Publicação
Artigos Publicados

          2024
  1. E. H. Gomes Tavares, M. A. Jorge Silva, I. Lasiecka, V. Narciso,
    Dynamics of extensible beams with nonlinear non-compact energy-level damping,  
    Math. Ann., Vol. 390, pp 1821–1862, (2024).
    DOI: 10.1007/s00208-023-02796-3

  2. B. Feng, M. A. Jorge Silva,
    Long-time dynamics of a problem of strain gradient porous elastic theory with nonlinear damping,  
    Applicable Analysis, Vol. 103, Iss. 6, pp 1009–1035 (2024).
    DOI: 10.1080/00036811.2023.2228815

  3. C. L. Frota, M. A. Jorge Silva, S. B. Pinheiro,
    A time-fractional superdiffusion wave-like equation with subdiffusion possibly damping term: well-posedness and Mittag-Leffler stability,  
    Fract. Calc. Appl. Anal., Vol. 27, pp 1236–1266 (2024).
    DOI: 10.1007/s13540-024-00249-5

  4. E. H. Gomes Tavares, M. A. Jorge Silva, T. F. Ma, H. P. Oquendo,
    Shearing Viscoelasticity in Partially Dissipative Timoshenko–Boltzmann Systems,  
    SIAM J. Math. Anal., Vol. 56, Iss. 1, pp 1149-1178 (2024).
    DOI: 10.1137/23M1568375

  5. E. H. Gomes Tavares, M. A. Jorge Silva, Y. Li, V. Narciso, Z. Yang,
    Dynamics of a thermoelastic Balakrishnan-Taylor beam model with fractional operators,  
    Appl Math Optim, vol. 89, Issue 1, article 17 (2024).
    DOI: 10.1007/s00245-023-10086-2

  6. 2023

  7. Xin-Guang Yang, Shubin Wang, M. A. Jorge Silva,
    Lamé system with weak damping and nonlinear time-varying delay,  
    Advances in Nonlinear Analysis, vol. 12, no. 1, 2023, pp. 20230115.
    DOI:10.1515/anona-2023-0115

  8. E. H. Gomes Tavares, M. A. Jorge Silva, V. Narciso, A. Vicente,
    Intrinsic polynomial squeezing for Balakrishnan-Taylor beam models,  
    In: Analysis, Applications, and Computations. ISAAC 2021. Trends in Mathematics. Birkhäuser, 1ed (2023), p. 621-633.
    DOI:10.1007/978-3-031-36375-7_47,   ISBN: 978-3-031-36374-0.

  9. G. E. Bittencourt Moraes, S. J. de Camargo, M. A. Jorge Silva,
    Arched beams of Bresse type: new thermal couplings and pattern of stability,  
    Asymptotic Analysis, vol. 135, no. 1-2, pp. 157-183, 2023.
    DOI:10.3233/ASY-231850

  10. E. H. Gomes Tavares, M. A. Jorge Silva, V. Narciso, A. Vicente,
    Dynamics of a class of extensible beams with degenerate and non-degenerate nonlocal damping,  
    Adv. Differential Equations, Vol. 28, Issue 7/8, 685-752, 2023.
    DOI:10.57262/ade028-0708-685

  11. E. H. Gomes Tavares, M. A. Jorge Silva, T. F. Ma,
    Exponential Characterization in Linear Viscoelasticity Under Delay Perturbations,  
    Applied Mathematics & Optimization, Vol. 87, Issue 2, Article: 27, 2023.
    DOI:10.1007/s00245-022-09934-4

  12. L. B. Bocanegra-Rodríguez, M. A. Jorge Silva, T. F. Ma, P. N. Seminario-Huertas,
    Longtime dynamics of a semilinear Lamé system,  
    J Dyn Diff Equat, Vol. 35, 1435–1456, 2023.
    DOI: 10.1007/s10884-021-09955-7

  13. M.A. Jorge Silva, Y. Ueda,
    Memory effects on the stability of viscoelastic Timoshenko systems in the whole 1D-space,
     
    Funkcialaj Ekvacioj, Vol. 66, Issue 2, 71-123, 2023.
    DOI: 10.1619/fesi.66.71

  14. 2022

  15. M. A. Jorge Silva, N. Mori,
    Decay property for a novel partially dissipative viscoelastic beam system on the real line,  
    Journal of Hyperbolic Differential Equations, Vol. 19, No. 3, 391–406, 2022.
    DOI: 10.1142/S0219891622500114

  16. G. Liu, M. A. Jorge Silva,
    Attractors and their properties for a class of Kirchhoff models with integro-differential damping,  
    Applicable Analysis, Vol. 101, Issue 9, 3284-3307, 2022 .
    DOI: 10.1080/00036811.2020.1846722

  17. F. Dell'Oro, M. A. Jorge Silva, S. B. Pinheiro,
    Exponential stability of Timoshenko-Gurtin-Pipkin systems with full thermal coupling.  
    Discrete and Continuous Dynamical Systems - Series S, Vol. 15, Issue 8, 2189-2207, 2022.
    DOI: 10.3934/dcdss.2022050

  18. E. H. Gomes Tavares, M. A. Jorge Silva, T. F. Ma,
    Unified Stability analysis for a Volterra integro-differential equation under the creation time perspective,  
    Z. Angew. Math. Phys. Vol. 73, Issue 3, 118 (2022).
    DOI: 10.1007/s00033-022-01756-2

  19. B. M. Calsavara, E. H. Gomes Tavares, M. A. Jorge Silva,
    Exponential stability for a thermo-viscoelastic Timoshenko system with fading memory,  
    J. Math. Anal. Appl., Vol. 512, Ed. 2, p. 126147, 2022.
    DOI: 10.1016/j.jmaa.2022.126147

  20. M. A. Jorge Silva, S. B. Pinheiro,
    A new perspective of exponential stability for Timoshenko systems under history and thermal effects,  
    Asymptotic Analysis, Vol. 127, Ed. 3, pp. 217-248, 2022.
    DOI: 10.3233/ASY-211688

  21. 2021

  22. Cavalcanti M.M.; Corrêa W. J.; Domingo Cavalcanti, V.N.; Jorge Silva M.A.; Zanchetta J. P.;
    Uniform stability for a semilinear non-homogeneous Timoshenko system with localized nonlinear damping,  
    Zeitschrift für Angewandte Mathematik und Physik - ZAMP, Vol. 72, Issue 6, art. 191, 2021.
    DOI: 10.1007/s00033-021-01622-7

  23. Cavalcanti M.M.; Domingo Cavalcanti, V.N.; Jorge Silva M.A.; Narciso V.;
    Stability for extensible beams with a single degenerate nonlocal damping of Balakrishnan-Taylor type,  
    Journal of Differential Equations, Vol. 290, 197–222, 2021.
    DOI: 10.1016/j.jde.2021.04.028

  24. Bittencourt Moraes G.E.; Jorge Silva M.A.; Arched beams of Bresse type: observability and application in thermoelasticity,  
    Nonlinear Dynamics, Vol. 103, Issue 3, 2365-2390, 2021.
    DOI: 10.1007/s11071-021-06243-3

  25. Jorge Silva M.A.; Racke R. ; Effects of history and heat models on the stability of thermoelastic Timoshenko systems,  
    Journal of Differential Equations, Vol. 275, p. 167-203, 2021.
    DOI: 10.1016/j.jde.2020.11.041

  26. Yayla S.; Cardozo L.C.; Jorge Silva M. A.; Narciso V.;
    Dynamics of a Cauchy problem related to extensible beams under nonlocal and localized damping effects,  
    Journal of Mathematical Analysis and Applications, Vol. 494, Issue 1, p. 124620, 2021.
    DOI: 10.1016/j.jmaa.2020.124620

  27. 2020 -- previous

  28. Dattori da Silva P. L.; Gonzalez R. B.; Jorge Silva M. A.; Solvability for perturbations of a class of real vector fields on the two-torus,  
    Journal of Mathematical Analysis and Applications, Vol. 492, Issue 2, p. 124467, 2020.
    DOI: 10.1016/j.jmaa.2020.124467

  29. Feng B.; Caixeta H. A.; Jorge Silva M. A. ; Long-time behavior for a class of semi-linear viscoelastic Kirchhoff beam/plates,  
    Applied Mathematics & Optimization , v. 82, 657–686, 2020.
    DOI: 10.1007/s00245-018-9544-3

  30. Gomes Tavares E.H.; Jorge Silva M.A.; Narciso, V.; Long-time dynamics of Balakrishnan-Taylor extensible beams,  
    Journal of Dynamics and Differential Equations , v. 32, 1157-1175, 2020.
    DOI: 10.1007/s10884-019-09766-x

  31. Faria J.C.O.; Jorge Silva M.A.; Souza Franco A.Y.; A general stability result for the semilinear viscoelastic wave model under localized effects,  
    Nonlinear Analysis: Real World Applications, v. 56, article: 103158, 2020.
    DOI: 10.1016/j.nonrwa.2020.103158

  32. Alves M. O.; Caixeta H. A.; Jorge Silva M. A.; Rodrigues J. H.; Almeida Júnior D. S.;
    On a Timoshenko system with thermal coupling on both the bending moment and the shear force.  
    Journal of Evolution Equations, v. 20 (1), 295-320, 2020.
    DOI: 10.1007/s00028-019-00522-8

  33. Alves M. O.; Gomes Tavares E. H.; Jorge Silva M. A.; Rodrigues J. H.;
    On Modeling and Uniform Stability of a Partially Dissipative Viscoelastic Timoshenko System.  
    SIAM Journal on Mathematical Analysis , v. 51 (6), 4520-4543, 2019.
    DOI: 10.1137/18M1191774

  34. Cardozo L. C.; Jorge Silva M. A.; Ma, T. F.; Muñoz Rivera, J. E.; Stability of Timoshenko systems with thermal coupling on the bending moment,  
    Mathematische Nachrichten, v. 292 (12), 2537-2555, 2019.
    DOI: 10.1002/mana.201800546

  35. Jorge Silva, M. A.; Narciso, V.; Vicente, A.; On a beam model related to flight structures with nonlocal energy damping,  
    Discrete and Continuous Dynamical Systems - B, v. 24 (7), p. 3281-3298, 2019.
    DOI: 10.3934/dcdsb.2018320

  36. Jorge Silva M.A.; Pinheiro, S.B.; Improvement on the polynomial stability for a Timoshenko system with type III thermoelasticity,  
    Applied Mathematics Letters, v. 96, p. 95-100, 2019.
    DOI: 10.1016/j.aml.2019.04.014

  37. Alves M. O.; Caixeta H. A.; Jorge Silva M. A.; Rodrigues J. H.;
    Moore-Gibson-Thompson equation with memory in a history framework: a semigroup approach.
    Zeitschrift für Angewandte Mathematik und Physik - ZAMP, v. 69, Issue 4, art. 106, 2018.
    DOI: 10.1007/s00033-018-0999-5

  38. Gomes Tavares E.H.; Jorge Silva M.A.; Narciso, V.; On a decay rate for nonlinear extensible viscoelastic beams with history setting.
    Applicable Analysis, v. 97, Issue 11, p. 1916-1932, 2018.
    DOI: 10.1080/00036811.2017.1343940

  39. Cavalcanti A.D.D.; Cavalcanti M.M.; Fatori L. H.; Jorge Silva, M.A.;
    Unilateral problems for the wave equation with degenerate and localized nonlinear damping: well-posedness and non-stability results.
    Mathematische Nachrichten, v. 291, Issue 8-9, p. 1216-1239, 2018.
    DOI: 10.1002/mana.201600413

  40. Cavalcanti M.M.; Domingos Cavalcanti V.N.;Jorge Silva M.A.; de Souza Franco A.Y.;
    Exponential stability for the wave model with localized memory in a past history framework.
    Journal of Differential Equations, v. 264, Issue 11, p. 6535-6584, 2018.
    DOI: 10.1016/j.jde.2018.01.044

  41. Gomes Tavares E.H.; Jorge Silva M.A.; Ma, T.F.; Sharp decay rates for a class of nonlinear viscoelastic plate models.
    Communications in Contemporary Mathematics, v. 20 (2), p. 1750010, 2018.
    DOI: 10.1142/S0219199717500109

  42. Alves, M. S.; Jorge Silva, M. A.; Ma, T. F.; Muñoz Rivera, J. E.; Non-homogeneous thermoelastic Timoshenko systems.
    Bulletin of the Brazilian Mathematical Society, New Series, v. 48 (3), p. 461–484, 2017.
    DOI: 10.1007/s00574-017-0030-3

  43. Jorge Silva M.A.; Narciso V.; Long-time dynamics for a class of extensible beams with nonlocal nonlinear damping.
    Evolution Equations and Control Theory, v. 6 (3), p. 437-470, 2017.
    DOI: 10.3934/eect.2017023

  44. Cavalcanti M. M.; Domingos Cavalcanti V. N.; Jorge Silva, M. A.; Webler C. M.;
    Exponential stability for the wave equation with degenerate nonlocal weak damping.
    Israel Journal of Mathematics, v. 219 (1), p. 189-213, 2017.
    DOI: 10.1007/s11856-017-1478-y

  45. Fatori L. H.; Jorge Silva, M. A.; Narciso V.; Quasi-stability property and attractors for a semilinear Timoshenko system.
    Discrete and Continuous Dynamical Systems - A, v. 36 (11), p. 6117-6132, 2016.
    DOI: 10.3934/dcds.2016067

  46. Alves, M. S.; Jorge Silva, M. A.; Ma, T. F.; Muñoz Rivera, J. E.;
    Invariance of decay rate with respect to boundary conditions in thermoelastic Timoshenko systems.
    Zeitschrift für Angewandte Mathematik und Physik - ZAMP, v. 67 (3), art. 70, 2016.
    DOI: 10.1007/s00033-016-0662-y

  47. Jorge Silva, M. A.; Muñoz Rivera, J. E.; Racke R.; On a class of nonlinear viscoelastic Kirchhoff plates: well-posedness and general decay rates
    Applied Mathematics & Optimization, v. 73 (1), p. 165-194, 2016.
    DOI: 10.1007/s00245-015-9298-0

  48. Fatori L. H.; Jorge Silva, M. A.; Ma, T. F.; Zhijian Yang; Long-time behavior of a class of thermoelastic plates with nonlinear strain
    Journal of Differential Equations, v. 259 (9), p. 4831-4862, 2015.
    DOI: 10.1016/j.jde.2015.06.026

  49. Jorge Silva, M. A.; Narciso V.; Attractors and their properties for a class of nonlocal extensible beams
    Discrete and Continuous Dynamical Systems - A, v. 35 (3), p. 985-1008, 2015.
    DOI: 10.3934/dcds.2015.35.985

  50. Alves, M. O.; Fatori L. H.; Jorge Silva, M. A.; Monteiro, R. N.; Stability and optimality of decay rate for a weakly dissipative Bresse system
    Mathematical Methods in the Applied Sciences, v. 38, p. 898-908, 2015.
    DOI: 10.1002/mma.3115

  51. Jorge Silva, M. A.; Narciso V.; Long-time behavior for a plate equation with nonlocal weak damping
    Differential and Integral Equations, v. 27, p. 931-948, 2014.
    DOI:

  52. Jorge Silva, M. A.; Ma, T. F.; Muñoz Rivera, J. E.; Mindlin-Timoshenko systems with Kelvin-Voigt damping: analyticity and optimal decay rates
    Journal of Mathematical Analysis and Applications, v. 417, p. 164–179, 2014.
    DOI: 10.1016/j.jmaa.2014.02.066

  53. Jorge Silva, M. A.; Ma, T. F.; Long-time dynamics for a class of Kirchhoff models with memory
    Journal of Mathematical Physics, v. 54, p. 021505, 2013.
    DOI: 10.1063/1.4792606

  54. Jorge Silva, M. A.; Ma, T. F.; On a viscoelastic plate equation with history setting and perturbation of p-Laplacian type
    IMA Journal of Applied Mathematics, v. 78, p. 1130–1146, 2013.
    DOI: 10.1093/imamat/hxs011

  55. Andrade, D.; Jorge Silva, M. A.; Ma, T. F.; Exponential stability for a plate equation with p-Laplacian and memory terms
    Mathematical Methods in the Applied Sciences, v. 35, p. 417-426, 2012.
    DOI: 10.1002/mma.1552
Artigos Aceitos
Artigos Submetidos
  • M. A. Jorge Silva, T. F. Ma,
    Fundamentals of thermoelasticity for curved beams.

  • M. A. Jorge Silva, T. F. Ma,
    Mathematical Models for Arched Beams in Viscoelasticity.

  • E. H. Gomes Tavares, M. A. Jorge Silva, J. A. Soriano, T. S. Tavares,
    Influence of thermal coupling on shearing Timoshenko-Boltzmann systems.

  • C. L. Frota, M. A. Jorge Silva, S. B. Pinheiro,
    Stability Analysis of Partially Viscoelastic Reissner-Mindlin-Timoshenko Plates.

  • F. D. M. Bezerra, M. A. Jorge Silva, V. Narciso,
    A non-autonomous wave equation with time-dependent energy damping.

  • M. S. Alves, M. A. Jorge Silva, R. N. Monteiro,
    Exponential characterization in binary mixtures problems under localized damping.

  • M. A. Jorge Silva, R. N. Monteiro, T. M. Souza,
    Asymptotic Dynamics of Semilinear Thermoelastic Timoshenko Systems.

  • G. E. Bittencourt Moraes, M. A. Jorge Silva,
    Arched beams of Bresse type: thermoelastic modeling and stability analysis.