎜ ⎟= + − ⎛
⎝

− ⎞
⎠

− ⎛

⎝
⎜ − ⎞

⎠
⎟

= =

= =

λ μ λ
P

μ
I

w
w w

g w g w

( , , ) log (1 SINR ) 1

1

k k m
k

K

k

K

k
k k

H

m

M
m

m k

K

m k m
H

k
H

1
2 k

1

1 1

BS

L

(11)

Similar to [17], gradient of the Lagrangian can be set to zero as in
Eq. (12), where λk and μm are the Lagrange multipliers. Inspection of
(12) shows that all three terms depend on the optimization variable w,
which makes it impractical to find a close expression for the optimum
precoding vector solution. Hence, herein we prefer to elaborate itera-
tive methods to find near-optimum solutions.

∑∂
∂

= − −
−∑

=

∗

∗

≠

∗

=

λ μ q q ω q λ
P

w
w

h h h w w
g g w

0

( , , )
ln(2) ln(2)

k k m

k

k k
H

j k

j j j j
H

j k k k

m
M μ

I m
H

m k1
m
mBS

L

(12)

∑
= = + =

=

− − −

¬ ∈

q e d e d ω dw h h w w h

h w w h

where , (1 ) ,k k k k
H

k
H

k k k k
H

k
H

k k k

j k j
k j j

H
k
H

1 1 1

, K

4. Zero-forcing water filling precoding

It this section a mixed technique known as ZFWF precoding is
analyzed for MU-MISO systems. ZF is largely applied to MU-MISO
networks due to its facility of design beamforming vectors for the kth
user, tk, such that users receive interference free signals due to ortho-
gonality between beamforming vectors of different users. In CR sce-
narios, ZF is able to provide a design that eliminates interference be-
tween distinct SUs. Herein, a suboptimal ZF solution for problem (5) is
considered as a strategy of interference canceling for both classes of
users, SUs and PUs.

The beamforming vector is divided into power allocation (pk) and

interference cancellation (tk) parts:

= pw tk k k (13)

Interference canceler vector tk is designed such that it is simulta-
neously orthogonal to the ith SU and mth PU channel vectors:

= ∀ ∈ ≠i k i kh t 0 , , ,i
H

k K (14a)

= ∀ ∈mg t 0 ,m
H

k M (14b)

Let us concatenate all SU and PU channel vectors, except the kth SU
channel vector, as a matrix: ≜ … … … ∈− − +F g g h h h h{ , , , , , , , , }k M k k K1 1 1 1

 × + −n M K( 1)BS . The interference free constraint is then re-written as
=−F t 0k

H
k ; indeed, tk should be designed to lie on the null-space of −F k.

This assumption will simplify the original problem in (5) such that (5c)
is eliminated, once the beamforming vector design guarantees zero
interference from SUs to PUs. Additionally, = …p pp [ , , ]k1 is solution to
the simplified decoupled power allocation problem. Even though the
original problem was proved to be non-convex, the interference-free
constraint imposed by the ZFWF precoder simplifies the SINR expres-
sion and, from (9), setting the multiplication = ∀ ≠w h j k0 ,j k , all off-
diagonal elements become zero. Indeed, the Hessian matrix has its main
diagonal elements greater or equal zero and the off-diagonal equal zero,
what is characteristic of a positive semidefinite matrix.

Under such assumptions, the optimization problem is simply re-
written as:

∑ +
=

γmax log (1 )
k

K

kt p{ }, 1
2

k (15a)

∑ ⩽ ∀ ∈
=

p P kt ts.t: ,
k

K

k
H

kk
1

BS K
(15b)

=−F t 0k
H

k (15c)

(1) When + − < <−M K n nF( 1) ,rank( )kBS BS; consequently, −F k
H

= ∀ kt 0 ,k presents an infinite number of solutions, including the
optimal =∗ ∗W T p·diag( ), where T is the classical ZF solution:
= ′ ′ ′∗ −T T T T( )H 1, where ′ = −T I G G H( )H H and ∗p is an optimal

power allocation. Note that is the collection of all downlink BS-SU
channel vectors and = …G g g[ , , ]M1 refers to downlink BS-PU power
linkage link.

(2) When + − > =−M K n nF( 1) ,rank( )kBS BS and =−F t 0k k only has the
trivial solution =∗t 0k , which implies that all SUs are deactivated. In
order to avoid this effect, we will ensure that a subset ⊂S K of
active SUs is used to keep + − <M K n( 1) BS.

Once the maximum number of users is respected, the problem is
further narrowed down to an optimal power allocation problem, based
on the ZF solution given by the pseudo-inverse matrix of the channel
matrix:

∑ +
⪰ ∈

γmax log (1 )
k

kp 0 2
S (16a)

∑ ⩽
∈

∗p Pts.t: | |
k

k k
2

BS

S (16b)

which solution is already known as WF solution:

∑= − − =+

∈

+p
b

μ b μ μ b P1 [ ] , with such that [ ]k
k

k
k

k BS

S (17)

where μ is the water level, bk denotes the k-th diagonal element of
−HH( )H 1, and the operator =+[·] max{0,·}.

5. Numerical results

Section 4 presented an alternative suboptimal solution to the sum
capacity initial problem, where a ZFWF manipulation eliminates the
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interference constraint inherent to the original optimization problem,
while reducing the overall optimization problem to a power allocation
strategy, which can be straightforwardly and optimally solved via water
filling algorithm.

This section analyses numerical results comparing BER and sum
capacity figures-of-merit taking into account different CRN configura-
tions. In the numerical simulations we have considered 4-QAM trans-
mission, varying the number of PUs, SUs and nBS, short-term fading,
while the interference from PUs to SUs was fixed to =I 0p dB. Monte
Carlo simulations with 106 realizations were proceeded in order to
guarantee a confidence interval of 98% and relative error of 5% [20].

5.1. Capacity comparison

The proposed precoding technique is intended to optimize the sum-
capacity of the SUs class in a MISO-CRN subject to power and inter-
ference constraints. Numerical results in this subsection are devoted to
demonstrate the efficiency and effectiveness of the proposed near-op-
timal ZFWF precoding-based transmission design. Fig. 2 compares the
sum capacity of a CRN with different number of primary (M) and sec-
ondary (K) users and BS antennas for two power allocation strategies:
the ZFWF proposed in Section 4 and a ZF with equal power allocation
(ZFEP), where every antenna transmits with the same power, P n/BS BS. All
network specifications are depicted in Table 1. In both cases the ZF
strategy was used to eliminate interference from SU to others cognitive
users and to PUs. Our numerical results corroborate that water filing

power allocation strategy plays an important role in capacity en-
hancement of SUs. This fact is observed by the wide gap between ZFEP
and ZFWF curves in all simulated scenarios. As expected, increasing the
number of SUs or antennas at BS also reflects in sum-capacity grow,
which is expected once the algorithm has optimized the sum capacity of
a secondary network subject to the interference constraint.

Furthermore, increasing the number of PUs from =M 1 to =M 2
(Fig. 2b) will decrease the sum capacity of the secondary network, once
SUs have to limit their transmission to avoid degrading all primary
transmissions. It is observed in red and magenta curves, which didn’t
present the same slope as the other curves for high SINR values in
Fig. 2a). This fact is also due to the interference Ip overall secondary
transmission. Once there are more than one PU transmitting over the
band, this fixed interference is also greater, and SUs do not have how to
avoid it.

5.2. Optimum number of secondary users in a CRN

A CR network is unique in terms of spectrum management and in-
terference limits. As seen before, an underlay CR has strict interference
thresholds and scarce transmission power. As a consequence, these
constraints pose an important role in capacity of CR scenarios. In order
to achieve greater capacity, the SU has to increase power or spacial
diversity (more users or antennas at the BS). However, the presence of
PUs limits this capacity enhancement. Differently from conventional
MIMO systems, a CRN does not presents an unlimited increase in ca-
pacity when more users/antennas are transmitting.

In order to illustrate this phenomenon, a simulation varying nBS and
number of single antenna SUs was carried out for different values of
SINR. The result is plotted if Fig. 3 and clearly expresses the existence of
an optimal point for the number of users according to each nBS config-
uration. This effect is explained by two major factors. Firstly, as K and
nbs increase, the dimension of −F k also increases; as a consequence, there
exists fewer solutions that guarantee a precoding matrix lying in the
null space of −F k and the ZF algorithm is not able to completely null the
interference. Secondly, as SUs are generally low-cost, low-power radios,
when K increases, an unavailable amount of transmission power is
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Fig. 2. Sum capacity for ZFWF and ZFEP power allo-
cation schemes.

Table 1
Reference values used for simulation scenario 1.

Parameter Value

SINR ∈ −γ [ 15, 35] dB
SUs ∈K {3, 5, 10, 15}
PUs ∈M {1, 2}
CR-BS antennas nBS ∈ {8, 16}
PU interference =I 0p dB
Modulation 4-QAM
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required to guarantee quality communication for all users, which ends
up reducing the secondary sum capacity.

All cases in Fig. 3 presented a peak capacity dependent on K and nBS.
In real scenarios, the cognitive BS has a fixed number of transmitting
antennas; however, it is possible to choose an adequate number of SUs
aiming to maximize the sum capacity of the secondary network while
guaranteeing the primary interference constraint. In order to do so, we
have created a fitted model to approximate and ease the decision of
how many SUs should be allowed to transmit in a certain CR network.
The contour curves and maximum capacity points depicted in Fig. 4
confirms a linear dependence between K and nBS to achieve the maximal
sum-capacity of SUs network, maxC . Hence, the fitted curve for the best
number of users is obtained for a specific SINR:

= + =∗K n γ0.6712· 0.2299, @ 15 [dB]BS (18)

where ∗K is the number of SUs that maximizes sum capacity of a certain
number of base station antennas, for an specific operating SINR net-
work value.

Notice that all linear fittings of ∗K are dependent on SINR; as a
consequence, there will exist one different equation for every desired
SINR, as follows:

= + =
= + =
= + =
= − =

∗

∗

∗

∗

K n γ
K n γ
K n γ
K n γ

0.3071· 0.5429, @ 0 [dB]
0.5357· 0.3143, @ 8 [dB]
0.6893· 0.2190, @ 16 [dB]
0.8143· 0.0476, @ 24 [dB]

BS

BS

BS

BS

Our main goal is to identify a general equation relating ∗K n, BS and SINR.
Once ∗K is a linear equation regarding the number of antennas nBS, we
can write:

= +∗K γ n φ γ n β γ( , ) ( )· ( )BS BS (19)

where the angular coefficient (φ) and the constant term β have to be
estimated as a function of SINR and number of antennas. Fig. 5 illus-
trates the estimation method for φ and β.

As observed in Fig. 5 both coefficients behave log-exponentially
according to SINR, which allows us to make use of an exponential fit-
ting with SINR γ being the independent variable:

Fig. 3. Capacity dependency on K and nBS.

Fig. 4. Sum capacity for a CR network with varying K and nBS and =γ 15 dB.

Fig. 5. Exponential fitting procedure to estimate para-
meters φ and β.
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= +φ γ a γ c( ) · b
1 11 (20)

= +β γ a γ c( ) · b
2 22 (21)

By applying an exponential fitting procedure on the data of Fig. 5, we
are able to estimate the parameters a b,n n, and cn of (20) and (21):

φ γ( ) β γ( )

= −a 0.51891 = −a 3.29382

= −b 0.26081 =b 0.03602
=c 0.81071 =c 3.87152

Finally, the number of SUs that maximize the SR capacity of CRN for
a given nBS and γ configuration can be suitably approximated by the
following expression:

= +
= − + − +

∗

−
K γ n φ γ n β γ

γ n γ
( , ) tan[ ( )]· ( )

tan( 0.5189· 0.8107) 3.2938· 3.87150.2608 0.0360
BS BS

BS

(22)

To evaluate the consistence of (22), Fig. 6 depicts surfaces of the sum-
capacity obtained with ZFWF algorithm and its optimum number of SUs
obtained via (22).

The last analysis aiming to completely understand how to choose the
adequate number of SUs, i.e., optimum number of SUs in terms of max-
imum achievable SR capacity for a given SINR and number of available
antennas, can be checked from the surface plotting of × ×∗K nBS SINR in
Fig. 7. The result of this subsection consists in simulating the sum ca-
pacity optimization problem as previously explained and, for every
chosen nBS and SINR, finding the correspondent ∗K that maximizes the
SR capacity in CRNs.

Fig. 6. Evaluating the consistence of the proposed fitting expression for K optimum.
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Table 2
Reference values used for simulation scenario 2.

Parameter Value

SINR ∈ −γ [ 5, 35] dB
SUs ∈K {10, 15}
PUs =M 1
CR-BS antennas nBS =16
PU interference =I 0p dB
Modulation 4-QAM
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5.3. MMSE precoder comparison

Even though ZFWF technique has proved to be efficient for capacity
maximization, it is known that ZF precoding strategy usually results in
high BER figures. A strategy known due to its excellent performance in
terms of BER is the MMSE precoding. Other precoding techniques have
been studied to enhance performance of CRN, like MMSE-based pre-
coders [21,22], or even more recent precoding strategies, such as bi-
variate probabilistic constrained programming (BPCP) [23] and leakage
rate limiting (LRL) precoding strategy [24].

MMSE-based precoding techniques are known to present lower BER
figures if compared to many other strategies. The following results
fairly compare the proposed ZF technique and a MMSE-based precoder.
This simulation aims to design a precoder that minimizes the MSE for a
given CRN configuration [22] and, as a consequence, presents lower bit
error rates. However, techniques in [21,22] are not created to maximize
capacity, and there is no optimal power allocation in this sense. Fig. 8
firstly confirms that ZFWF is more efficient in terms of sum capacity
than MMSE-based strategy for CR network configurations presented in
Table 2.

As expected, the water filling algorithm – which is a valid applica-
tion for this scenario only if combined to ZF channel cancellation –
presents significant improvements in terms of sum capacity max-
imization, as seen in Fig. 8. Specially if greater spatial diversity is
exploited via increasing the number of antennas at SU-BS. The case of
more SUs is also a form of increasing sum capacity. A secondary net-
work with =K 10 and =K 15 SUs has been evaluated. However, in-
crease in number of SUs also affects the BS’s power limit. Additionally,
more SUs in the same network end up reducing the null space in which
the ZF precoding matrix must lie on, which may difficult the solution
and, as SINR increases, inter user interference is also prone to increase
as well.

The greater difference from ZF to MMSE-based techniques is the
capacity enhancement when water filing power allocation is applied,
which is valid only if combined to ZF interference cancellation; indeed,
there is not much improvement to be done in MMSE-based precoders in
terms of SR gain. This difference is seen in both scenario configurations

of Fig. 8, once both ZFEP and MMSE-based curves present almost the
same results, while ZFWF shows much greater capacity.

5.4. Bit error rate comparison

The proposed ZFWF beamforming technique is a quasi-optimal so-
lution; also, ZF is known not to completely cancel interference is some
cases. As a consequence, given the increase in capacity, some detection
error may appear and BER figure-of-merit is an interesting choice to
analyze the performance of a transmission system. Fig. 9 presents re-
sults of BER for several system configurations. Note that, even though
ZFWF was designed to optimize capacity, it also minimally affects BER,
once ZFWF has slightly smaller BER for all cases. Also, increase in
number of SUs or nBS affects BER performance. As expected, a higher SU
spatial diversity reflects in greater BER values, as seen from the overall
separation between the case with =K 15 users and =n 16BS from all
other curves.

A BER floor is seen in curves with more than one PU. This is due to
the fact that PUs consist of a strong interference to secondary trans-
missions, and this in an unavoidable matter. Once PUs have priority in
any CR transmission, if one or more PUs wish to start transmitting over
a certain frequency, SUs just have to learn how to deal with it. In order
to do so, SUs must limit its transmission power and try to filter out PUs’s
signals. As a consequence, the extra power needed to keep low BER
levels has to be controlled and BER floors unavoidably appear.
However, active interference cancellation techniques can be used if
lower BER values are required for networks with more than one PU.

6. Final remarks

This article was firstly intended to present a consistent mathema-
tical demonstration of convexity analysis for the SR maximization
problem of broadcast (DL) underlay MISO cognitive networks. We have
applied the ZFWF as a sub-optimal solution to maximize the SUs’ ca-
pacity while minimally interfering on primary transmissions. Our nu-
merical results firstly compared and widely corroborated the super-
iority of the proposed beamforming technique regarding the ZF
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combined to the equal power allocation approach. Even though the
precoding was designed to maximize sum capacity, numerical results
demonstrated that both power allocation strategies, when applied to
some CR-MISO scenario, result in similar performance; however, results
are more expressive when greater spatial diversity is employed. Under
higher spatial diversity scenarios, the interference plays such an im-
portant role in CRNs capacity and BER performance; indeed, even with
optimal power allocation techniques, the capacity is very limited by the
interference term in SINR expression. Numerical results for bit error
rate have evidenced that, for this case, sum capacity optimization im-
plies in BER performance loss.

Comparison ZFWF, ZFWP and MMSE precoding techniques showed
that, power allocation alone brings some benefits to overall network
capacity, but BER is still strongly affected, depending on the system SU
and PU configuration. BER performance results for all simulated cases
indicated that, apart from highlighting which technique presents better
results, an expressive BER floor is seen when more than one PU is
present (increasing and unavoidable interference). This fact is ex-
plained not only by the power limit constraint imposed to the sum
capacity optimization problem but also by the increase in interference
caused by PUs, once this is an unavoidable matter.

The comparison of ZF and MMSE-based precoding techniques has
confirmed that a great advantage is obtained when ZF interference
cancellation is applied: the possibility of dealing with independent
channels and, consequently, application of water filing power alloca-
tion to achieve much greater SR for a given secondary network con-
figuration.

An important result unveiled in this article is the linear dependence
between K and nBS to achieve maximum SR for SUs in a MU-MISO
network. The approximation here suggested has a rooted MSE equals to
0.29, which gives us a fair estimation of the optimal number of SUs for a
given architecture of CR-BS. Also, an extended dependency between ∗K
and SINR was established. Our numerical results allowed us to propose
an exponential approximation of φ and β to achieve an expression re-
lating ∗K n, BS and SINR. This result offers a simple and effective proce-
dure to find the optimal number of SUs that can be allocated to a certain
cognitive radio network.
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A.4 Linear Minimum Mean Squared Error chan-
nel estimator derivation

Consider a SISO transmission where N pilot symbols are transmitted. The re-

ceived signal is y ∈ CN×1. The LMMSE estimator ĥ = cHy, whith c ∈ C1×N ,

is a weighted linear combination of received signals and the vector c is such that

minimizes the mean squared error ε = E
{(

ĥ− h
)2}

.

The MSE is written as:

ε = E
{(

ĥ− h
)2}

= E
{(

cHy − h
)2}

= E
{(

cHy − h
) (

cHy − h
)}

= E
{(

cHy − h
) (

cHy − h
)H}

= E
{(

cHy − h
) (

yHc− h
)}

= E
{
cHyyHc− cHyh− hyHc + h2

}

= E
{
cHyyHc− 2cHyh+ h2

}
= E

{
cHyyHc

}
− 2cHE {yh}+ E

{
h2
}

= cHE
{
yyH

}
c− 2cHE {yh}+ E

{
h2
}

= cHRyyc− 2cRyh + Rhh = cHyyc− 2cRyh + σ2
h

The vector c that minimizes the MSE is found when setting
∂ε

∂c
to zero:

∂ε

∂c
=

∂

∂c

(
cHRyyc− 2cHRyh + Rhh

)
= 0

= 2Ryyc− 2Ryh + Rhh = 0

∴ c = R−1yy Ryh

Hence, the LMMSE for a SISO scenario is finally written as:

ĥ = cHy =
(
R−1yy Ryh

)H
y

= RH
yh

(
R−1yy

)H
y

= RhyR
−1
yy y
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