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Abstract. We investigate both the mathematical modeling and stability methods for a new
integro-differential system referred to as the viscoelastic Timoshenko--Boltzmann model. The mod-
eling is developed for materials with hereditary memory under the creation time scenario whose
foundation goes back to Boltzmann's superposition principle in linear viscoelasticity, complemented
by Timoshenko's assumptions concerning shearing in certain beam vibrations. The mathematical
methodology provides a comprehensive characterization of the uniform stability for the partially
damped Timoshenko--Boltzmann system through the identity of wave speeds on the structural coef-
ficients and a pointwise dissipative condition on the memory kernel that does not require differential
inequalities.
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1. Introduction. In the modern approach by Fabrizio, Giorgi, and Pata [20],
a very interesting overview on materials with hereditary memory has been placed by
going back to the legacy of Boltzmann and Volterra theories in order to lay down
mathematical models in PDE with memory effects. The resulting discussion in [20,
sect. 2] leads us to a viscoelastic stress-strain constitutive law where the past history
vanishes before some nonpositive time, hereafter called creation time and denoted
by \alpha \leq 0. As a consequence, the following (normalized) integro-differential wavelike
motion equation can be deduced,

utt  - \Delta u+

\int t

\alpha 

g(t - s)\Delta u(\cdot , s)ds= 0(1.1)

with proper initial-boundary conditions for the unknown axial displacement u= u(x, t)
related to a reference domain \Omega and time t. As usual, g is referred to as the memory
kernel. With respect to the creation time parameter \alpha , the standard literature in linear
viscoelasticity is mainly focused in the limit situations ``\alpha = - \infty "" (say, Boltzmann's
case) and ``\alpha = 0"" (regarding a special Volterra's case), where a meaningful amount of
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1150 E. GOMES TAVARES, M. A. JORGE SILVA, T. MA, H. OQUENDO

work dealing with well-posedness and stability results can be found. Among them, we
highlight the article by Conti, Gatti, and Pata [12], where uniform decay properties
for Volterra's instance \alpha = 0 is addressed without invoking differential inequality
assumptions for g, which constitutes the groundwork of our coming purposes. Also,
this paper enlightens the insight of the lack of the semigroup structure for (1.1)\alpha =0.
On the opposite side, as in [20] (see also [25] for precise arguments), when dealing
with (1.1)\alpha = - \infty , the semigroup feature comes into play by means of a definition of
a new variable known as relative displacement history, which is given in terms of the
vertical displacement u as follows:

wt(\cdot , s) := u(\cdot , t) - u(\cdot , t - s), t\geq 0, s > 0.(1.2)

This allows us to rewrite (1.1)\alpha = - \infty as an autonomous system in terms of the couple
(u,w) and then employ powerful tools in linear semigroup theory for well-posedness
and stability results (cf. [9, 38]).

On the one hand, motivated by the inspiring scenario promoted by [20], we sup-
plement the present work with the derivation of two (wavelike) integro-differential
beam systems by taking into account the time creation perspective. More precisely,
we derive the two classes of viscoelastic evolution models\left\{   

\rho 1\phi tt  - \kappa (\phi x +\psi )x = 0,

\rho 2\psi tt  - b\psi xx + b

\int t

\alpha 

g(t - s)\psi xx(\cdot , s)ds+ \kappa (\phi x +\psi ) = 0
(1.3)

and \left\{       
\rho 1\phi tt  - \kappa (\phi x +\psi )x + \kappa 

\int t

\alpha 

g(t - s)(\phi x +\psi )x(\cdot , s)ds= 0,

\rho 2\psi tt  - b\psi xx + \kappa (\phi x +\psi ) - \kappa 

\int t

\alpha 

g(t - s)(\phi x +\psi )(\cdot , s)ds= 0,

(1.4)

both placed for unknown variables as the vertical displacement \phi = \phi (x, t) and rota-
tion angle \psi = \psi (x, t), where x varies along the beam with length L and time t\geq \alpha .
The structural coefficients \rho 1, \rho 2, \kappa , b are all positive constants and depend upon the
structure of the beam material. The precise physical (and mathematical) modeling of
both systems (1.3) and (1.4) is provided in Appendix A by regarding linear viscoelas-
ticity not only on the bending moment (referring to (1.3)) but also for shear stress
(leading to (1.4)) in certain beam vibrations.

On the other hand, still motivated by the characterization of uniform stability
in linear viscoelasticity as discussed in [9, 38], we can observe that the special limit
situations mentioned earlier (\alpha = 0 and \alpha = - \infty ) give rise to distinct cases regarding
the integro-differential systems (1.3) and (1.4), which will be discussed in detail as
follows. In this context, we remark that system (1.3) has been extensively studied
in the literature, while (1.4) has not been considered so far in the history framework
(i.e., in the case \alpha = - \infty ), which is exactly the unexplored scenario we are focused in
the present article. We also observe that due to the partially damped feature of both
systems (1.3) and (1.4), their stability results shall depend upon the assumptions:

\bullet the behavior of the memory kernel g (to be set later on1);
\bullet equal wave speeds (EWS) condition, namely,

\kappa 

\rho 1
=

b

\rho 2
.(1.5)

1It will be clarified during the introduction and precisely given in sections 2 and 3.
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VISCOELASTICITY IN TIMOSHENKO--BOLTZMANN SYSTEMS 1151

1.1. Viscoelasticity on the bending moment. Null history case: \alpha = 0.
With reference to (1.3)\alpha =0, we have the following Timoshenko--Volterra integro-
differential system\left\{   

\rho 1\phi tt  - \kappa (\phi x +\psi )x = 0,

\rho 2\psi tt  - b\psi xx + b

\int t

0

g(t - s)\psi xx(s)ds+ \kappa (\phi x +\psi ) = 0.
(1.6)

A pioneering work dealing with (1.6), besides initial and Dirichlet-boundary condi-
tions, has been done by Ammar-Khodja et al. [3]. Summarizing what is of importance
in the present work, the essential core of the assumptions and stability results therein
(see [3, Thms. 2.7, 3.5, and 4.1]) can be stated as follows, where we consider expo-
nential memory kernels g > 0 via the differential inequality assumption and then state
the referred stability result.

\bullet Exponential condition: there exists \delta > 0 such that

g\prime (s) + \delta g(s)\leq 0, s > 0,(1.7)

where g is a nonincreasing differentiable function with g(0) > 0 and\int \infty 
0
g(s)ds <\infty .

Statement I. Under the exponential assumption on g given by (1.7),
the EWS condition (1.5) is a necessary and sufficient condition to
prove the exponential stability of the energy functional corresponding
to (1.6).

Since then, several stability results related to the viscoelastic Timoshenko--Volterra
system (1.6) emerged in the literature aiming to generalize the hypothesis (1.7), by
requesting (1.5) or not, with the primary objective of providing a variety of stability
properties for (1.6), as general as possible. However, it is worth pointing out that all
such general decays only span from a very slow decay to the exponential one. For
instance, we quote [3, 28, 29, 30, 32, 36, 35, 37, 42] in what concerns stability results
for (1.6) placed on bounded and unbounded domains, where some distinct types of
generalization for (1.7) are taken into account and are mainly derived from studies
carried out to second-order evolution models in viscoelasticity. Among the spectrum
of general assumptions on the kernel g, we draw attention to the recent paper by
Conti and Pata [13] (see also the references therein) where a robust assumption gen-
eralizing (1.7) is considered when dealing with Volterra integro-differential equations
of hyperbolic type.

In the authors' opinion, the approach of [13, sect. 4] can be reapplied to other lin-
ear wavelike models with finite memory (null history) where viscoelasticity is regarded
solely on bending displacements as, for example, in (1.6), and still for viscoelastic-
ity on shearing as in the case (1.4)\alpha =0, whenever we fix the EWS assumption (1.5).
Nonetheless, here our goal is to address the viscoelasticity in the history framework
(namely, (1.4)\alpha = - \infty ) and so, instead of taking the aforementioned general assump-
tions on g, we are going to put our efforts towards general assumptions on the memory
kernel when the semigroup structure comes into the picture. This is the subject of the
next case (1.3)\alpha = - \infty , where we can go further and explore even more the assumptions
in Statement I by asking, for example, the following.

Q1. By fixing the EWS condition (1.5), is it possible to evaluate in
which case the assumption (1.7) is a necessary and sufficient condi-
tion for exponential stability?

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1152 E. GOMES TAVARES, M. A. JORGE SILVA, T. MA, H. OQUENDO

History case: \alpha = - \infty . Now, with respect to (1.3)\alpha = - \infty , the following Timoshenko--
Boltzmann integro-differential with past history system comes into play:\left\{   

\rho 1\phi tt  - \kappa (\phi x +\psi )x = 0,

\rho 2\psi tt  - b\psi xx + b

\int t

 - \infty 
g(t - s)\psi xx(s)ds+ \kappa (\phi x +\psi ) = 0.

(1.8)

Unlike (1.6), the variable \psi (\cdot , s) is now supposed to be defined for s\leq 0 as an initial
datum, which invariably requires the definition of a new variable in order to convert
(1.8) into an autonomous scenario for all (positive) time. In this way, and based on
the influential works by Dafermos [14, 15] (see also [25, sect. 2]), the authors in [21] set
the relative displacement history variable as for vertical displacements u in wavelike
models (see (1.1)--(1.2)) but now in terms of the rotation angle

\zeta t(x, s) :=\psi (x, t) - \psi (x, t - s), x\in (0,L), t\geq 0, s > 0,(1.9)

and then provided for the first time the stability results for the related equivalent
problem (besides proper initial-boundary conditions) on a suitable extended phase
space through the associated semigroup (solution) T (t) and the corresponding energy
E(t). Summarizing the main results in [21, Thms. 3.7 and 4.2], we can slightly
rephrase Statement I as the following:

Statement II. Let g be a kernel satisfying the exponential assump-
tion (1.7). Then, the EWS condition (1.5) holds if and only if the
associated semigroup T (t) is exponentially stable.

As in the previous case, several papers have appeared in the literature concerning
the general stability of energy (also in terms of the semigroup) related to the viscoelas-
tic Timoshenko--Boltzmann (1.8), most of them with the same goal in generalizing the
exponential assumption on g given by (1.7); see, for instance, [2, 11, 18, 21, 27, 34].
In order to consider an assumption as general as possible related to characterization
of stability, and looking for the answer of Q1, among these latter works we are going
to highlight the assumptions of [11], which have a foundation in linear viscoelasticity
as first introduced by [9] and which today is known as the \delta -condition (cf. [10]), and
still receives the notion of admissible memory kernel.

According to [9, 11], we first observe that (1.7) is a particular case (with C = 1)
of the following assumption:

\bullet \bfitdelta -condition: there exist C \geq 1 and \delta > 0 such that

g(t+ s)\leq Ce - \delta tg(s), t > 0, a.e. s > 0,(1.10)

where g is assumed to be a nonincreasing absolutely continuous summable
function with finite total mass.

Therefore, rephrasing the stability result in [11, Thm. 1], we can precisely state the
answer for Q1 by giving the characterization of uniform stability in terms of the
memory kernel, instead of (1.5) as in Statements I and II.

Statement III. Under the EWS assumption (1.5), the semigroup T (t)
associated with (1.8) is exponentially stable if and only if g satisfies
the \delta -condition (1.10).2

In Statement III, once we have fixed the EWS condition (1.5), the equivalence stated
therein is not true if we change (1.10) by (1.7), which shows the \delta -condition is the

2As stressed on p. 368 of [11] (see remark therein), there is no need of (1.5) in necessity's proof.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/3

1/
24

 to
 2

01
.2

1.
15

2.
18

9 
by

 M
ar

ci
o 

Jo
rg

e 
Si

lv
a 

(m
ar

ci
oa

js
@

ue
l.b

r)
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



VISCOELASTICITY IN TIMOSHENKO--BOLTZMANN SYSTEMS 1153

exact assumption to answer Q1, besides elucidating its strength in the characterization
of uniform stability via the memory kernel. In this direction, we point out that either
assumption (1.5) or (1.10) (resp. (1.7)) is always fixed and the other one is used in the
equivalence of the exponential stabilization. Hence, we name Statements I, II, and
III as a partial characterization via either condition (1.5) or (1.10). This fact leads
us to the question of whether it is possible to use both assumptions for the uniform
stability characterization, or more specifically, the following.

Q2. Is it possible to prove that both (1.5) and (1.10) are (at the same
time) necessary and sufficient for exponential stability of the cor-
responding semigroup (energy) when dealing within the history sce-
nario?

As far as the authors know, this issue has not been explored until now with respect
to system (1.8). A positive answer to the question will be called a complete charac-
terization via (1.5) and (1.10). This is precisely the content of the next subsection
where our main goal is to address and clarify it for the case (1.4)\alpha = - \infty , which can be
properly brought to the present case.

1.2. Viscoelasticity on the shear stress. Null history case: \alpha = 0. The
Timoshenko--Volterra integro-differential system (1.4)\alpha =0 is written down as\left\{       

\rho 1\phi tt  - \kappa (\phi x +\psi )x + \kappa 

\int t

0

g(t - s)(\phi x +\psi )x(s)ds= 0,

\rho 2\psi tt  - b\psi xx + \kappa (\phi x +\psi ) - \kappa 

\int t

0

g(t - s)(\phi x +\psi )(s)ds= 0.

(1.11)

The development of the physical modeling and mathematical results for (1.11) has
been devised only recently by Alves et al. [1]. Uniform and nonuniform stability
results are provided for solutions of (1.11) with proper initial-boundary conditions,
by taking into account general assumptions on g that include (1.7) as a particular
case and also assuming (or not) the EWS condition (1.5), besides a nonstandard
assumption on the memory kernel g in terms of \rho 1, \rho 2, and the length L of the beam;
cf. [1, Thms. 3.10, 3.12, and 4.1]. Just to be clearer, we note that such a peculiar
assumption on g is presented in Assumption 3.5 therein, being given by\int \infty 

0

g(s)ds >

\biggl\{ 
31

32
,

64\rho 1L
2

64\rho 1L2 + \rho 2

\biggr\} 
\in (0,1),(1.12)

which proved to be effective to reach a new observability inequality by means of new
multipliers (cf. [1, Prop. 3.8]), since it gives a proper balance to weight the perturbed
functionals. Despite general results, when speaking in terms of characterization of
uniform exponential stability, the summary of the main results in [1] reads precisely
as in Statement I, which is somehow expected (unless requesting (1.12)). So we turn
our attention back to the presence of history as follows.
History case: \alpha =  - \infty . We finally approach the instance that expresses the main
object of study in the present article, namely, the viscoelastic Timoshenko--Boltzmann
integro-differential system (1.4)\alpha = - \infty \left\{       

\rho 1\phi tt  - \kappa (\phi x +\psi )x + \kappa 

\int t

 - \infty 
g(t - s)(\phi x +\psi )x(s)ds= 0,

\rho 2\psi tt  - b\psi xx + \kappa (\phi x +\psi ) - \kappa 

\int t

 - \infty 
g(t - s)(\phi x +\psi )(s)ds= 0.

(1.13)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Suitable initial-boundary conditions will be precisely set later in (2.2)--(2.3). Unlike
(1.11), we are now facing prescribed initial data for the sum (\phi x + \psi )(\cdot , s), s \leq 0,
which in turn allows us to define a relative displacement history variable in terms
of the shear component S := \kappa (\phi x + \psi ) in order to convert (1.13) into a tangible
equivalent autonomous problem, yet depending on the initial-boundary conditions, as
clarified right after and in section 2.

Before giving our main contributions, let us compare (1.13) with (1.11) or (1.8),
though it is not completely fair. Indeed, while in (1.11) one has the lack of semigroup
characteristic and so the stability has been done via multipliers in energy perturba-
tion, here we guarantee the generation a linear semigroup S(t) associated with (1.13).
Hence, a complete characterization of uniform stability is provided for the associ-
ated semigroup, by giving a positive answer to Q2 and still removing the drawback
property (1.12) as imposed in [1]. Furthermore, concerning (1.8), one sees that it
has the viscoelastic feedback through the bending moment and so all propagation
of dissipativity as done in [11, 21] is not enough in the present case, where a new
path of technical computations must be revealed in terms of the viscoelastic shearing
component.

The main contributions and organization of the paper are as follows.
(i) Well-posedness. Due to the Neumann boundary condition (2.2) for \psi , the

setting of (1.9) alone does not seem to be compatible in the well-posedness
statement as it brings trouble in terms of \zeta to fulfill all requested properties
of the domain arising in the resulting autonomous problem. To overcome this
difficulty, we are going to introduce the relative displacement history in terms
of shear stress S := \kappa (\phi x +\psi ) as

\eta t(x, s) :=
1

\kappa 

\int x

0

[S(y, t) - S(y, t - s)] dy.(1.14)

Such a formulation can also be done for (1.9).3 With (1.14) in hands, we are
capable of setting (1.13) and its proper initial-boundary conditions (IBC) into
the semigroup framework, which is completely different from [1] in technical
aspects and also differs from [11, 26] in terms of IBC and the setting of relative
displacement histories. This is the subject of section 2, where the generation
of the semigroup (solution) S(t) := et\BbbA is ensured; see Theorem 2.3.

(ii) Uniform Stability. In section 3, we state and prove our main stability results,
namely, Theorems 3.1, 3.2, 3.3. Under the forthcoming Assumption 2.1 and
also taking lims\rightarrow 0 g(s) = g0 <+\infty , our main results state

--
S(t) = et\BbbA is exponentially stable if and only if\biggl\{ 

(1.5) holds true,
(1.10) is satisfied.

-- In particular, when (1.5) does not hold, the semigroup
S(t) = et\BbbA is only semiuniformly stable with optimal rate\surd 
t.

The above statements provide a complete characterization of stability for the
associated semigroup, generalizes the partial characterization of Statements
I, II, and III to our context, and gives the positive answer to Q2 in our
viscoelastic shearing case, besides removing (1.12) as requested in the null
history case. Moreover, we also believe it could be replied to viscoelasticity on

3For instance, one can rewrite (1.9) formally in terms of the bending moment M := b\psi x when
dealing with proper boundary conditions, namely, \zeta t(x, s) = 1

b

\int x
0 [M(y, t) - M(y, t - s)] dy.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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VISCOELASTICITY IN TIMOSHENKO--BOLTZMANN SYSTEMS 1155

the bending moment. The proofs are based on the spectral analysis through
the resolvent equation where new technical lemmas are original in this work
and then the well-known results in linear semigroup theory are invoked.

2. Well-posedness. To address (1.13) we consider the following IBVP:

\left\{       
\rho 1\phi tt  - \kappa (\phi x +\psi )x + \kappa 

\int t

 - \infty 
g(t - s)(\phi x +\psi )x(s)ds= 0 in (0,L)\times \BbbR +,

\rho 2\psi tt  - b\psi xx + \kappa (\phi x +\psi ) - \kappa 

\int t

 - \infty 
g(t - s)(\phi x +\psi )(s)ds= 0 in (0,L)\times \BbbR +

(2.1)

with boundary conditions

\phi (0, t) = \phi (L, t) =\psi x(0, t) =\psi x(L, t) = 0, t\in \BbbR ,(2.2)

and initial (also compatible) data\left\{       
\phi (x,0) = \phi 0(x), \phi t(0, x) = \phi 1(x), x\in (0,L),

\psi (x,0) =\psi 0(x), \psi t(x,0) =\psi 1(x), x\in (0,L),

\phi (x, t) +

\int x

0

\psi (y, t)dy= p0(x, t), (x, t)\in (0,L)\times ( - \infty ,0).

(2.3)

Remark 2.1. Let us discuss the initial conditions (2.3) a little bit. The first
natural attempt to consider initial data can be found in [26], namely, instead of (2.3)3
we could consider \phi (\cdot , t) = \phi 0(\cdot , t) and \psi (\cdot , t) =\psi 0(\cdot , t), t\leq 0, separately. Nonetheless,
with these latter history data studied separately, our trouble is twofold. Indeed, the
first one arises because the possible relative displacement history \zeta in (1.9) will not
completely fulfill the semigroup formulation in terms of Neumann boundary conditions
inherited by \psi . The second one is that by means of (1.14) (see also (2.4) and the
supplementary equation in (2.14)) we will never be able to recover the initial data
\phi 0(\cdot , t) and \psi 0(\cdot , t), t \leq 0, separately, but also the (not so usual) prescribed history
data (2.3)3, which in turn arises due to the viscoelastic coupling on the shear force,
being called herein as a kind of compatibility condition. As we shall see later, it is
intrinsically necessary to transit equivalently between an autonomous problem and
the original system (2.1)--(2.3).

Since all structural constants are positive (\rho 1, \rho 2, \kappa , b > 0), we only need to assume
conditions on the memory kernel g as follows.

Assumption 2.1. The kernel g :\BbbR + \rightarrow \BbbR + is absolutely continuous, nonincreasing,
and summable, with total mass

\ell :=

\int \infty 

0

g(s)ds\in (0,1).

Remark 2.2. As a matter of fact, to approach the well-posedness of (2.1)--(2.3)
(and still its asymptotic behavior) via semigroup theory, one could consider a more
general class of kernels absolutely continuous by parts containing a finite number
of jumps or even a countable number of increasing jumps; see for instance [9, 23].
However, to our purposes in the present paper, we will not consider such classes of
kernels.

From (1.14), we rewrite the relative displacement history variable as

\eta t(x, s) =
\Bigl( 
\phi + \widetilde \psi \Bigr) (x, t) - \Bigl( \phi + \widetilde \psi \Bigr) (x, t - s)(2.4)
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1156 E. GOMES TAVARES, M. A. JORGE SILVA, T. MA, H. OQUENDO

for x\in (0,L), t\geq 0, s > 0, where we set the notation for the sake of simplicity

\widetilde \psi (x, t) = \int x

0

\psi (y, t)dy.

By means of (2.4) and setting \omega := 1  - \ell , we convert (2.1)--(2.3) into the following
autonomous system

\left\{             
\rho 1\phi tt  - \kappa 

\biggl[ 
\omega (\phi x +\psi ) +

\int \infty 

0

g(s)\eta x(s)ds

\biggr] 
x

= 0 in (0,L)\times \BbbR +,

\rho 2\psi tt  - b\psi xx + \kappa 

\biggl[ 
\omega (\phi x +\psi ) +

\int \infty 

0

g(s)\eta x(s)ds

\biggr] 
= 0 in (0,L)\times \BbbR +,

\eta t + \eta s  - 
\Bigl( 
\phi + \widetilde \psi \Bigr) 

t
= 0 in (0,L)\times \BbbR + \times \BbbR +

(2.5)

with boundary conditions\left\{     
\phi (0, t) = \phi (L, t) =\psi x(0, t) =\psi x(L, t) = 0, t\geq 0,

\eta t(0, s) = \eta t(L,s) = 0, t\geq 0, s > 0,

\eta t(x,0) = 0, (x, t)\in (0,L)\times [0,\infty ),

(2.6)

and initial data\left\{     
\phi (x,0) = \phi 0(x), \phi t(0, x) = \phi 1(x), x\in (0,L),

\psi (x,0) =\psi 0(x), \psi t(x,0) =\psi 1(x), x\in (0,L),

\eta 0(x, s) = \phi 0 + \widetilde \psi 0  - p0( - s) := \eta 0(x, s), (x, s)\in (0,L)\times \BbbR +.

(2.7)

By using an approach similar to [25], we can state that (2.5)--(2.7) is equivalent some-
how to (2.1)--(2.3). A brief discussion on this subject shall be given in subsection 2.2.
In this way, hereafter, we focus our mathematical results on the equivalent autono-
mous system (2.5)--(2.7).

2.1. The semigroup solution. We first introduce some notations as follows.
Let us consider L2(0,L), the standard complex L2-space with inner product and norm

(u, v) =

\int L

0

u(x)v(x)dx, \| u\| =

\Biggl( \int L

0

| u(x)| 2 dx

\Biggr) 1/2

.

The space H1
0 (0,L) stands for the usual Sobolev space, and

L2
\ast (0,L) =

\Biggl\{ 
u\in L2(0,L),

1

L

\int L

0

u(x)dx= 0

\Biggr\} 
, H1

\ast (0,L) =H1(0,L)\cap L2
\ast (0,L),

equipped with the norms

\| u\| L2
\ast (0,L) = \| u\| , \| u\| H1

0 (0,L) = \| u\| H1
\ast (0,L) = \| ux\| .

For any h\in L1(\BbbR +), we consider the Hilbert memory space

\scrM h :=

\biggl\{ 
\eta :\BbbR + \rightarrow H1

0 (0,L);

\int \infty 

0

h(s)\| \eta x(s)\| 2 ds <\infty 
\biggr\} 
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VISCOELASTICITY IN TIMOSHENKO--BOLTZMANN SYSTEMS 1157

with inner product and norm

(\eta , \xi )\scrM h
=

\int \infty 

0

h(s)(\eta x(s), \xi x(s))ds, \| \eta \| 2\scrM h
:=

\int \infty 

0

h(s)\| \eta x(s)\| 2 ds.

Under the above notations we consider the extended phase space

\scrH =H1
0 (0,L)\times L2(0,L)\times H1

\ast (0,L)\times L2
\ast (0,L)\times \scrM g,

equipped with inner product

(z1, z2)\scrH = \rho 1(\Phi 
1,\Phi 2) + \rho 2(\Psi 

1,\Psi 2) + \kappa \omega (\phi 1x +\psi 1, \phi 2x +\psi 2) + b(\psi 1
x,\psi 

2
x) + \kappa (\eta 1, \eta 2)\scrM g

and norm

\| z\| 2\scrH = \rho 1\| \Phi \| 2 + \rho 2\| \Psi \| 2 + \kappa \omega \| \phi x +\psi \| 2 + b\| \psi x\| 2 + \kappa \| \eta \| 2\scrM g
,

where zi = (\phi i,\Phi i,\psi i,\Psi i, \eta i), z = (\phi ,\Phi ,\psi ,\Psi , \eta )\in \scrH , i= 1,2.
We also consider the operator \BbbL :D(\BbbL )\subset \scrM g \rightarrow \scrM g given by

D(\BbbL ) := \{ \eta \in \scrM g, \BbbL \eta \in \scrM g and \eta (0) = 0\} , \BbbL \eta := - \partial s\eta ,

which is the infinitesimal generator of the right-translation semigroup R(t) : \scrM g \rightarrow 
\scrM g given by

[R(t)\eta ](s) :=

\Biggl\{ 
\eta (s - t), s > t,

0, 0< s\leq t.

Moreover, by setting \Phi = \phi t, \Psi = \psi t, and z0 = (\phi 0, \phi 1,\psi 0,\psi 1, \theta 0, \eta 
0), we can now

rewrite (2.5)--(2.7) as the following Cauchy problem\Biggl\{ 
zt =\BbbA z, t > 0,

z(0) = z0,
(2.8)

where the linear operator \BbbA :D(\BbbA )\subset \scrH \rightarrow \scrH is given by

\BbbA z =

\left[             

\Phi 

\kappa 

\rho 1

\biggl[ 
\omega (\phi x +\psi ) +

\int \infty 

0

g(s)\eta x(s)ds

\biggr] 
x

\Psi 

b

\rho 2
\psi xx  - 

\kappa 

\rho 2

\biggl[ 
\omega (\phi x +\psi ) +

\int \infty 

0

g(s)\eta x(s)ds

\biggr] 
\BbbL \eta + (\Phi + \widetilde \Psi )

\right]             
(2.9)

and its domain D(\BbbA ) consists of all functions

z = (\phi ,\Phi ,\psi ,\Psi , \eta )\in H1
0 (0,L)\times H1

0 (0,L)\times 
\bigl[ 
H2(0,L)\cap H1

\ast (0,L)
\bigr] 
\times H1

\ast (0,L)\times D(\BbbL )

such that

\psi x \in H1
0 (0,L), \omega \phi +

\int \infty 

0

g(s)\eta (s)ds\in H2(0,L).

We are finally in condition to state and prove the existence and uniqueness result
for (2.5)--(2.7) by means of (2.8). In other words, we are going to show that the \BbbA set
in (2.9) is the infinitesimal generator of a C0-semigroup of contractions S(t) := e\BbbA t,
which in turn is called herein by a solution semigroup. More precisely, we have the
following.
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1158 E. GOMES TAVARES, M. A. JORGE SILVA, T. MA, H. OQUENDO

Theorem 2.3. Let g be a kernel satisfying Assumption 2.1. Then, for every
z0 \in \scrH , problem (2.8) has a unique mild solution z \in C(0,\infty ;\scrH ) given by

z(t) = S(t)z0, t\geq 0.(2.10)

In addition, if z0 \in D(\BbbA ), then z is the regular solution of (2.8) with

z \in C1(0,\infty ;\scrH )\cap C(0,\infty ;D(\BbbA )).

Proof. From the Lumer--Phillips theorem (cf. [33, Thm. 1.2.4]) we need to prove
that \BbbA is dissipative and onto. This is enough to conclude that \BbbA generates a C0-
semigroup of contractions S(t) = et\BbbA as desired. Let us sketch the proof as follows.
Dissipativity. For any z = (\phi ,\Phi ,\psi ,\Psi , \eta )\in D(\BbbA ), we have

Re (\BbbA z, z)\scrH = \kappa Re(\BbbL z, z)\scrM g

= - \kappa 
2

\int \infty 

0

g(s)
d

ds
\| \eta x(s)\| 2 ds

= - \kappa 
2

lim
y\rightarrow 0+

\Biggl[ 
 - g(y)\| \eta x(y)\| 2 + g

\biggl( 
1

y

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| \eta x\biggl( 1

y

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 2 - \int 1/y

y

g\prime (s)\| \eta x(s)\| 2 ds

\Biggr] 
.

Proceeding as in [25] (see also [31, sect. 2] for computations with a little more detail),
we deduce

lim
y\rightarrow 0+

g(y)\| \eta x(y)\| 2 = lim
y\rightarrow 0+

g

\biggl( 
1

y

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| \eta x\biggl( 1

y

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 2 = 0.(2.11)

Then, since g\prime (s)\leq 0 for almost every s\in \BbbR + we get

Re (\BbbA z, z)\scrH =
\kappa 

2

\int \infty 

0

g\prime (s)\| \eta x(s)\| 2 ds\leq 0,

which is enough to conclude that \BbbA is dissipative.
I  - \BbbA is onto. Given f = (f1, f2, f3, f4, f5) \in \scrH , we need to find z = (\phi ,\Phi ,\psi ,\Psi , \eta ) \in 
D(\BbbA ) such that\left\{                     

\phi  - \Phi = f1,

\rho 1\Phi  - \kappa 

\biggl[ 
\omega (\phi x +\psi ) +

\int \infty 

0

g(s)\eta x(s)ds

\biggr] 
x

= \rho 1f
2,

\psi  - \Psi = f3,

\rho 2\Psi  - b\psi xx + \kappa 

\biggl[ 
\omega (\phi x +\psi ) +

\int \infty 

0

g(s)\eta x(s)ds

\biggr] 
= \rho 2f

4,

\eta + \eta s  - (\Phi + \widetilde \Psi )= f5.

(2.12)

To do so, we consider the following continuous coercive sesquilinear form in H1
0 (0,L)\times 

H1
\ast (0,L),

\Lambda ((\phi ,\psi ), (\vargamma , \zeta ))=\rho 1(\phi ,\vargamma )+\rho 2(\psi , \zeta )+b(\psi x, \zeta x)+\kappa 

\biggl[ 
1 - 
\int \infty 

0

g(s)e - s ds

\biggr] 
(\phi x +\psi ,\vargamma x + \zeta )

and the antilinear functional F :H1
0 (0,L)\times H1

\ast (0,L)\rightarrow \BbbC set as

F (\vargamma , \zeta ) = \rho 1(f
1 + f2, \vargamma ) + \rho 2(f

3 + f4, \zeta ) + \kappa 

\biggl[ 
\ell  - 

\int \infty 

0

g(s)e - s ds

\biggr] 
(f1x + f3, \vargamma x + \zeta )

 - \kappa 
\int \infty 

0

g(s)

\int s

0

e - (s - \tau )(f5x(\tau ), \vargamma x + \zeta )d\tau ds.
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VISCOELASTICITY IN TIMOSHENKO--BOLTZMANN SYSTEMS 1159

From the Lax--Milgram theorem, there exists (\phi ,\psi )\in H1
0 (0,L)\times H1

\ast (0,L) such that

\Lambda ((\phi ,\psi ), (\vargamma , \zeta )) = F (\vargamma , \zeta ) \forall (\vargamma , \zeta )\in H1
0 (0,L)\times H1

\ast (0,L).(2.13)

Them, setting \Phi = \phi  - f1, \Psi =\psi  - f3, and

\eta (s) = (1 - e - s)(\Phi + \widetilde \Psi )+

\int s

0

f5(\tau )e - (s - \tau ) d\tau ,

and using (2.13), it is possible to prove that the resulting vector z = (\phi ,\Phi ,\psi ,\Psi , \eta )
belongs to D(\BbbA ) and satisfies (2.12).

2.2. Recovering the original system. To end this section, we provide a short
discussion of how to go back from (2.5)--(2.7) to (2.1)--(2.3) in some sense.

First, motivated by the third identities in (2.5)--(2.7) and by the aforementioned
notations, we consider the supplementary Cauchy problem\Biggl\{ 

\eta t =\BbbL \eta + (\phi + \widetilde \psi )t, t > 0,

\eta 0 = \eta 0.
(2.14)

By means of a rigorous study on the memory space \scrM g, we can prove analogously
to [25, sect. 3] that \BbbL is an infinitesimal generator of a right-translation semigroup
R(t) :\scrM g \rightarrow \scrM g given by

[R(t)\eta ](s) :=

\Biggl\{ 
\eta (s - t), s > t,

0, 0< s\leq t,

which in turn leads us to an explicit representation formula for \eta (see. (3.6) therein)
in terms of v := (\phi + \widetilde \psi )t. Therefore, bringing the picture to our system (2.14), we
have the following result: for any \eta 0 \in \scrM g, problem (2.14) has a unique mild solution
\eta \in C([0,\infty );\scrM g), which has the explicit form

\eta t(s) =

\left\{   \eta 
0(s - t) +

\Bigl( 
\phi + \widetilde \psi \Bigr) (t) - \Bigl( \phi 0 + \widetilde \psi 0

\Bigr) 
, s > t,\Bigl( 

\phi + \widetilde \psi \Bigr) (t) - \Bigl( \phi + \widetilde \psi \Bigr) (t - s), 0< s\leq t.
(2.15)

Combining the expression (2.15) with similar arguments given in [25, sect. 4],
we can recover the original system (2.1)--(2.3) in a variational sense. More precisely,
if (\phi ,\psi , \eta ) is a mild (one reads variational) solution of (2.5)--(2.7) with initial data
(\phi 0, \phi 1,\psi 0,\psi 1, \eta 0), where

\eta 0(s) = \phi 0 + \widetilde \psi 0  - p0( - s), s > 0,

then (\phi ,\psi ) is a variational solution of (2.1)--(2.3), paying attention to that we can
only recover the coupled history data (2.3)3, but not the prescribed history data for
\phi and \psi separately.

3. Stability analysis. In this section, we are going to provide qualitative stabil-
ity results for the semigroup S(t) = et\BbbA and, consequently, for the semigroup solution
(2.10).

We start by recalling the following stability notions:
\bullet we say that S(t) is semiuniformly stable with rate

\surd 
t when 0\in \rho (\BbbA ) (resolvent

set) and there exists a constant K > 0 such that

\| S(t)\BbbA  - 1\| \scrL (\scrH ) \leq 
K\surd 
t
, t > 0;

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1160 E. GOMES TAVARES, M. A. JORGE SILVA, T. MA, H. OQUENDO

\bullet we say that S(t) is uniformly exponentially stable when there exist constants
M \geq 1 and \gamma > 0 such that

\| S(t)\| \scrL (\scrH ) \leq Me - \gamma , t > 0.

To reach such stability results for S(t) = et\BbbA , we need to consider an extra dis-
sipative condition on the memory kernel (besides Assumption 2.1, which in turn is
already understood to be assumed). Here, in order to take an assumption as general
as possible to give a complete characterization of stability, we are going to pay atten-
tion to the \delta -condition (1.10) that has been introduced for (wavelike) models in linear
viscoelasticity; see for instance [9, 10].

Assumption 3.1. There exist constants \delta > 0 and C \geq 1 such that the kernel
g :\BbbR + \rightarrow \BbbR + satisfies

g(t+ s)\leq Ce - \delta tg(s)(3.1)

for every t > 0 and for almost every s > 0.

Moreover, as we have seen in the introduction, problem (2.5)--(2.7) is only partially
damped and its asymptotic stability also depends upon a relationship of its structural
coefficients. Thus, we also consider the following parameter of stability

\chi 0 :=
\kappa 

\rho 1
 - b

\rho 2
.(3.2)

3.1. Statement of the main results. Our first main result guarantees that
S(t) = et\BbbA is (in general) semiuniformly stable, regardless of the value of \chi 0.

Theorem 3.1. Under the additional Assumption 3.1, the semigroup S(t) = et\BbbA is
semiuniformly stable with rate

\surd 
t, independently of \chi 0.

Our second main stability result ensures that the previous semiuniform ``polyno-
mial"" rate given in Theorem 3.1 is optimal whenever \chi 0 \not = 0.

Theorem 3.2. Let us additionally suppose that lims\rightarrow 0 g(s) = g0 < +\infty . Under
the assumptions of Theorem 3.1 and taking \chi 0 \not = 0, the rate

\surd 
t is optimal.

Last, but not least, our third main stability result provides a full characteriza-
tion of uniform exponential stability in terms of Assumption 3.1 and the stability
parameter \chi 0.

Theorem 3.3. Let us additionally suppose that lims\rightarrow 0 g(s) = g0 < +\infty . Then,
we have

S(t) = et\BbbA is exponentially stable if and only if g satisfies Assumption 3.1 and
\chi 0 = 0.

The proofs of the main results are done at the end of this section as a consequence
of a deep technical analysis of the resolvent equation.

3.2. Auxiliary results via resolvent equation.

3.2.1. Preliminary tools. To make this work as self-contained as possible, we
start by listing some known results that will help us to show our main results.

Lemma 3.4. Under Assumptions 2.1 and 3.1,\int \infty 

0

g(s)

\biggl( \int s

0

\| \eta x(\tau )\| d\tau 
\biggr) 2

ds\leq 4C

\delta 2
\| \eta \| 2\scrM g

(3.3)

for every \eta \in \scrM g.
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VISCOELASTICITY IN TIMOSHENKO--BOLTZMANN SYSTEMS 1161

Proof. The proof follows the arguments of [8, Lem. 3.2] with p = 2 and
r= 0.

Lemma 3.5. Under Assumption 2.1, let us also denote

\widehat g(\lambda ) = \int \infty 

0

g(s)e - i\lambda s ds,

named the (half-) Fourier transform of g. Then,

lim
| \lambda | \rightarrow +\infty 

\widehat g(\lambda ) = 0.

In addition, if lims\rightarrow 0 g(s) = g0 <+\infty , then

lim
\lambda \rightarrow +\infty 

\lambda \widehat g(\lambda ) = - ig0.

Proof. The first statement follows from the Riemann--Lebesgue lemma (cf. [22,
Thm. 8.22]) and the second one is a consequence of [17, Thm. 1] with p = 0 and
f = g.

Lemma 3.6 ([4, Prop. 2.2]). Let T (t) : X \rightarrow X be a bounded semigroup on a
Banach space X and A its infinitesimal generator. If X is reflexive, then

\sigma (A)\cap i\BbbR = \sigma ap(A)\cap i\BbbR ,

where \sigma (A) is the spectrum of A and

\sigma ap(A) =
\Bigl\{ 
\lambda \in \BbbC , \exists xn \in D(A)with \| xn\| X = 1\forall n\in \BbbN and lim

n\rightarrow \infty 
\| \lambda xn  - Axn\| X = 0

\Bigr\} 
,

is the approximated point spectrum of A.

Remark 3.7. (i) As pointed out in [16], the main result of [17] is more general
and provides appropriate asymptotic controls on \widehat g for a wide class of functions g.
(ii) Moreover, since the embedding D(\BbbA ) \subset \scrH is not compact (cf. [39]), Lemma 3.6
plays an important role in the study of problems with the memory term in the history
context, which in turn requires the \scrM g-weighted spaces in the composition of the
extended phase spaces.

Along this subsection, we denote by c > 0 all positive (global) constants appearing
in computations, namely, those ones depending only on the structural parameters \rho 1,
\rho 2, \kappa , b, L, and the memory kernel g.

Let \lambda \in \BbbR \setminus \{ 0\} and f = (f1, f2, f3, f4, f5) \in \scrH . Initially, let us suppose that
i\lambda \in \rho (\BbbA ), namely, there exists z = (\phi ,\Phi ,\psi ,\Psi , \eta )\in D(\BbbA ) such that

i\lambda z  - \BbbA z = f(3.4)

or, equivalently,\left\{                     

i\lambda \phi  - \Phi = f1,

i\lambda \rho 1\Phi  - \kappa 

\biggl[ 
\omega (\phi x +\psi ) +

\int \infty 

0

g(s)\eta x(s)ds

\biggr] 
x

= f2,

i\lambda \psi  - \Psi = f3,

i\lambda \rho 2\Psi  - b\psi xx + \kappa 

\biggl[ 
\omega (\phi x +\psi ) +

\int \infty 

0

g(s)\eta x(s)ds

\biggr] 
= f4,

i\lambda \eta + \eta s  - (\Phi + \widetilde \Psi )= f5.

(3.5)
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In the following, we take advantage of the structure of system (3.5) to estimate the
components of \| z\| \scrH in terms of \| f\| \scrH . To do so, let us consider \alpha > 0 such that the
set

\scrJ = \{ s\in \BbbR +, \alpha g\prime (s) + g(s)< 0\} 

has positive Lebesgue measure and define \~g(s) := g(s)\chi \scrJ (s). The existence of such an
\alpha is ensured by Assumption 2.1. Also, some of the forthcoming computations must
(first) be done in the space \scrM \~g.

Lemma 3.8. Under the above setting, we have

Ig(\lambda ) :=

\int \infty 

0

\~g(s)(1 - cos(\lambda s))ds > 0.

Proof. Considering the countable set

\scrP :=

\biggl\{ 
s\in \scrJ , s= 2j\pi 

\lambda 
, j \in \BbbN 

\biggr\} 
,

we observe that \scrJ \setminus \scrP has positive Lebesgue measure and then\int \infty 

0

\~g(s)(1 - cos(\lambda s))ds=

\int 
\scrJ \setminus \scrP 

g(s)(1 - cos(\lambda s))ds > 0,

which shows the desired assertion.

3.2.2. Estimating the damping term.
Lemma 3.9. There exists c > 0 such that

\| \eta \| 2\scrM \~g
 - 
\int \infty 

0

g\prime (s)\| \eta x(s)\| 2 ds\leq c\| z\| \scrH \| f\| \scrH .

Proof. Taking the inner product of (3.4) with z in \scrH , and taking into account
(2.11) and the definition of \~g, we get

1

2\alpha 
\| \eta \| 2\scrM \~g

\leq  - \kappa 
2

\int \infty 

0

g\prime (s)\| \eta x(s)\| 2 ds\leq Re(i\lambda z  - \BbbA z, z)\scrH \leq \| z\| \scrH \| f\| \scrH ,

which yields the desired conclusion.

3.2.3. Action of viscoelasticity on the shear force.
Lemma 3.10. Under Assumption 3.1, there exists c > 0 such that

\| \phi x +\psi \| 2 \leq c

Ig(\lambda )

\biggl( 
1

Ig(\lambda )
+

1

| \lambda | 
+ 1

\biggr) 
\| z\| \scrH \| f\| \scrH .

Proof. Solving the ODE (3.5)5 and using the expressions (3.5)1 and (3.5)3 we
obtain

\eta (s) =
\bigl( 
1 - e - i\lambda s

\bigr) \Bigl( 
\phi + \widetilde \psi \Bigr)  - 1

i\lambda 

\bigl( 
1 - e - i\lambda s

\bigr) \Bigl( 
f1 +\widetilde f3\Bigr) + \int s

0

e - i\lambda (s - \tau )f5(\tau )d\tau .

(3.6)

Taking the inner product of (3.6) with \phi + \widetilde \psi in \scrM \~g and extracting the real part of
the result, we get

Ig(\lambda )\| \phi x +\psi \| 2 = a1,(3.7)
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VISCOELASTICITY IN TIMOSHENKO--BOLTZMANN SYSTEMS 1163

where

a1 : = Re

\biggl[ 
(\eta ,\phi + \widetilde \psi )\scrM \~g

+
1

i\lambda 

\biggl( \int \infty 

0

\~g(s)(1 - e - i\lambda s)ds

\biggr) 
(f1x + f3, \phi x +\psi )

\biggr] 
 - Re

\biggl[ \int \infty 

0

\~g(s)

\int s

0

e - i\lambda (s - \tau )(f5x(\tau ), \phi x +\psi )d\tau ds

\biggr] 
.

Now, applying Lemmas 3.4 and 3.9, we deduce

| a1| \leq c\| \phi x +\psi \| 
\biggl[ 
\| \eta \| \scrM \~g

+
1

| \lambda | 
\| f1x + f3\| +

\int \infty 

0

g(s)

\int s

0

\| f5x(\tau )\| d\tau ds
\biggr] 

\leq Ig(\lambda )

2
\| \phi x +\psi \| 2 + c

\biggl[ 
1

Ig(\lambda )
\| \eta \| 2\scrM \~g

+

\biggl( 
1

| \lambda | 
+ 1

\biggr) 
\| z\| \scrH \| f\| \scrH 

\biggr] 
\leq Ig(\lambda )

2
\| \phi x +\psi \| 2 + c

\biggl( 
1

Ig(\lambda )
+

1

| \lambda | 
+ 1

\biggr) 
\| z\| \scrH \| f\| \scrH .

Plugging the above estimate into (3.7), we arrive at the desired result.

3.2.4. Propagating viscoelastic damping effects to other terms.
Lemma 3.11. Under Assumption 3.1, there exists c > 0 such that

\| \eta \| 2\scrM g
\leq c

\biggl( 
1

Ig(\lambda )
+ 1

\biggr) \biggl( 
1

Ig(\lambda )
+

1

| \lambda | 
+ 1

\biggr) 
\| z\| \scrH \| f\| \scrH .

Proof. Taking the inner product of (3.6) with \eta in \scrM g, we have

\| \eta \| 2\scrM g
= a2,(3.8)

where

a2 : =

\int \infty 

0

g(s)

\int s

0

e - i\lambda (s - \tau )(f5x(\tau ), \eta x(s))d\tau ds+

\int \infty 

0

g(s)(1 - e - i\lambda s)(\phi x +\psi ,\eta x(s))ds

 - 1

i\lambda 

\int \infty 

0

g(s)(1 - e - i\lambda s)(f1x + f3, \eta x(s)).

Using the H\"older inequality and using Lemmas 3.4, 3.9, and 3.10, we arrive at

| a2| \leq c\| \eta \| \scrM g

\left[  \| \phi x +\psi \| + 1

| \lambda | 
\| f1x + f3\| +

\Biggl( \int \infty 

0

g(s)

\biggl( \int s

0

\| f5x(\tau )\| d\tau 
\biggr) 2

ds

\Biggr) 1/2
\right]  

\leq 1

2
\| \eta \| 2\scrM g

+ c

\biggl[ 
\| \phi x +\psi \| 2 +

\biggl( 
1

| \lambda | 
+ 1

\biggr) 
\| z\| \scrH \| f\| \scrH 

\biggr] 
\leq 1

2
\| \eta \| 2\scrM g

+ c

\biggl( 
1

Ig(\lambda )
+ 1

\biggr) \biggl( 
1

Ig(\lambda )
+

1

| \lambda | 
+ 1

\biggr) 
\| z\| \scrH \| f\| \scrH .

Replacing the above estimate in (3.8), we obtain the desired estimate.

Lemma 3.12. Under Assumption 3.1, we have for every \varepsilon \in (0,1):

\rho 1\| \Phi \| 2 \leq 
c

\varepsilon 

\biggl( 
1

Ig(\lambda )
+ 1

\biggr) \biggl( 
1

Ig(\lambda )
+

1

| \lambda | 
+ 1

\biggr) 
\| z\| \scrH \| f\| \scrH + \varepsilon \| \psi x\| 2.
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1164 E. GOMES TAVARES, M. A. JORGE SILVA, T. MA, H. OQUENDO

Proof. Taking the inner product of (3.5)2 with \phi in L2(0,L) and using (3.5)1, we
infer

\rho 1\| \Phi \| 2 = a3,(3.9)

where

a3 := - (f2, \phi ) - \rho 1(\Phi , f
1) + \kappa \omega (\phi x +\psi ,\phi x) + \kappa 

\int \infty 

0

g(s)(\eta x(s), \phi x)ds.

Applying the H\"older inequality, using Lemmas 3.10 and 3.11 and noting that

\| \phi x\| \leq \| \phi x +\psi \| + c\| \psi x\| ,

we arrive at

| a3| \leq c\| \phi x\| 
\bigl[ 
\| f2\| + \| \phi x +\psi \| + \| \eta \| \scrM g

\bigr] 
+ \rho 1\| \Phi \| \| f1\| 

\leq c

\varepsilon 

\Bigl( 
\| \phi x +\psi \| 2 + \| \eta \| 2\scrM g

\Bigr) 
+ \varepsilon \| \psi x\| 2 + c\| z\| \scrH \| f\| \scrH 

\leq c

\varepsilon 

\biggl( 
1

Ig(\lambda )
+ 1

\biggr) \biggl( 
1

Ig(\lambda )
+

1

| \lambda | 
+ 1

\biggr) 
\| z\| \scrH \| f\| \scrH + \varepsilon \| \psi x\| 2.

Combining the above estimate with (3.9), we complete the proof.

3.2.5. Overcoming the lack of damping effect on the bending moment.
In the next two lemmas we provide very new estimates. As far as the authors know,
the path of the computations is never given in the literature. The insightful reader
will note that this is the exact moment where the parameter \chi 0 comes into play.

Lemma 3.13. Under Assumption 3.1, let us also consider lims\rightarrow 0 g(s) = g0 <+\infty .
Then, there exists c > 0 such that

\| \Psi \| 2 \leq c

\biggl( 
1

Ig(\lambda )
+ 1

\biggr) \biggl( 
1

Ig(\lambda )
+

1

| \lambda | 
+ 1

\biggr) 
\| z\| \scrH \| f\| \scrH 

+ c| \chi 0| 
\bigl( 
1 + | \lambda | 2

\bigr) \biggl( 1

Ig(\lambda )
+ 1

\biggr) \biggl( 
1

Ig(\lambda )
+

1

| \lambda | 
+ 1

\biggr) 
\| z\| \scrH \| f\| \scrH .

Proof. To clarify the whole proof, we proceed with the following algorithm:
Step 1. Take the inner product of f1x with \Psi in L2(0,L) and use (3.5)1. Then, we

have

(f1x ,\Psi )= i\lambda (\phi x,\Psi ) - (\Phi x,\Psi ).

Step 2. Take the inner product of f2 with \psi x in L2(0,L) and use (3.5)2. Thus, we
get

1

\rho 1
(f2,\psi x) = i\lambda (\Phi ,\psi x) - 

\kappa 

\rho 1

\biggl( 
\omega (\phi x +\psi )x +

\int \infty 

0

g(s)\eta xx(s)ds,\psi x

\biggr) 
.

Step 3. Taking the inner product of f3x with \Phi in L2(0,L) and using (3.5)3, we obtain

(f3x ,\Phi )= i\lambda (\psi x,\Phi ) - (\Psi x,\Phi ).
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VISCOELASTICITY IN TIMOSHENKO--BOLTZMANN SYSTEMS 1165

Step 4. Taking the inner product of f4 with \omega (\phi x +\psi ) +
\int \infty 
0
g(s)\eta x(s)ds in L2(0,L)

and regarding (3.5)4, (3.5)3, and (3.5)1, we find

\omega \| \Psi \| 2 = i\lambda (\Psi , \phi x)+\ell (\Psi ,\Phi x) + \ell (\Psi , f1x) - \omega (\Psi , f3)

 - 1

\rho 2

\biggl( 
f4, \omega (\phi x +\psi ) +

\int \infty 

0

g(s)\eta x(s)ds

\biggr) 
+ i\lambda 

\int \infty 

0

g(s)(\Psi , \eta x(s))ds+
\kappa 

\rho 2

\bigm\| \bigm\| \bigm\| \bigm\| \omega (\phi x +\psi ) +

\int \infty 

0

g(s)\eta x(s)ds

\bigm\| \bigm\| \bigm\| \bigm\| 2
+

b

\rho 2

\biggl( 
\psi x, \omega (\phi x +\psi )x +

\int \infty 

0

g(s)\eta xx(s)ds

\biggr) 
.

Step 5. Taking the inner product of f5 with \widetilde \Psi in \scrM g and applying (3.5)5, we infer

\ell \| \Psi \| 2 = i\lambda 

\int \infty 

0

g(s)(\eta x(s),\Psi )ds+

\int \infty 

0

g(s)(\eta sx(s),\Psi )ds - \ell (\Phi x,\Psi )

 - 
\int \infty 

0

g(s)(f6x(s),\Psi )ds.

Step 6. Adding all the results obtained in the five previous steps and extracting the
real part on both sides of the resulting identity, we arrive at

\| \Psi \| 2 =Re [a4 + a5 + \chi 0a6 + a7] ,(3.10)

where

a4 := \omega (\Psi , f3) - (f1x ,\Psi ) - 1

\rho 1
(f2,\psi x) - (f3x ,\Phi )+ \ell (\Psi , f1x) - 

\int \infty 

0

g(s)(f5x(s),\Psi )ds

 - 1

\rho 2

\biggl( 
f4, \omega (\phi x +\psi ) +

\int \infty 

0

g(s)\eta x(s)ds

\biggr) 
,

a5 :=
\kappa 

\rho 2

\bigm\| \bigm\| \bigm\| \bigm\| \omega (\phi x +\psi ) +

\int \infty 

0

g(s)\eta x(s)ds

\bigm\| \bigm\| \bigm\| \bigm\| 2 ,
a6 :=

\biggl( 
\omega (\phi x +\psi ) +

\int \infty 

0

g(s)\eta x ds,\psi xx

\biggr) 
,

a7 :=

\int \infty 

0

g(s)(\eta sx(s),\Psi )ds.

Step 7. (conclusion). Let us give a proper estimate for the right-hand side of (3.10).
Indeed, clearly we have

| a4| \leq c\| z\| \scrH \| f\| \scrH .

Using Lemmas 3.10 and 3.11, we can estimate a5 by

| a5| \leq c

\biggl( 
1

Ig(\lambda )
+ 1

\biggr) \biggl( 
1

Ig(\lambda )
+

1

| \lambda | 
+ 1

\biggr) 
\| z\| \scrH \| f\| \scrH .

Now, we use (3.5)4 to write down

a6 =
\rho 2
b
a5 +

1

b

\biggl( 
\omega (\phi x +\psi ) +

\int \infty 

0

g(s)\eta x(s)ds, i\lambda \rho 2\Psi  - f4
\biggr) 
.
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1166 E. GOMES TAVARES, M. A. JORGE SILVA, T. MA, H. OQUENDO

From Lemmas 3.10 and 3.11, we get

| a6| \leq c

\biggl( 
1

Ig(\lambda )
+ 1

\biggr) \biggl( 
1

Ig(\lambda )
+

1

| \lambda | 
+ 1

\biggr) 
\| z\| \scrH \| f\| \scrH + c| \lambda | \| \Psi \| 

\bigl( 
\| \phi x +\psi \| + \| \eta \| \scrM g

\bigr) 
\leq c
\bigl( 
1 + | \lambda | 2

\bigr) \biggl( 1

Ig(\lambda )
+ 1

\biggr) \biggl( 
1

Ig(\lambda )
+

1

| \lambda | 
+ 1

\biggr) 
\| z\| \scrH \| f\| \scrH +

1

4
\| \Psi \| 2.

Finally, we estimate the term a7. Using (2.11), we have

a7 =

\int \infty 

0

g(s)
d

ds
(\eta x(s),\Psi )ds= - 

\int \infty 

0

g\prime (s)(\eta x(s),\Psi )ds.

At this moment, we use the assumption lims\rightarrow 0 g(s) = g0 < +\infty and Lemma 3.9 to
deduce

| a7| \leq g0

\biggl( 
 - 
\int \infty 

0

g\prime (s)\| \eta x(s)\| 2 ds
\biggr) 
+

1

4
\| \Psi \| 2 \leq c\| z\| \scrH \| f\| \scrH +

1

4
\| \Psi \| 2.

Collecting the above estimates and plugging the results into (3.10), we obtain the
desired estimate of Lemma 3.13.

Lemma 3.14. Under the assumptions of Lemma 3.13, there exists c > 0 such that

\| \psi x\| 2 \leq c

\biggl( 
1

Ig(\lambda )
+ 1

\biggr) \biggl( 
1

Ig(\lambda )
+

1

| \lambda | 
+ 1

\biggr) 
\| z\| \scrH \| f\| \scrH 

+ c| \chi 0| 
\bigl( 
1 + | \lambda | 2

\bigr) \biggl( 1

Ig(\lambda )
+ 1

\biggr) \biggl( 
1

Ig(\lambda )
+

1

| \lambda | 
+ 1

\biggr) 
\| z\| \scrH \| f\| \scrH .

Proof. Taking the inner product of (3.5)4 with \psi in L2(0,L) and using (3.5)3, we
have

\| \psi x\| 2 = a8,(3.11)

where

a8 :=
1

b

\biggl[ \biggl( 
f4 + \kappa \omega (\phi x +\psi ) + \kappa 

\int \infty 

0

g(s)\eta x(s)ds,\psi 

\biggr) 
+ \rho 2(\Psi , f

3 +\Psi )

\biggr] 
.

From Lemmas 3.10, 3.11, and 3.13, we deduce

| a8| \leq c\| \psi x\| 
\bigl( 
\| f4\| + \| \phi x +\psi \| + \| \eta \| \scrM g

\bigr) 
+ c\| \Psi \| 

\bigl( 
\| f3\| + \| \Psi \| 

\bigr) 
\leq 1

2
\| \psi x\| 2 + c

\Bigl( 
\| \phi x +\psi \| 2 + \| \eta \| 2\scrM g

+ \| \Psi \| 2
\Bigr) 
+ c\| z\| \scrH \| f\| \scrH 

\leq c

\biggl( 
1

Ig(\lambda )
+ 1

\biggr) \biggl( 
1

Ig(\lambda )
+

1

| \lambda | 
+ 1

\biggr) 
\| z\| \scrH \| f\| \scrH +

1

2
\| \psi x\| 2

+ c| \chi 0| 
\bigl( 
1 + | \lambda | 2

\bigr) \biggl( 1

Ig(\lambda )
+ 1

\biggr) \biggl( 
1

Ig(\lambda )
+

1

| \lambda | 
+ 1

\biggr) 
\| z\| \scrH \| f\| \scrH .

Plugging the above estimate into (3.11), we arrive at the desired conclusion.

3.2.6. Conclusion: \bfscrH -estimate.
Lemma 3.15. Under the above scenario, there exists c > 0 such that

\| z\| \scrH \leq c

\biggl( 
1

Ig(\lambda )
+ 1+ | \chi 0| 

\biggr) \biggl( 
1

Ig(\lambda )
+

1

| \lambda | 
+ 1

\biggr) 
\| f\| \scrH 

+ c| \chi 0| | \lambda | 2
\biggl( 

1

Ig(\lambda )
+ 1

\biggr) \biggl( 
1

Ig(\lambda )
+

1

| \lambda | 
+ 1

\biggr) 
\| f\| \scrH .
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VISCOELASTICITY IN TIMOSHENKO--BOLTZMANN SYSTEMS 1167

Proof. Regarding the estimates from Lemmas 3.10 to 3.14, with \varepsilon , \~\varepsilon \in (0,1) small
enough in Lemmas 3.12 and 3.13, respectively, we arrive at

\| z\| 2\scrH \leq c

\biggl( 
1

Ig(\lambda )
+ 1+ | \chi 0| 

\biggr) \biggl( 
1

Ig(\lambda )
+

1

| \lambda | 
+ 1

\biggr) 
\| z\| \scrH \| f\| \scrH 

+ c| \chi 0| | \lambda | 2
\biggl( 

1

Ig(\lambda )
+ 1

\biggr) \biggl( 
1

Ig(\lambda )
+

1

| \lambda | 
+ 1

\biggr) 
\| z\| \scrH \| f\| \scrH ,

and the conclusion follows from Young's inequality.

3.2.7. Existence of solution for the resolvent equation. Now, we use the
approximate point spectrum \sigma ap(\BbbA ) to prove that (3.4) (and consequently (3.5)) has
a unique solution for every given \lambda \in \BbbR and f \in \scrH .

Lemma 3.16. Let us consider Assumption 3.1 and lims\rightarrow 0 g(s) = g0 <+\infty . Then,
i\BbbR \subset \rho (\BbbA ).

Proof. Suppose by contradiction that i\lambda \ast \in \sigma (\BbbA ) for some \lambda \ast \in \BbbR . Then,
we invoke Lemma 3.6 to obtain \lambda \ast \in \sigma ap(\BbbA ). By definition, there exists zn =
(\phi n,\Phi n,\psi n,\Psi n, \eta n)\in D(\BbbA ) such that \| zn\| \scrH = 1 for all n\in \BbbN and

fn := i\lambda \ast zn  - \BbbA zn \rightarrow 0 in \scrH .(3.12)

Calling fn = (f1n, f
2
n, f

3
n, f

4
n, f

5
n), we can write (3.12) in terms of its components:

\left\{                       

f1n = i\lambda \ast \phi n  - \Phi n \rightarrow 0 in H1
0 (0,L),

f2n = i\lambda \ast \rho 1\Phi n  - \kappa 

\biggl[ 
\omega (\phi nx +\psi n) +

\int \infty 

0

g(s)\eta nx(s)ds

\biggr] 
x

\rightarrow 0 in L2(0,L),

f3n = i\lambda \ast \psi n  - \Psi n \rightarrow 0 in H1
\ast (0,L),

f4n = i\lambda \ast \rho 2\Psi n  - b\psi nxx + \kappa 

\biggl[ 
\omega (\phi nx +\psi n) +

\int \infty 

0

g(s)\eta nx(s)ds

\biggr] 
\rightarrow 0 in L2

\ast (0,L),

f5n = i\lambda \ast \eta n + \eta ns  - 
\Bigl( 
\Phi n + \widetilde \Psi n

\Bigr) 
\rightarrow 0 in \scrM g.

(3.13)

At this point, we will split the proof into two cases as follows.
Case 1: \lambda \ast = 0. In this case, we immediately obtain from (3.13)1, (3.13)3, and

(3.13)5 the following convergences:

\Phi n \rightarrow 0 in H1
0 (0,L), \Psi n \rightarrow 0 in H1

\ast (0,L), \eta ns \rightarrow 0 in \scrM g.(3.14)

Taking into account that \eta n \in D(\BbbL ) and the last convergence in (3.14), we can apply
Lemma 3.4 to get

\| \eta n\| \scrM g
\leq 

\sqrt{} \int \infty 

0

g(s)

\biggl( \int s

0

\| \eta nxs(\tau )\| d\tau 
\biggr) 2

ds\leq c\| \eta ns\| \scrM g \rightarrow 0.(3.15)

On the other hand, taking the inner product of (3.13)2 with \phi n in L2(0,L), the
inner product of (3.13)4 with \psi n in L2

\ast (0,L), and adding the results, we deduce

\omega \kappa \| \phi nx +\psi n\| 2 + b\| \psi nx\| 2 = d1n,(3.16)

where,

d1n := (f2n, \phi n) + (f4n,\psi n) - 
\int \infty 

0

g(s) (\eta nx(s), \phi nx +\psi n) ds.

But, from (3.13)2, (3.13)4, and (3.15), we infer
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1168 E. GOMES TAVARES, M. A. JORGE SILVA, T. MA, H. OQUENDO

| d1n| \leq \| f2n\| \| \phi n\| +\| f4n\| \| \psi n\| +
\surd 
\ell \| \eta n\| \scrM g

\| \phi nx+\psi n\| \leq c\| zn\| \scrH 
\bigl( 
\| fn\| \scrH +\| \eta n\| \scrM g

\bigr) 
\rightarrow 0.

Hence, from (3.14), (3.15), and (3.16) we conclude that \| zn\| \scrH \rightarrow 0, which contradicts
the equality \| zn\| \scrH = 1 for all n\in \BbbN .

Case 2: \lambda \ast \not = 0. Since \lambda \ast \in \BbbR \setminus \{ 0\} , fn \in \scrH and zn \in D(\BbbA ) is a solution of (3.12),
we are in condition to apply Lemma 3.15 (for zn) to conclude that

\| zn\| \scrH \leq c
\bigl( 
| \chi 0| | \lambda \ast | 2 + 1

\bigr) \biggl( 1

Ig(\lambda \ast )
+ 1+ | \chi 0| 

\biggr) \biggl( 
1

Ig(\lambda \ast )
+

1

| \lambda \ast | 
+ 1

\biggr) 
\| fn\| \scrH \rightarrow 0,

which contradicts again the fact \| zn\| \scrH = 1 for all n\in \BbbN .
Since we arrive at a contradiction in both cases, we conclude that i\BbbR \subset \rho (\BbbA ).

3.2.8. A resolvent estimate from below. In the next result we use the no-
tation

an \approx c bn \Leftarrow \Rightarrow lim
n\rightarrow \infty 

| an| 
| bn| 

= c.

Lemma 3.17. Suppose that lims\rightarrow 0 g(s) = g0 < +\infty . If \chi 0 \not = 0, then there exist
sequences

\lambda n \approx 

\sqrt{} 
b\pi 2

\rho 2L2
n, Bn \approx 

\Biggl[ 
\pi \rho 21| \chi 0| 2

\surd 
b

\kappa g0L (\kappa + \rho 1| \chi 0| )2
\surd 
\rho 2

\Biggr] 
n,

and fn \in \scrH such that

\| (i\lambda n  - \BbbA ) - 1
fn\| \scrH \geq \surd 

\rho 2| Bn| | \lambda n| .(3.17)

Proof. It is well known that the Dirichlet (or Neumann) 1-dimensional Laplacian
operator is positive, self-adjoint, and has a compact inverse. Besides, its eigenvalues
are given by

\gamma n =
\Bigl( n\pi 
L

\Bigr) 2
, n\in \BbbN ,(3.18)

and the corresponding unitary eigenfunctions are\left\{       
en(x) =

\sqrt{} 
2

L
sin(

\surd 
\gamma nx) (Dirichlet boundary condition),

e\ast n(x) =

\sqrt{} 
2

L
cos(

\surd 
\gamma nx) (Neumann boundary condition).

(3.19)

Let us consider the sequences fn = (0,0,0, - \rho  - 1
2 e\ast n,0) \in \scrH . Since i\BbbR \subset \rho (\BbbA ), there

exists zn = (\phi n,\Phi n,\psi n,\Psi n, \eta n)\in D(\BbbA ) such that

i\lambda nzn  - \BbbA zn = fn.

Componentwise, we have\left\{                       

i\lambda n\phi n  - \Phi n = 0,

i\lambda n\rho 1\Phi n  - \kappa 

\biggl[ 
\omega (\phi nx +\psi n) +

\int \infty 

0

g(s)\eta nx(s)ds

\biggr] 
x

= 0,

i\lambda n\psi n  - \Psi n = 0,

i\lambda n\rho 2\Psi n  - b\psi nxx + \kappa 

\biggl[ 
\omega (\phi nx +\psi n) +

\int \infty 

0

g(s)\eta nx(s)ds

\biggr] 
= - e\ast n,

i\lambda n\eta n + \eta ns  - 
\Bigl( 
\Phi n + \widetilde \Psi n

\Bigr) 
= 0.

(3.20)
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VISCOELASTICITY IN TIMOSHENKO--BOLTZMANN SYSTEMS 1169

Solving the differential equation (3.20)5 and using (3.20)1 and (3.20)3 in the result,
we have

\eta (s) = (1 - e - i\lambda ns)
\Bigl( 
\phi n + \widetilde \psi n

\Bigr) 
.(3.21)

Now, using (3.20)1, (3.20)3, and (3.21) in (3.20)2 and (3.20)4 we arrive at\Biggl\{ 
\rho 1\lambda 

2
n\phi n + \kappa [1 - \widehat g(\lambda n)] (\phi nx +\psi n)x = 0,

\rho 2\lambda 
2
n\psi n + b\psi nxx  - \kappa [1 - \widehat g(\lambda n)] (\phi nx +\psi n) = e\ast n.

(3.22)

We are looking for solutions of (3.22) of the form

\phi n =Anen, \psi n =Bne
\ast 
n

for some complex sequences An and Bn. Replacing these particular choices in (3.22),
we obtain the following complex linear system,\Biggl\{ \bigl[ 

pn(\lambda 
2
n) + \kappa \widehat g(\lambda n)\gamma n\bigr] An  - \kappa (1 - \widehat g(\lambda n))\surd \gamma nBn = 0,

 - \kappa (1 - \widehat g(\lambda n))\surd \gamma nAn +
\bigl[ 
qn(\lambda 

2
n) + \widehat g(\lambda n)\bigr] Bn = 1,

(3.23)

where the polynomials pn and qn are given by

pn(s) := \rho 1s - \kappa \gamma n, qn(s) = \rho 2s - b\gamma n  - \kappa .(3.24)

Let

Mn =

\biggl[ 
pn(\lambda 

2
n) + \kappa \widehat g(\lambda n)\gamma n  - \kappa (1 - \widehat g(\lambda n))\surd \gamma n

 - \kappa (1 - \widehat g(\lambda n))\surd \gamma n qn(\lambda 
2
n) + \kappa \widehat g(\lambda n)

\biggr] 
.

Note that

detMn = Pn(\lambda 
2
n) + \kappa \widehat g(\lambda n)Qn(\lambda 

2
n),

where

Pn(s) = pn(s)qn(s) - \kappa 2\gamma n, Qn(s) = \gamma nqn(\lambda 
2
n) + pn(\lambda 

2
n) + 2\kappa \gamma n.

In the following we choose a suitable sequence \lambda n such that detMn \not = 0. Actually, we
will pick a sequence \lambda n satisfying Pn(\lambda 

2
n) = 0 and \kappa \widehat g(\lambda n)Qn(\lambda 

2
n) \not = 0. Indeed, solving

the equation Pn(s) = 0, we get

s\pm n =
a1\gamma n + a2 \pm 

\sqrt{} 
(\chi 0\gamma n)2 + 2a1a2\gamma n + a22

2
> 0,

where a1 :=
\kappa 
\rho 1

+ b
\rho 2
, a2 :=

\kappa 
\rho 2
. At this moment, considering that \chi 0 \not = 0, we choose

\lambda n =

\Biggl\{ \sqrt{} 
s+n if \chi 0 < 0,\sqrt{} 
s - n if \chi 0 > 0,

and we observe that, up to a subsequence,

detMn = \kappa \widehat g(\lambda n)Qn(\lambda 
2
n) \not = 0.
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1170 E. GOMES TAVARES, M. A. JORGE SILVA, T. MA, H. OQUENDO

Returning to system (3.23) and solving it, we get

Bn =
pn(\lambda 

2
n) + \gamma n\kappa \widehat g(\lambda n)

\kappa \widehat g(\lambda n)Qn(\lambda 2n)
.(3.25)

Now, we give a properly asymptotic estimate for each term of Bn given by (3.25).
First, we note that

\lambda 2n \approx b

\rho 2
\gamma n.(3.26)

From (3.24) we have

1

\rho 1
p1(\lambda 

2
n) =

1

\rho 1
p1(s

\pm 
n ) =

 - \chi 0\gamma n \pm 
\sqrt{} 

(\chi 0\gamma n)2 + 2a1a2\gamma n + a22
2

+
a2
2
.

Then,

pn(\lambda 
2
n)\approx \rho 1| \chi 0| \gamma n.(3.27)

On the other hand, exploring that

pn(\lambda 
2
n)qn(\lambda 

2
n) - \kappa 2\gamma n = Pn(\lambda 

2
n) = 0

and using (3.27), we get qn(\lambda 
2
n) \approx \kappa 2/\rho 1| \chi 0| . Collecting the above asymptotic esti-

mates, we deduce

Qn(\lambda 
2
n) = \gamma nqn(\lambda 

2
n) + pn(\lambda 

2
n) + 2\kappa \gamma n \approx 

\biggl[ 
\kappa 2

\rho 1| \chi 0| 
+ \rho 1| \chi 0| + 2\kappa 

\biggr] 
\gamma n.(3.28)

Then, from (3.18), (3.25), (3.26), (3.27), and (3.28) and applying Lemma 3.5, we
arrive at

Bn \approx 

\Biggl[ 
\pi \rho 21| \chi 0| 2

\surd 
b

\kappa g0L (\kappa + \rho 1| \chi 0| )2
\surd 
\rho 2

\Biggr] 
n.(3.29)

Additionally, from (3.20)3, we have

\Psi n = i\lambda n\psi n = iBn\lambda n

\sqrt{} 
2

L
cos(

\surd 
\gamma nx)

and, then,

\| zn\| 2\scrH \geq \rho 2\| \Psi n\| 2 =
2

L
\rho 2| Bn| 2| \lambda n| 2

\int L

0

cos2(
\surd 
\gamma nx)dx= \rho 2| Bn| 2| \lambda n| 2.(3.30)

Hence, combining (3.26), (3.29), and (3.30), the desired conclusion follows.

3.3. Conclusion of the main results.

3.3.1. Proof of Theorem 3.1. In this case, the proof relies on the Borichev--
Tomilov theorem (cf. [7]).
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VISCOELASTICITY IN TIMOSHENKO--BOLTZMANN SYSTEMS 1171

Theorem 3.18. Let T (t) : X \rightarrow X be a bounded semigroup acting on a Hilbert
space X with infinitesimal generator A. If i\BbbR \subset \rho (A), then for every fixed \beta > 0, we
have

\| (i\lambda  - A) - 1\| \scrL (X) \leq c| \lambda | \beta as | \lambda | \rightarrow +\infty (3.31)

if and only if

\| T (t)A - 1\| \scrL (X) \leq 
c

t1/\beta 
as t\rightarrow +\infty .(3.32)

Let \lambda \in \BbbR with | \lambda | \geq 1 and f \in \scrH with \| f\| \scrH \leq 1. Since i\BbbR \subset \rho (\BbbA ), there exists a
unique z \in D(\BbbA ) satisfying (3.4). From Lemma 3.15 there exists c > 0 such that

\| z\| \scrH \leq c| \lambda | 2
\biggl( 

1

Ig(\lambda )
+ 1

\biggr) 2

\| f\| \scrH ,

which implies that

\| (i\lambda  - \BbbA ) - 1\| \scrL (\scrH )

| \lambda | 2
\leq c

\biggl( 
1

Ig(\lambda )
+ 1

\biggr) 2

.

From Lemma 3.5 and using the expression of Ig(\lambda ) defined in Lemma 3.8, we obtain

lim
| \lambda | \rightarrow \infty 

\| (i\lambda  - \BbbA ) - 1\| \scrL (\scrH )

| \lambda | 2
\leq c

\Biggl[ \biggl( \int \infty 

0

\~g(s)ds

\biggr)  - 1

+ 1

\Biggr] 2
<\infty .

Hence, applying Theorem 3.18 with \beta = 2, the desired conclusion follows.

3.3.2. Proof of Theorem 3.2. Suppose by contradiction that the rate
\surd 
t can

be improved, namely, there exists \nu \in (0,2) such that

\| S(t)\BbbA  - 1\| \scrL (\scrH ) \leq 
c

t1/(2 - \nu )
as t\rightarrow +\infty .

From Theorem 3.18, we arrive at

1

| \lambda | 2 - v
\| (i\lambda  - \BbbA ) - 1\| \scrL (\scrH ) \leq c as | \lambda | \rightarrow +\infty .(3.33)

However, from Lemma 3.17, there exist \lambda n,Bn \in \BbbR and fn \in \scrH such that

1

| \lambda n| 2 - v
\| (i\lambda n  - \BbbA ) - 1

fn\| \scrH \geq \surd 
\rho 2| Bn| | \lambda n| v - 1 \approx cn\nu .

Then,

lim
n\rightarrow +\infty 

1

| \lambda n| 2 - v
\| (i\lambda n  - \BbbA ) - 1

fn\| \scrH =+\infty ,

which contradicts (3.33). Hence, the decay rate
\surd 
t is optimal.

3.3.3. Proof of Theorem 3.3. To prove our last result, we appeal to the
Gearhart--Pr\"uss theorem.
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1172 E. GOMES TAVARES, M. A. JORGE SILVA, T. MA, H. OQUENDO

Theorem 3.19 ([24, 41]). Let T (t) :X\rightarrow X be a bounded semigroup acting on a
Hilbert space X with infinitesimal generator A. Then, T (t) is exponentially stable if
and only if i\BbbR \subset \rho (A) and

limsup
| \lambda | \rightarrow +\infty 

\| (i\lambda  - A) - 1\| \scrL (X) <+\infty .(3.34)

Proof of necessity. Suppose that S(t) is exponentially stable. We are going to
prove that

(i) g satisfies Assumption 3.1;
(ii) \chi 0 = 0.
Proof of (i): We borrow the ideas from [9] somehow. Indeed, let us consider

\eta 0 \in \scrM g and

z(t) = S(t)(0,0,0,0, \eta 0) = (\phi (t),\Phi (t),\psi (t),\Psi (t), \eta t).

Since S(t) is exponentially stable, we have

\| z(t)\| 2\scrH = \| S(t)(0,0,0,0, \eta 0)\| 2\scrH \leq Me - \gamma t\| \eta 0\| 2\scrM g
(3.35)

for some M \geq 1, \gamma > 0, and for every t > 0. Now, by formula (2.15) and using (3.35),
we deduce \int \infty 

t

g(s)\| \eta 0x(s - t)\| 2 ds\leq 2\| \eta t\| 2\scrM g
+ 2\| \phi x(t) +\psi (t)\| 2

\leq 2M

\biggl( 
1 +

1

\omega \kappa 

\biggr) 
e - \gamma t\| \eta 0\| 2\scrM g

.(3.36)

On the other hand, for each t > 0 we define

\scrN t :=

\biggl\{ 
s\in \BbbR +, g(t+ s) - 2M

\biggl( 
1 +

1

\omega \kappa 

\biggr) 
e - \gamma tg(s)> 0

\biggr\} 
.

We claim that | \scrN t| = 0, for every t > 0. Indeed, suppose by contradiction that there
exists t0 > 0 such that | \scrN t0 | > 0 (possibly infinite). Then,

0<

\int 
\scrN t0

\biggl[ 
g(t0 + s) - 2M

\biggl( 
1 +

1

\omega \kappa 

\biggr) 
e - \gamma t0g(s)

\biggr] 
ds <+\infty .(3.37)

But, from (3.36),

0\geq 
\int \infty 

t0

g(s)\| \eta 0x(s - t0)\| 2 ds - 2M

\biggl( 
1 +

1

\omega \kappa 

\biggr) 
e - \gamma t0

\int \infty 

0

g(s)\| \eta 0x(s)\| 2 ds

=

\int \infty 

0

\biggl[ 
g(t0 + s) - 2M

\biggl( 
1 +

1

\omega \kappa 

\biggr) 
e - \gamma t0g(s)

\biggr] 
\| \eta 0x(s)\| 2 ds.

Now we choose \eta 0(s) = \chi \scrN t0
(s)\phi \ast for some \phi \ast \in H1

0 (0,L) such that \| \phi \ast x\| = 1. There-
fore, \int 

\scrN t0

\biggl[ 
g(t0 + s) - 2M

\biggl( 
1 +

1

\omega \kappa 

\biggr) 
e - \gamma t0g(s)

\biggr] 
ds\leq 0,

which contradicts (3.37). Hence, g satisfies (3.1) with \delta = \gamma > 0.
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VISCOELASTICITY IN TIMOSHENKO--BOLTZMANN SYSTEMS 1173

Proof of (ii): Suppose by contradiction that \chi 0 \not = 0. From Lemma 3.17 there
exists sequences \lambda n \rightarrow +\infty and fn \in \scrH such that

lim
n\rightarrow +\infty 

\| (i\lambda n  - \BbbA ) - 1
fn\| \scrH =+\infty .

But, it contradicts (3.34). Then, we must have \chi 0 = 0.
Proof of sufficiency. Let \lambda \in \BbbR with | \lambda | \geq 1 and f \in \scrH with \| f\| \scrH \leq 1. Since i\BbbR \subset 

\rho (\BbbA ), there exists z \in D(\BbbA ) satisfying (3.4). If \chi 0 = 0 and g satisfies Assumption 3.1,
we can apply Lemma 3.15 to obtain

\| z\| \scrH \leq c

\biggl( 
1

Ig(\lambda )
+ 1

\biggr) 2

\| f\| \scrH ,

which implies that

\| (i\lambda  - \BbbA ) - 1\| \scrL (\scrH ) \leq c

\biggl( 
1

Ig(\lambda )
+ 1

\biggr) 2

.

Hence, from Lemma 3.5 and Theorem 3.19, the desired conclusion follows.

Appendix A. Modeling within the creation time scenario. In this ap-
pendix, we proceed with the mathematical modeling for the partially viscoelastic
beam models aforementioned in (1.3)--(1.4), whose foundation goes back to the legacy
of both Boltzmann [5, 6] and Volterra [45, 46] theories for ageing viscoelastic bodies
along with Timoshenko's postulations (see [43, 44]), for shearing stress in beam vibra-
tions. We also take into account some properties on viscoelastic materials inspired by
the contributions of Pr\"uss [40], Drozdov and Kolmanovskii [19], and Fabrizio, Giorgi,
and Pata [20].
Boltzmann--Volterra Constitutive Law. According to Boltzmann's (and later Volterra's)
theory for ageing viscoelastic bodies, the mathematical feature for integro-differential
models can be characterized with stress (\sigma ) dependence on time not only via the in-
stantaneous (present) strain (\epsilon ) but also on the presence of the past strain history of
the material.

Under the above scenario, let us start with the following stress-strain constitutive
law (cf. [20]),

\sigma (\cdot , t) =E

\biggl\{ 
\epsilon (\cdot , t) +

\int t

\alpha 

\BbbG \prime (t - s)\epsilon (\cdot , s)ds
\biggr\} 
:=E

\biggl\{ 
\epsilon (\cdot , t) - 

\int t

\alpha 

g(t - s)\epsilon (\cdot , s)ds
\biggr\} 
,

(A.1)

where E stands for the Young modulus of elasticity, \BbbG \prime represents the relaxation
measure given by the derivative of the Boltzmann tensor \BbbG , g :=  - \BbbG \prime > 0 is just
a proper notation for our coming purposes, and the parameter \alpha \leq 0 is known as
the creation time whose interpretation reflects on the vanishing of any past history
previously to time \alpha . In the modern theory in viscoelasticity, the limit cases \alpha = - \infty 
and \alpha = 0 are proposed by Boltzmann and Volterra (cf. [5, 6, 45, 46]), respectively,
and promote distinguished mathematical models.
Timoshenko Assumptions. According to the Timoshenko theory, not only the
bending moment but also the shear stress must be taken into account for beams
vibrations once, e.g., the rotation angles of a cross section of the beam movement are
triggered by both forces. Moreover, we highlight that shearing stresses play a key role
in the current development in viscoelasticity. In this way, we consider the classical
Timoshenko assumptions as follows (cf. [19, 40]).
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Let us consider a 3-dimensional beam [0,L]\times \Omega of length L> 0 and uniform cross
section \Omega \subset \BbbR 2 made of homogeneous isotropic viscoelastic material, which can be
mathematically written as

[0,L]\times \Omega := \{ (x, y, z) : x\in [0,L] and (y, z)\in \Omega \} .

The Timoshenko assumptions are given by
A1. (0,0) is the center of \Omega so that it holds the symmetry

\int 
\Omega 
zdydz =

\int 
\Omega 
ydydz = 0;

A2. very thin beams are in place so that diam\Omega <<L;
A3. normal stresses, say in the y-axis, are negligible so that the bending acts only

in the (x, z)-plane;
A4. the stress tensor \sigma = (\sigma ij)1\leq i,j\leq 3 has only two relevant stresses given by \sigma 11

and \sigma 13 so that the remaining ones are neglected (\sigma ij \approx 0);
A5. the following viscoelastic stress-strain relations (in view of (A.1)) come up,

\sigma 11(x, z, t) = E

\biggl\{ 
\epsilon 11(x, z, t) - 

\int t

\alpha 

g1(t - s)\epsilon 11(x, z, s)ds

\biggr\} 
,(A.2)

\sigma 13(x, z, t) = 2kG

\biggl\{ 
\epsilon 13(x, z, t) - 

\int t

\alpha 

g2(t - s)\epsilon 13(x, z, s)ds

\biggr\} 
,(A.3)

where G is the constant shear modulus, k is a shear correction coefficient,
g1, g2 are relaxation kernels, and \alpha \leq 0.

Elastic Strains. Under the above assumptions and looking for notations to the dis-
placements and the rotation angles, we write down

\bullet u= u(x, t): the longitudinal displacement of points lying on the x-axis;
\bullet \psi =\psi (x, t): the angle of rotation for the normal to the x-axis;
\bullet w1(x, z, t) = u(x, t) + z\psi (x, t): longitudinal displacement;
\bullet w2(x, z, t) = \phi (x, t): the vertical displacement;

and, consequently, the formulas for the strain tensors (cf. [19, p. 339]) are expressed
by

\epsilon 11(x, z, t) :=
\partial w1

\partial x
= ux(x, t) + z\psi x(x, t),(A.4)

\epsilon 13(x, z, t) :=
1

2

\biggl( 
\partial w1

\partial z
+
\partial w2

\partial x

\biggr) 
=

1

2
(\psi (x, t) + \phi x(x, t)) .(A.5)

Viscoelastic Bending and Shear Relations. Under the assumptions A1--A4 and re-
garding the standard identities for the forces in beam vibrations (cf. [40, p. 237]), we
consider the bending moment (M) and the shear force (S), respectively, by

M(x, t) =

\int 
\Omega 

z\sigma 11(x, z, t)dydz,(A.6)

S(x, t) =

\int 
\Omega 

\sigma 13(x, z, t)dydz,(A.7)

where, for the sake of simplicity, we have normalized the formulas by the area A =\int 
\Omega 
dydz and inertial moment I =

\int 
\Omega 
z2dydz of the cross section \Omega .

The consequence of the aforementioned formulas is twofold: the first one comes
from relations (A.2), (A.4), and (A.6), whose combination provides the classical vis-
coelastic law for the bending moment,
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M = E

=0\underbrace{}  \underbrace{}  \biggl( \int 
\Omega 

zdydz

\biggr) \biggl( 
ux  - 

\int t

\alpha 

g1(t - s)ux(s)ds

\biggr) 
+ E

\biggl( \int 
\Omega 

z2dydz

\biggr) 
\underbrace{}  \underbrace{}  

=I

\biggl( 
\psi x  - 

\int t

\alpha 

g1(t - s)\psi x(s)ds

\biggr) 
,

or simply

M = EI

\biggl( 
\psi x  - 

\int t

\alpha 

g1(t - s)\psi x(s)ds

\biggr) 
, \alpha \leq 0.(A.8)

On the other hand, from relations (A.3), (A.5), and (A.7), the following (not so
well studied) viscoelastic law for the shear force turns out:

S = kGA

\biggl( 
(\phi x +\psi ) - 

\int t

\alpha 

g2(t - s)(\phi x +\psi )(s)ds

\biggr) 
, \alpha \leq 0.(A.9)

The new viscoelastic formulation (A.9) for the creation time \alpha is the heart of
the present modeling, specially in the case \alpha =  - \infty , once it is precisely the matter
responsible for producing the new and unexplored object of study herein, namely,
problem (1.13). See also the further up system (A.14).

In conclusion, the viscoelastic constitutive laws (A.8)--(A.9) provide bending and
shear deformations in the context of Timoshenko beams for viscoelastic materials with
hereditary (history) properties. In addition, by means of (A.8)--(A.9) one can simply
see the case where viscoelastic effects are not taken into account, namely, g1, g2 \equiv 0.
Accordingly, we get the standard (well-known) elastic relations for bending moment
and shear force, respectively,

M = EI\psi x,(A.10)

S = kGA(\phi x +\psi ).(A.11)

Motion Equations for Timoshenko Beams. In order to reach distinct partially vis-
coelastic Timoshenko systems, still including problem (1.13), we are going to consider
the following system of partial differential equations for vibrations of thin beams (cf.
[43, 44]): \biggl\{ 

\rho A\phi tt  - Sx = 0,
\rho I\psi tt  - Mx + S = 0

(A.12)

for (x, t) \in (0,L)\times \BbbR +, \BbbR + = (0,+\infty ), where \rho represents the mass density per unit
area and the remaining notations are previously introduced. Hence, keeping in mind
the viscoelastic-elastic constitutive laws (A.8)--(A.11), we can derive four different
types of partially viscoelastic systems, two of them being due to Timoshenko--Volterra
(say \alpha = 0) and the other two possibilities related to Timoshenko--Boltzmann (say
\alpha = - \infty ). As usual, we denote the coefficients hereafter as

\rho 1 := \rho A, \rho 2 := \rho I, \kappa := kGA, b :=EI.

Model with viscoelasticity on the bending moment. Using (A.8) and (A.11), system
(A.12) becomes the following new viscoelastic beam under the creation time perspec-
tive, say for any \alpha \leq 0, and memory kernel denoted as g1 := g:\left\{   

\rho 1\phi tt  - \kappa (\phi x +\psi )x = 0,

\rho 2\psi tt  - b\psi xx  - b

\int t

\alpha 

g(t - s)\psi xx(s)ds+ \kappa (\phi x +\psi ) = 0.
(A.13)
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Thus, we specify the distinct cases:
\bullet in the case \alpha = 0, (A.13) is precisely the well-known problem (1.6), herein

called the viscoelastic Timoshenko-Volterra problem with null history;
\bullet in the case \alpha =  - \infty , (A.13) becomes the well-studied problem (1.8), now

called the viscoelastic Timoshenko--Boltzmann problem in the history context.
Model with viscoelasticity on the shear force. Now, by taking (A.9) and (A.10), sys-
tem (A.12) turns into the following new viscoelastic beam under the creation time
perspective (\alpha \leq 0) and memory kernel g2 := g:\left\{       

\rho 1\phi tt  - \kappa (\phi x +\psi )x  - \kappa 

\int t

\alpha 

g(t - s)(\phi x +\psi )x(s)ds= 0,

\rho 2\psi tt  - b\psi xx + \kappa (\phi x +\psi ) - \kappa 

\int t

\alpha 

g(t - s)(\phi x +\psi )(s)ds= 0.

(A.14)

Hence, we highlight the following distinguished systems:
\bullet in the case \alpha = 0, (A.14) represents the recent problem (1.11), herein still

called the viscoelastic Timoshenko-Volterra problem with null history;
\bullet in the case \alpha =  - \infty , (A.14) furnishes the unexplored scenario as in (1.13),

still called the viscoelastic Timoshenko-Boltzmann problem with past history.

Remark A.1. Supplementary to the partially viscoelastic systems (A.13) and
(A.14), one can obviously consider a full viscoelastic system with viscoelastic coupling
on the bending moment and shear stress simultaneously, that is, by replacing the
viscoelastic constitutive laws (A.8)--(A.9) in (A.12). This procedure reveals a fully
viscoelastic damped problem which is out of scope of this work. A version with past
history (one reads the \alpha =  - \infty case), and standard nonlinear source and external
forces, is addressed in [26] where the asymptotic behavior of solutions is driven by the
couple of exponential memory kernels.
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