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Abstract
This paper contains new results about the well-posedness and the asymptotic dynam-
ics of solutions for a general abstract coupled system that arises in connection with
thermoelastic Balakrishnan–Taylor beam models with fractional operators.
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1 Introduction

1.1 TheModel

Let � be a bounded domain in R
n with a sufficiently smooth boundary � = ∂�. In

� × R
+ we consider the general thermoelastic beam/plate equation with fractional

operators associated with rotational inertia and coupling terms

{[
I + (−�)β

]
utt + �2u − M(u, ut )�u + f (u) − (−�)αθ = h,

κ θt − �θ + (−�)αut = 0,
(1.1)
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where (α, β, κ) ∈ [ 12 , 1] × [0, 2α − 1] × [0, 1], M is a nonlocal term given by

M(u, ut ) := ζ0 + ζ1

∫
�

|∇u|2dx + ζ2

∣∣∣∣
∫

�

∇u · ∇utdx

∣∣∣∣
q−2 ∫

�

∇u · ∇utdx,

with ζ0 ∈ R, ζ1, ζ2 > 0, q ≥ 2, f is a nonlinear function that represents an addi-
tional source term, and h is an external force in L2(�). The model (1.1) is a coupled
system of semilinear beam/plate and linear heat equations, the parameter κ > 0 is
related to heat/thermal capacity, and M(u, ut ) is the nonlocal term coming from the
Balakrishnan–Taylor works [2, 3]. Here, we study (1.1) with hinged boundary con-
dition on the displacement u and Dirichlet boundary condition on the temperature θ

given, respectively, by

u = �u = 0 and θ = 0 on � × R
+. (1.2)

The initial conditions are given by

u(x, 0) = u0(x), ut (x, 0) = u1(x), θ(x, 0) = θ0(x), x ∈ �. (1.3)

As we are going to clarify below and summarize in Table 1, the IBVP (1.1)–(1.3)
corresponds to a generalized mathematical model that encompasses various models
from the existing literature. Indeed, for particular choices of the parameters α, β,

and κ, we can find models with a robust physical foundation. Such particular models
motivated us to consider the thermal version (1.1)with fractional terms in a generalized
framework. Additionally, the physical interpretation of these fractional operators on
rotational inertial and coupling terms may not have a direct physical counterpart, but
it offers a way to capture the complex mathematical dynamics of the system, as given
in Sects. 2 and 3.

Let us first contextualize some special cases in elasticity and thermoelasticity related
to beam models and then highlight the novelty of the present paper.

1.2 Case � = 0: Elastic Beam/Plate Models

In the limit case κ = 0, the Eq. (1.1) can be decoupled. Indeed, if κ = 0, from (1.1)2
we have �θ = (−�)αut which implies that (−�)αθ = −(−�)2α−1ut . Then, sub-
stituting in Eq. (1.1)1 the term (−�)αθ obtained in Eq. (1.1)2 we obtain a beam/plate
model with fractional structural damping (−�)2α−1ut . The model is then described
by

[
I + (−�)β

]
utt + �2u − M(u, ut )�u + f (u) + (−�)2α−1ut = h. (1.4)

Equation (1.4) is a generalized n-dimensional version of a model for flight structures
with viscous and nonlinear nonlocal damping proposed by Balakrishnan–Taylor [2,
3]. Indeed, in the one-dimensional case, it can be seen as follows when β = 0, α = 1,
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f (u) ≡ 0 and h ≡ 0:

utt + E I

�
uxxxx − c

�
uxxt

−
[
H

�
+ E A

2L�

∫ L

0
|ux |2dx + τ

�

(∫ L

0
uxuxt dx

)2(N+η)+1 ]
uxx = 0, (1.5)

where u = u(x, t) represents the transversal deflection of an extensible beam with
length 2L > 0 in the rest position, � > 0 is themass density, E is the Young’s modulus
of elasticity, I is the cross-sectional moment of inertia, H is the axial force (either
traction or compression), A is the cross-sectional area, c > 0 is the coefficient of
viscous damping, τ > 0 is the Balakrishnan–Taylor damping coefficient, 0 ≤ η < 1

2
and N ∈ N. We refer to [3, Sect. 4] for the precise modeling of (1.5). See also Bass
and Zes [6, Eqs. (14a)–(14c)]. The Balakrishnan–Taylor model (1.5) has been studied
well in recent years in its well-posedness and dynamics. For researches on the related
Balakrishnan–Taylor model (1.5), one can refer to literatures [14, 18, 22, 37, 38]
and references therein. It is important to note that, the Balakrishnan–Taylor damping

− τ
�

(∫ L
0 uxuxt dx

)2(N+η)+1
uxx alone (c ≡ 0) is not enough to produce the desired

results on stability nor long-time behavior (see [37, AppendixA therein]).When τ ≡ 0
the model is connected to the extensible beam equation of Woinowsky–Krieger [35],
which was extensively studied by many authors. See for instance [4, 5, 8, 9, 11, 15,
17, 25–27, 30, 36] and references therein.

When the exponent β = 1 in (1.4), the rotational inertial momenta of the elements
of the beam is taken into account. This case is associated with von Karmam models
that represents a purely hyperbolic dynamics with finite speed of propagation. This
type of models were well treated in its various aspects by Chueshov and Lasiecka in
[12, 13]. In [12, Eq. (7.11)] they proposed the following extensible beammodel within
the context of rotational inertia term

(1 − ω�)utt + �2u − ω�ut +
(
Q −

∫
�

|∇u|2dx
)

�u = p(u, ut ), in � × R
+,

(1.6)

where the coefficientω ≥ 0 represents rotational forces, the parameter Q describes in-
plane forces applied to the plate and the function p represents transverse loads which
may depend on the displacement u and velocity ut . They studied the well-posedness
and longtime dynamics of solutions. Howell–Toundykov–Webster [24] studied Eq.
(1.6) with clamped-free boundary condition in the context of the piston-theory. They
addressed both the case with rotational inertia (ω > 0) and the case without one
(ω ≡ 0). The well-posedness and long-time dynamics of solutions were studied.
Equation (1.6) with rotational effect also has been well considered recently in the
context of nonlocal damping [16, 31, 33] and references therein.
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1.3 Case � > 0: Thermoelastic Beam/Plate Models

In what follows, we also mention some important works on thermoelastic beam/plate
equations that inspired the generalized model (1.1)–(1.3). First, we refer the work
by Chueshov–Lasiecka [10] where the following thermoelastic von Karman plate
subjected to an external and internal forcing is considered

{
(1 − γ�)utt + �2u + β�θ = B(u),

κθt − η�θ − ν�ut = 0,
(1.7)

with B(u) = [u, v + F0] + p(x), where the Airy’s stress function v = v(u) is a
solution to the problem

�2v + [u, u] = 0, v = ∂v

∂ν
= 0 on �,

and the von Karman bracket [u, v] is given by

[u, v] = ∂2x1u · ∂2x2v + ∂2x2u · ∂2x1v − 2 · ∂2x1x2u · ∂2x1x2v,

where � ⊂ R
2 is a bounded domain with the boundary ∂� = �, the function F0

describes in-plane forces acting on the plate and the function p represents external
transverse forces applied to the plate, the parameters β and ν are positive, and γ and κ

are non-negative. They proved that the ultimate (asymptotic) behavior of the problem
(1.7) is described by finite dimensional global attractor and that the obtained estimate
for the dimension and the size of the attractor are independent of the rotational inertia
parameter γ and heat/thermal capacity κ . Smoothness and upper-semicontinuity with
respect to parameters γ and κ are established.

The thermoelastic version of an extensible beam associated with problem (1.7) was
treatedbyGiorgi-Naso [20],where they combined thepioneering ideas ofWoinowsky–
Krieger [35] with the theory of linear thermoelasticity [7]. Then, they deduced a
nonlinear mathematical model for the thermoelastic extensible beam of unitary natural
length with hinged ends assuming the Fourier heat conduction law

⎧⎨
⎩ (1 − ∂xx )∂t t u + ∂xxxxu + ∂xxθ −

[
m +

∫ 1

0
|∂xu|2dx

]
∂xxu = f ,

∂tθ − ∂xxθ − ∂xxt u = g,
(1.8)

where m ∈ R and f , g are external forces. This model was then studied by Giorgi et
al. in [21]. The authors proved that when the external sources are time-independent,
the related semigroup of solutions possess a global attractor of optimal regularity for
all parameters m ∈ R.

Another motivating work has been considered by Fernándes Sare et al. [19], where
the stability of the abstract thermoelastic system with fractional powers associated
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with inertial and couplings terms is approached

{
(ρ + μAγ )utt + σ Au − mAβθ = 0,
cθt + k Aαθ + mAβut = 0,

(1.9)

where ρ, σ, c, k, μ > 0, m �= 0, (β, α, γ ) ∈ [0, 1] × [0, 1] × (0, 1] and A a self-
adjoint, positive definite operator on theHilbert space. The authors prove that when the
parameters β, α, γ vary in the region S = {(β, α, γ ) : 1

2 ≤ β + α
2 ,

γ
2 ≤ β − α

2 ≤ 1
2 },

the dynamic system associated with the abstract problem (1.9) is exponentially stable,
and the region of non-exponential stability for the Fourier model (1.9) is given by
the complement of the set S. The polynomial stability in regions of non-exponential
stability is also characterized.More recently,Kuang-Liu-Fernándes Sare [28] extended
the results of [19], since they decompose the region E = [0, α+1

2 ] × [0, 1] × [0, 1]
into three parts where the corresponding semigroups are analytic, ofGevrey classes of
specific order, and non-smoothing, respectively. Note that the particular case β = α =
γ = 1

2 is the same context as (1.7) with A1/2u = −�u, D(A1/2) = H2(�)∩ H1
0 (�),

H = L2(�) and B(u) ≡ 0.
Summarizing, one can see from [19, 28] that the fractional powers present in the

abstract system (1.9) are capable of showing the complexity and different asymptotic
behaviors for the solutions when varying the parameters α, β, and κ; while in [10,
20, 21] it is analyzed the nonlinear dynamics of concrete thermoelastic systems such
as (1.7) and (1.8) where the parameters α, β, κ are taken inside the region of uniform
stability when looking at the linear problem. It is worth pointing out that problem (1.8)
can be seen as a particular case of (1.1) when neglecting the Balakrishnan–Taylor
terms given in M(u, ut ). Motivated by these scenarios, our main goal is to explore
the dynamics of (1.1), which captures the region of stability given by the parameters
α, β, and κ , as well as it keeps the non-locality of the whole Balakrishnan–Taylor
term M(u, ut ). Below we present all scenarios approached herein and the novelty of
the paper.

1.4 Main Results and Plan of the Paper

The main purpose in the present paper is to study the well-posedness and asymptotic
behavior of solutions for (1.1)–(1.3), with (α, β, κ) ∈ ϒ where

ϒ :=
[
1

2
, 1

]
× [0, 2α − 1] × [0, 1] .

More specifically, we prove the well-posedness of problem (1.1)–(1.3) when
(α, β, κ) ∈ ϒ , and ifα > 1

2 , we prove the dynamical system Sα,β,κ generated by (1.1)–
(1.3) has a compact finite-dimensional global attractor {Aα,β,κ }(α,β,κ)∈( 12 ,1]×[0,2α−1]×
[0, 1]. Furthermore, we prove the upper-semicontinuity of the family of attractors
{Aα,β,κ } with respect to parameters α, β and γ . To our best knowledge, such concepts
are not considered for (1.1)–(1.3) in its whole form addressing the Balakrishnan–
Taylor framework and the fractional operators associated with rotational inertia and
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Table 1 Types of models in relation to parameters (α, β, κ) ∈ ϒ

(α = 1
2 , β = 0)

(
1
2 < α < 1, 0 ≤ β ≤ 2α − 1 < 1

)
(α = 1, β = 1)

κ = 0 Balakrishnan–
Taylor extensible
beam with weak
damping

Balakrishnan–Taylor extensi-
ble beam with fractional rota-
tional forces (β > 0) or with-
out rotational forces (β = 0)
and fractional damping

Balakrishnan–
Taylor extensible
beam with rota-
tional forces and
strong damping

κ > 0 Balakrishnan–
Taylor beam
equations with
thermal effects

Balakrishnan–Taylor extensi-
ble beam with thermal effects,
fractional rotational forces
(β > 0) or without rotational
forces (β = 0)

Balakrishnan–
Taylor extensible
beam with ther-
mal effects and
rotational forces

coupling terms. Such generalized approach allows us to encompass several models
with respect to the powers α, β, and κ. This is clarified in Table 1 as follows.

The remaining paper is organized as follows. In Sect. 2 we fix some notations,
present our assumptions, and prove the well-posedness of problem (1.1)–(1.3). In
Sect. 3, we show the existence of absorbing set in proper Hilbert spaces Hβ,κ . In
particular, if h ≡ 0 and f ∈ C1(R) is such that f (s)s ≥ −ωs2 with ω > 0
sufficiently small, the energy associated with the system is exponentially stable for
(α, β, κ) ∈ ϒ . In addition, taking α > 1

2 , we prove that the nonlinear corresponding
semigroup Sα,β,κ is quasi-stable and so, in view of the abstract results established
in [12, 13], we prove that the dynamical system has a compact global attractor
{Aα,β,κ }(α,β,κ)∈( 12 ,1]×[0,2α−1]×[0,1]. Finally, we prove that the family of global attrac-

tors {Aα,β,κ } is upper-semicontinuous with respect to parameters α, β an κ .

2 Well-Posedness

2.1 Notations and Functional Setting

In what follows, we consider the following function spaces which shall be used
throughout this paper. Let W0 = L2(�), W1 = H1

0 (�) and W2 = H2(�) ∩ H1
0 (�).

In the space W0 we define the biharmonic operator A = �2 defined by

(Au, v) = (�u,�v), u, v ∈ W2,

where (·, ·) stands for the inner product of W0, ‖ · ‖ stands for the norm of W0 and
‖ · ‖p stands for the norm of L p(�). Then it follows that the domain of A, D(A) =
{u ∈ H4(�); u = �u = 0 on �} and there exists a complete orthonormal family of
W0, {w j } j∈N, made of eigenvectors of A,

Aw j = λ jw j , j = 1, . . . , and 0 < λ1 ≤ λ2 ≤ · · · , λ j → +∞ as j → +∞.
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We can also define the power As of A, for s ∈ R. The spaces Ws = D(As/4), s ∈ R,
are Hilbert spaces with the scalar products and the norms

(u, v)Ws = (As/4u, As/4v), ‖u‖D(As ) = ‖Asu‖.

In particular, we have W0 = D(A0) = L2(�), W1 = D(A1/4) = H1
0 (�), W2 =

D(A1/2) = H2(�) ∩ H1
0 (�) and D(As1) ⊂ D(As2), ∀s1, s2 ∈ R, s1 ≥ s2, where

each space is dense in the following one and the injection is compact. We define
Mβ ≡ I + Aβ/2. We have thatMβ also is a positive self-adjoint operator in W0 and

D(M1/2
β ) =

{
Wβ, for β > 0,
W0, for β = 0,

with norm

‖v‖2
D(M1/2

β )
= ‖v‖2 + ‖Aβ/4v‖2.

For every (β, κ) ∈ [0, 1] × [0, 1] we introduce the Hilbert space

Hβ,κ =
{

W2 × D(M1/2
β ) × W0, for κ > 0,

W2 × D(M1/2
β ), for κ = 0,

(2.10)

with norm

||U ||2Hβ,κ
= ‖A1/2u‖2 + ‖ut‖2

D(M1/2
β )

+ κ‖θ‖2, U = (u, ut , θ).

The energy functional for the model (1.1)–(1.3) is given by

Eβ,κ (U ) = 1

2

[
||U (t)||2Hβ,κ

+ ζ0‖A1/4u(t)‖2 + ζ1

2
‖A1/4u(t)‖4

]

+ ( f̂ (u), 1
)− (h, u) , (2.11)

where f̂ (s) = ∫ s0 f (τ )dτ .
Using that (A1/4u, A1/4ut ) = (A1/2u, ut ) and inserted in the framework introduced

above, the initial-boundary value problem (1.1)–(1.3) can be put in the form

⎧⎨
⎩
Mβutt + Au − Aα/2θ = F(u, ut , A1/4u, A1/2u),

κθt + A1/2θ + Aα/2ut = 0.
u(0) = u0, ut (0) = u1 and θ(0) = θ0.

(2.12)

where

F(u, ut , A
1/4u, A1/2u) = h − �(‖A1/4u‖2)A1/2u − �(A1/2u, ut )A

1/2u − f (u),

123



   17 Page 8 of 37 Applied Mathematics & Optimization            (2024) 89:17 

with � and � given by

�(s) = ζ0 + ζ1s and �(s) = ζ2|s|q−2s.

In the limit case when κ = 0, the problem (2.12) is written as follows

{Mβutt + Au + Aα−1/2ut = F(u, ut , A1/4u, A1/2u)

u(0) = u0, ut (0) = u1.
(2.13)

2.2 Assumptions

Let λ1 be the first eigenvalue of A, then

‖As2u‖ ≤ λ
s2−s1
1 ‖As1u‖, for all s1 ≥ s2 ∈ R and u ∈ D(As1). (2.14)

Now we will establish assumptions on the functions f , M and h necessary to analyze
the well-posedness of the problem (2.12). Let K f ′ > 0, K f ≥ 0 and ω ∈ [0, λ1). We
assume that f is C1-function on R with with polynomial growth such that

⎧⎨
⎩

| f ′(s)| ≤ K f ′(1 + |s|ρ), ∀ s ∈ R, (2.15)

−K f − ω

4
s2 ≤ f̂ (s) ≤ f (s)s + ω

4
s2, ∀ s ∈ R, (2.16)

where

ρ > 0 if 1 ≤ n ≤ 4 or 0 < ρ ≤ 4 + 2β

n − 4
if n ≥ 5.

The external force h ∈ L2(�).

2.3 Global Solution

Setting

U =
{

(u, ut , θ)� for κ > 0,
(u, ut )� for κ = 0.

(2.17)

We can rewrite the problem (2.12) as the first-order equation

d

dt
U (t) = Lα,β,κU (t) + Fκ(U (t)), U (0) = U0 ∈ Hβ,κ (2.18)
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where Lα,β,κ : D(Lα,β,κ ) ⊂ Hβ,κ → Hβ,κ is a linear operator defined by

Lα,β,κ︸ ︷︷ ︸
κ>0

=
⎡
⎣ 0 I 0

−M−1
β A 0 M−1

β Aα/2

0 − 1
κ
Aα/2 − 1

κ
A1/2

⎤
⎦

or

Lα,β,0︸ ︷︷ ︸
κ=0

=
[

0 I
−M−1

β A −M−1
β Aα−1/2

]

with domain

D(Lα,β,κ )︸ ︷︷ ︸
κ>0

=
⎧⎨
⎩
⎡
⎣u
ut
θ

⎤
⎦ ∈ Hβ,κ

∣∣∣∣∣∣
ut ∈ W2, θ ∈ W1

M−1
β

[−Au + Aα/2θ
] ∈ D(M1/2

β )

− 1
κ
Aα/2ut − 1

κ
A1/2θ ∈ W0

⎫⎬
⎭ or

D(Lα,β,0)︸ ︷︷ ︸
κ=0

=
{[

u
ut

]
∈ Hβ,0

∣∣∣∣∣
ut ∈ W2, θ ∈ W1

M−1
β

[−Au − Aα/2−1ut
] ∈ D(M1/2

β )

}

and Fκ : Hβ,κ → Hβ,κ is a nonlinear operator given by

FκU =
{

(0, F(U ), 0)⊥ if κ > 0
(0, F(U ))⊥ if κ = 0

, (2.19)

where

F(U ) = M−1
β

[
h − �(‖A1/4u‖2)A1/2u − �(A1/2u, ut )A

1/2u − f (u)
]
. (2.20)

Remark 2.1 We recall that a function U : [0, t] → Hβ,κ is a classical solution of
(2.18) on [0, T ) if U is continuous on [0, T ), continuously differentiable on (0, T ),
U (t) ∈ D(Lα,β,κ ) for t ∈ (0, T ) and (2.18) is satisfied on [0, T ). A function U is a
mild solution of (2.18) on [0, T ] if U ∈ C([0, T ];Hβ,κ ) and satisfies

U (t) = eLα,β,κ tU0 +
∫ t

0
eLα,β,κ (t−τ)Fκ(U (τ ))dτ, (2.21)

where eLα,β,κ t is the linear semigroup onHβ,κ whose infinitesimal operator is Lα,β,κ .

The well-posedness of the problem (2.12) is stated as follows.

Theorem 2.1 (Well-posedness)We assume Assumptions 2.1 with q ≥ 2 and

(α, β, κ) ∈ ϒ =
[
1

2
, 1

]
× [0, 2α − 1] × [0, 1].
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Then for every T > 0,

(i) Case κ > 0: for all initial data U0 = (u0, u1, θ0)⊥ ∈ Hβ,κ problem (2.18)
possesses a unique mild solution U (t) ≡ (u(t), ut (t), θ(t))⊥ ∈ C([0, T ],Hβ,κ )

which depends continuously on the initial data. And if U0 ∈ D(Lα,β,κ ) then the
corresponding mild solution U (t) is a classical solution.

(ii) Case κ = 0: for every U0 = (u0, u1)⊥ ∈ Hβ,0 problem (2.18) possesses a
unique mild solution U (t) ≡ (u(t), ut (t))⊥ ∈ C([0, T ],Hβ,0) which depends
continuously on the initial data. And if U0 ∈ D(Lα,β,0) then the corresponding
mild solution U (t) is a classical solution.

Proof (i) The proof is based on four steps stated bellow. In Step I we will show that the
operatorLα,β,κ is a infinitesimal generator of aC0 - semigroup of contractions onHβ,κ .
This is proved by showing thatLα,β,κ is dissipative andmaximal, and application of the
Lumer-Phillips Theorem ([32], Theorem 1.4.3). In Step II we show that the operator
F : Hβ,κ → Hβ,κ is locally lipschtz. Steps I and II guarantee the existence of local
solution ([32, Theorem 6.1.4]). The existence of global solution is guaranteed in Step
III.

2.3.1 Step I

It is easy to see that

〈Lα,β,κU (t),U (t)
〉
Hβ,κ

=
〈⎡
⎣ ut
M−1

β

(−Au + Aα/2θ
)

− 1
κ
Aα/2ut − 1

κ
A1/2θ

⎤
⎦ ,

⎡
⎣ u
ut
θ

⎤
⎦
〉

= −‖A1/4θ(t)‖2 ≤ 0,

(2.22)

for allU (t) ∈ D(Lα,β,κ )which shows that Lα,β,κ is dissipative. To prove maximality
of Lα,β,κ we need to show that I − Lα,β,κ : D(Lα,β,κ ) → Hβ,κ is onto. Indeed, let
U∗ = (u∗, w∗, θ∗) ∈ Hβ,κ and consider the equation

(I − Lα,β,κ )U = U∗

which can be written as follows

⎧⎨
⎩
u − ut = u∗ ∈ W2,

Mβut + Au − Aα/2θ = Mβw∗ ∈ D(M1/2
β ),

Aα/2ut + κθ + A1/2θ = κθ∗ ∈ W0.

Substituting u = ut + u∗ in the second equations of (2.23), we obtain

{Mβut + Aut − Aα/2θ = Mβw∗ − Au∗ := u∗∗ ∈ W ′
2,

Aα/2ut + κθ + A1/2θ = κθ∗ := w∗∗ ∈ W ′
1.

(2.23)
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To solve the elliptic problem (2.23) we apply LaxMillgram Theorem with the bilinear
form a : [W2 × W1] × [W2 × W1] → R given by

a((ut , θ), (z, w)) = (M1/2
β ut ,M1/2

β z) + (A1/2ut , A
1/2z) − (Aα/4θ, Aα/4z)

+ (Aα/4ut , A
α/4w) + κ(θ,w) + (A1/4θ, A1/4w).

Using that W2 ↪→ W1 ↪→ Wα ↪→ Wβ ↪→ W0 and inequality (2.14), it is easy to see
that

|a((ut , θ), (z, w))| ≤ ‖ut‖D(M1/2
β )

‖ut‖D(M1/2
β )

+‖A1/2ut‖‖A1/2z‖+‖Aα/4θ‖‖Aαz‖
+ ‖Aα/4ut‖‖Aαw‖ + κ‖θ‖‖w‖ + ‖A1/4θ‖‖A1/4w‖

≤ Cλ1‖(u, θ)‖W2×W1‖(z, w)‖W2×W1 .

and it is straightforward that

a((ut , θ), (u, θ)) = ‖ut‖2 + ‖Aβ/4ut‖2 + ‖A1/2ut‖2 + κ‖θ‖2
+‖A1/4θ‖2 ≥ ‖(ut , θ)‖2W2×W1

.

This shows that a is continuous and coercive. Thus, using Lax Millgram Theorem
withψ := (u∗∗, θ∗∗) ∈ [W2 × W1]′ there exists a unique (u, θ) ∈ W2 ×W1 such that

a((ut , θ), (z, w)) = (ψ, (z, w)), ∀ (z, w) ∈ W2 × W1.

This implies that ut ∈ W2 and θ ∈ W1 satisfy (2.23). Hence, the element U =
(u, ut , θ), where u = u∗ + ut satisfies the system (2.23). Thus, obviously U ∈
D(Lα,β,κ ). This shows that Lα,β,κ is a maximal operator and due to Lummer-Phillips
Theorem Lα,β,κ is a infinitesimal generator of a C0 - semigroup of contractions on
Hβ,κ .

2.3.2 Step II

The operator Fκ : Hβ,κ → Hβ,κ given in (2.19) is locally Lipschitz. This follows
from local Lipschitz property of (2.20). Indeed, let us first take R > 0 and U =
(u, ut , θ), V = (v, vt , ζ ) such that ||U ||Hβ,κ

, ||V ||Hβ,κ
≤ R. Denoting w = u − v

and using that

�(s) = ζ0 + ζ1s and �(s) = ζ2|s|q−2s,

from definition (2.20), we have

F(U ) − F(V ) = − M−1
β

[
S(�,�)A

1/2w + D(�,�)A
1/2(u + v) + D f

]
,
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where

S(�,�) = 1

2

[
�(‖A1/4u‖2) + �(‖A1/4u‖2)

]
+ 1

2

[
�(A1/2u, ut ) + �(A1/2v, vt )

]
,

D(�,�)= 1

2

[
�(‖A1/4u‖2) − �(‖A1/4v‖2)

]
+ 1

2

[
�(A1/2u, ut ) − �(A1/2v, vt )

]
,

D f = f (u) − f (v).

Using thatM−1
β :

[
D(M1/2

β )
]−1 → D(M1/2

β ) is a isometrical bijection with respect

to the norm ‖u‖2D(M1/2
β )

= ‖u‖2 + ‖Aβ/4u‖2 we have

‖M−1
β w‖D(M1/2

β )
= ‖w‖[D(M1/2

β )
]−1 , ∀w ∈

[
D(M1/2

β )
]−1

.

Thus, from definition of Hβ,κ− norm and using W0 ↪→
[
D(M1/2

β )
]−1 = W−β , we

have

||Fκ (U ) − Fκ (V )||Hβ,κ
= ||F(U ) − F(V )||D(M1/2

β )

=
∥∥∥M−1

β

[
S(�.�)A

1/2w + D(�,�)A
1/2(u + v) + D f

]∥∥∥D(M1/2
β )

= ∥∥S(�,�)A
1/2w + D(�,�)A

1/2(u + v) + D f
∥∥D(M1/2

β )−1 (2.24)

≤ λ
− β

4
1

∣∣S(�,�)

∣∣ ‖A1/2w‖ + λ
− β

4
1

∣∣D(�,�)

∣∣ ‖A1/2(u + v)‖ + ‖D f ‖W−β .

Now let’s estimate the terms on the right side of (2.24). From immersionW2 ↪→ W1,
we have

∣∣S(�,�)

∣∣ ‖A1/2w‖ ≤ ζ0‖A1/2w‖ + ζ1

2

[
‖A1/4u‖2 + ‖A1/4v‖2

]
‖A1/2w‖

+ ζ2

2

[ (
‖A1/2u‖‖ut‖

)q−1 +
(

‖A1/2v‖‖vt‖
)q−1

]
‖A1/2w‖

≤
[
ζ0 + ζ1R

2 + ζ2R
2(q−1)

]
||U − V ||Hβ,κ

. (2.25)

Using that � ∈ C1(R) with � ′(s) = ζ2(q − 1)|s|q−2 and

(A1/2u, ut ) − (A1/2v, vt ) = (A1/2w, ut ) + (A1/2v,wt ),

from the Mean Value Theorem, one can easily prove that
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∣∣∣�(A1/2u, ut ) − �(A1/2v, vt )

∣∣∣
≤ ζ22

2(q−2)(q − 1)
[
|(A1/2u, ut )|q−2 + |(A1/2v, vt )|q−2

]
|

× (A1/2u, ut ) − (A1/2v, vt )| ≤ ζ22
2q(q − 1)R2q−3||U − V ||Hβ,κ

.

On the other hand, using that a2 − b2 = (a − b)(a + b) and W2 ↪→ W1, we have

∣∣∣�(‖A1/4u‖2) − �(‖A1/4v‖2)
∣∣∣ ≤ ζ1

2

[
‖A1/4u‖ + ‖A1/4v‖

]
‖A1/4w‖

≤ ζ1

2λ1/21

[
‖A1/2u‖ + ‖A1/2v‖

]
‖A1/2w‖

≤ ζ1R

λ
1/2
1

||U − V ||Hβ,κ
.

From the last two inequalities and the definition of D(�,�), we have

∣∣D(�,�)

∣∣ ‖A1/2(u + v)‖ ≤
[

ζ22
2q(q − 1)R2(q−1) + ζ1R2

λ
1/2
1

]
||U − V ||Hβ,κ

.

(2.26)

When n ≤ 4, using (2.15), Mean Value Theorem, Hölder’s inequality with ρ
ρ+1 +

1
ρ+1 = 1 and embedding W2 ↪→ L2(ρ+1)(�), we get

∥∥D f
∥∥
W−β

≤ K f ′
[∫

�

[1 + (|u| + |v|)ρ] 2(ρ+1)
ρ dx

] ρ
2(ρ+1)

[∫
�

|w|2(ρ+1)dx

] 1
2(ρ+1)

≤ 2ρ+1K f ′
[ |�| + ‖u‖2(ρ+1) + ‖v‖2(ρ+1)

]ρ‖w‖2(ρ+1)

≤ 2ρ+1K f ′C|�|
[
|�| + 2C|�|

(
‖A1/2u‖ + ‖A1/2v‖

)]ρ‖A1/2w‖
≤ 2ρ+1K f ′C|�|

[|�| + 2C|�|R
]ρ ||U − V ||Hβ,κ

.

When n ≥ 5, using (2.15), Mean Value Theorem, Hölder’s inequality with 4+2β
n+2β +

n−4
n+2β = 1, embedding L

2n
n+2β (�) ↪→ W−β and W2 ↪→ L

2n
n−4 (�) ↪→ L

2nρ
4+2β (�), we

get

∥∥D f
∥∥−β

≤ K f ′
∥∥D f

∥∥ 2n
n+2β

≤ K f ′
[∫

�

[1 + (|u| + |v|)ρ] 2n
n+2β |w| 2n

n+2β dx

] n+2β
2n

≤ K f ′
[∫

�

[1 + (|u| + |v|)ρ] 2n
4+2β dx

] 4+2β
2n
[∫

�

|w| 2n
n−4 dx

] n−4
2n
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≤ 2ρ+1K f ′
[

|�| + ‖u‖ 2nρ
4+2β

+ ‖v‖ 2nρ
4+2β

]ρ

‖w‖ 2n
n−4

(2.27)

≤ 2ρ+1K f ′C|�|
[
|�| + 2C|�|

(
‖A1/2u‖ + ‖A1/2v‖

)]ρ ‖A1/2w‖
≤ 2ρ+1K f ′C|�|

[|�| + 2C|�|R
]ρ ||U − V ||Hβ,κ

.

Substituting (2.25)–(2.27) in (2.24), we obtain

||Fκ (U ) − Fκ (V )||Hβ,κ
≤ KR ||U − V ||Hβ,κ

, (2.28)

where

KR = λ
− β

4
1 ζ0 + λ

− β
4

1 (1 + 1

λ
1/2
1

)ζ1R
2

+ λ
− β

4
1 (1 + 22q(q − 1))ζ2R

2(q−1) + 2ρ+1K f ′C|�|
[|�| + 2C|�|R

]ρ
.

Combining the Steps I and II, we obtain from result ([32, Theorem 6.1.4]) that
the Cauchy problem (2.18) has a unique mild solution U ∈ C([0, Tmax);Hβ,κ ) that
satisfies (2.21) in a maximal interval [0, Tmax). Besides, if Tmax < ∞ then

lim
t→Tmax

||U (t)||Hβ,κ
= ∞. (2.29)

Now, ifU (t) is amild solution of (2.18)withU0 ∈ D(Lα,β,κ ). From ([32], Theorem
6.1.5), then themild solutionU is a classical solution of the initial value problem (2.18).

2.3.3 Step III

To show that the mild (or strong) solution is global, let U (t) be a mild solution with
initial dataU0 ∈ D(Lα,β,κ ). Taking the scalar product inW0 of (1.1)1 by ut and (1.1)2
by θ we obtain directly

d

dt
Eβ,κ (t) + ζ2

∣∣∣(A1/2u, ut )
∣∣∣q + ‖A1/4θ(t)‖2 = 0. (2.30)

Integrating (2.30) from 0 to t , we obtain

Eβ,κ (t) +
∫ t

0

[
ζ2

∣∣∣(A1/2u(s), ut (s))
∣∣∣q + ‖A1/4θ(s)‖2

]
ds = Eβ,κ (0). (2.31)

Note that

∣∣∣∣−ζ0

2
‖A1/4u(t)‖2

∣∣∣∣ ≤ ζ 2
0

4ζ1
+ ζ1

4
‖A1/4u(t)‖4. (2.32)
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Putting � = 1 − ω
λ1

> 0, from Hölder inequality and immersion W2 ↪→ W0, we
have

(h, u(t)) ≤ ‖h‖‖u(t)‖ ≤ 1

�λ1
‖h‖2 + �

4
‖A1/2u(t)‖2.

Using assumption (2.16) and immersion W2 ↪→ W0, we have

(
f̂ (u(t)), 1

) ≥ − ω

4λ1
‖A1/2u(t)‖2 − K f |�|. (2.33)

Putting L0 = K f |�| + 1
�λ1

‖h‖2 + ζ 20
4ζ1

and using definition of Eβ,κ (t), substituting
(2.32)–(2.33) in (2.31), we obtain

Eβ,κ (t) + L0 ≥ 1

2
‖ut (t)‖2D(M1/2

β )
+ 1

4
‖A1/2u(t)‖2 + κ

2
‖θ(t)‖2

≥ 1

4
||U (t)||2Hβ,κ

. (2.34)

Thus

||U (t)||2Hβ,κ
≤ 4|Eβ,κ (t)| + 4L0 ≤ 4|Eβ,κ (0)| + 4L0, ∀t ∈ [0, Tmax).

Then clearly (2.29) does not hold and therefore Tmax = ∞. This completes the proof
of Theorem 2.1 (i).

Proof (ii) The limit case κ = 0 is done in a similar way to case κ > 0, noting that in
this case

〈Lβ,0U (t),U (t)
〉
Hβ,0

=
〈[

ut
M−1

β

(−Au − Aα/2−1ut
) ] ,

[
u
ut

]〉

= −‖A 1
2 (α− 1

2 )ut (t)‖2 ≤ 0

and FκU = (0, F(U )).
This completes the proof of the Theorem 2.1. ��
By means of the well-posedness assured by Theorem 2.1 the solutions to problem

(2.12)–(2.13) generate a family of dynamical systems (Hβ,κ , Sα,β,κ (t))with the spaces
Hβ,κ given in (2.10) and the evolution operator Sα,β,κ (t) given by the formula

Sα,β,κ (t)U0 =
{
U (t) = (u(t), ut (t), θ(t))⊥ for κ > 0
U (t) = (u(t), ut (t))⊥ for κ = 0

(2.35)

where U (t) is a mild solution to (2.18).
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2.4 Gradient Systems

Proposition 2.2 The dynamical system (Hβ,κ , Sα,β,κ ) corresponding to the problem
(2.12) is gradient.

Proof Case κ > 0. We consider Eβ,κ (·) the energy functional defined in (2.11). Let
U0 ∈ Hβ,κ , from (2.30), we have

Eβ,κ (Sα,β,κ (t)U0) ≤ Eβ,κ (U0), t ≥ 0,

which means that the function t �→ Eβ,κ (Sα,β,κ (t)z) is a non-increasing function, for
any U0 ∈ Hβ,κ . Now let us suppose Eβ,κ (Sα,β,κ (t)z) = Eβ,κ (z) for all t > 0 and for
some z = (u0.u1, θ0) ∈ Hβ,κ . Then, from (2.31), we have

ζ2

∫ t

0

∣∣∣(A1/2u(s), ut (s))
∣∣∣q ds +

∫ t

0
‖A1/4θ(s)‖2ds = 0, t > 0.

This implies that

∫ t

0
‖A1/4θ(s)‖2ds = 0, t > 0,

which gives

‖A1/4θ(t)‖2 = 0, ∀t > 0.

Hence, we have θ(t) = 0 a.e. in � for all t > 0. Substituting this into Eq. (2.12)2, we
conclude that ut (t) = 0 a.e. in � for all t > 0. Thus, Sα,β,κ (t)z ≡ (u0, 0, 0) = z, and
the energy functional Eβ,κ (·) is a strict Lyapunov functional on Hβ,κ .
Case κ = 0. The limit case κ = 0 is analogously, noting that from (2.13), we have

d

dt
Eβ,0(t) + ‖Aα/2−1/2ut (s)‖2 = 0, t ≥ 0.

��

3 Long-Time Dynamics

3.1 Energy Decay and Absorbing Set

Proposition 3.1 Under assumptions of Theorem 2.1, if we consider a weak solution
U (t) = Sα,β,κ (t)U0 of (2.12) corresponding to initial data U0 ∈ B, where B ⊂ Hβ,κ

is an arbitrary bounded set, then there exists a constant �B > 0 (depending on the
size of B) and a small constant ε > 0 such that

||U (t)||2Hβ,κ
≤ �Be

− 2ε
3 t + R,
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where R = 12
μ

[
2

μλ1
‖h‖2 + K f |�|

]
.

Proof Let us beginfixing an arbitrary bounded set B ⊂ Hβ,κ and consider the solutions
U (t) = Sα,β,κ (t)U0 with U0 ∈ B. Let

Ẽβ,κ (t) := Eβ,κ (t) + L0.

From (2.34), we have

Ẽβ,κ (t) ≥ 1

4
||U (t)||2Hβ,κ

, ∀t ≥ 0.

We define the functional

Eε
β,κ (t) := Ẽβ,κ (t) + ε

(
Mβut , u + 2κA−α/2θ

)
, ε > 0. (3.36)

The constant ε is a constant sufficiently small that will be conveniently chosen later.
From derivation of (3.36) and using that d

dt Ẽβ,κ (t) = d
dt Eβ,κ (t), we have

d

dt
Eε

β,κ (t) = d

dt
Eβ,κ (t) + ε‖ut (t)‖2D(M1/2

β )
+ ε

(Mβutt , u
)

+ 2εκ
(
Mβut , A

−α/2θt

)
+ 2εκ

(
Mβutt , A

−α/2θ
)

. (3.37)

Taking the scalar product in W0 of (2.12)1 with ut and (2.12)2 with θ , we have

d

dt
Eβ,κ (t) = − ζ2

∣∣∣(A1/2u, ut )
∣∣∣q − ‖A1/4θ(t)‖2. (3.38)

Using (2.12)1 the third term on the right of (3.37) can be written as follows

ε
(Mβutt , u

) = − ε‖A1/2u(t)‖2 − εζ0‖A1/4u(t)‖2 − εζ1‖A1/4u(t)‖4
− ε�(A1/2u, ut )‖A1/4u(t)‖2 + ε

(
Aα/2θ, u

)
−ε ( f (u), u) + ε (h, u) .

From (2.12)2, the fourth term can be written as follows

2εκ
(
Mβut , A

−α/2θt

)
= −2ε

(
Mβut , A

−α/2+1/2θ
)

− 2ε‖ut (t)‖2D(M1/2
β )

.

From (2.12)1, the fifth term can be written by

2εκ
(
Mβutt , A

−α/2θ
)

= −2εκ
(
A1/2u, A−α/2+1/2θ

)

− 2εκ
[
ζ0 + ζ1‖A1/4u‖2 + �(A1/2u, ut )

] (
A1/2u, A−α/2θ

)
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+ 2εκ‖θ(t)‖2 − 2εκ
(
f (u), A−α/2θ

)
+ 2εκ

(
h, A−α/2θ

)
.

(3.39)

Substituting (3.38)–(3.39) in (3.37), we obtain

d

dt
Eε

β,κ (t) = − ζ2

∣∣∣(A1/2u, ut )
∣∣∣q − ‖A1/4θ(t)‖2 − ε‖ut (t)‖2D(M1/2

β )
− ε‖A1/2u(t)‖2

− εζ0‖A1/4u(t)‖2 − εζ1‖A1/4u(t)‖4 + ε(h, u) + 2εκ‖θ(t)‖2 +
9∑

i=1

Ii ,

(3.40)

where

I1 = − ε( f (u), u),

I2 = − ε�(A1/2u, ut )‖A1/4u(t)‖2,
I3 = ε

(
Aα/2θ, u

)
,

I4 = − 2ε
(
ut , A

−α/2+1/2θ
)

,

I5 = − 2ε
(
Aβ/4ut , A

(β/4−α/2+1/2)θ
)

,

I6 = − 2εκ
(
A1/2u, A−α/2+1/2θ

)
,

I7 = − 2εκ
[
ζ0 + ζ1‖A1/4u‖2 + �(A1/2u, ut )

] (
A1/2u, A−α/2θ

)
,

I8 = − 2εκ
(
f (u), A−α/2θ

)
,

I9 = 2εκ
(
h, A−α/2θ

)
.

Inwhat followswewill estimate the terms I1, . . . , I9 on the right side of the inequality
(3.40). First, using assumption (2.16) and immersion W2 ↪→ W0, we have

I1 ≤ − ε( f̂ (u), 1) + εω

4
‖u(t)‖2 ≤ − ε( f̂ (u), 1) + ε

4
‖A1/2u(t)‖2.

Using Young inequality with q−1
q + 1

q = 1 and immersion W2 ↪→ W1 there exist
K0,B such that

I2 = − εζ2

∣∣∣(A1/2u, ut )
∣∣∣q−2

(A1/2u, ut )‖A1/4u(t)‖2

≤ ζ2(q − 1)

q

∣∣∣(A1/2u, ut )
∣∣∣q + εqζ2

q
‖A1/4u(t)‖2(q−1)‖A1/4u(t)‖2

≤ ζ2

∣∣∣(A1/2u, ut )
∣∣∣q + εq K0,B‖A1/2u(t)‖2.
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From immersions W2 ↪→ W1 ↪→ Wα , we have

I3 = ε
(
Aα/4θ, Aα/4u

)
≤ ε‖Aα/4θ(t)‖‖Aα/4u(t)‖

≤ ε

λ
−α/2+3/4
1

‖A1/4θ(t)‖‖A1/2u(t)‖ ≤ 1

12
‖A1/4θ(t)‖2 + 3ε2

λ
−α+3/2
1

‖A1/2u(t)‖2.

From W1 ↪→ W−2α+2 ↪→ W0 for α ∈ [1/2, 1], we have

I4 ≤ 2ε‖ut (t)‖‖A 1
4 (−2α+2)θ(t)‖ ≤ 2ε

λ
α/2−1/4
1

‖ut (t)‖‖A1/4θ(t)‖

≤ 12ε2

λ
α−1/2
1

‖ut (t)‖2 + 1

12
‖A1/4θ(t)‖2.

From W1 ↪→ Wβ−2α+2 ↪→ W0 for β ∈ [0, 2α − 1] with α ∈ [1/2, 1], we have

I5 ≤ 2ε‖Aβ/4ut (t)‖‖A β−2α+2
4 θ(t)‖ ≤ 2ε

λ
−β+2α−1

4
1

‖Aβ/4ut (t)‖‖A1/4θ(t)‖

≤ 12ε2

λ
−β+2α−1

2
1

‖Aβ/4ut (t)‖2 + 1

12
‖A1/4θ(t)‖2.

Again using that W1 ↪→ W−2α+2 ↪→ W0 for α ∈ [1/2, 1], we have

I6 ≤ 2εκ‖A1/2u(t)‖‖A 1
4 (−2α+2)θ(t)‖ ≤ 2εκ

λ
α/2−1/4
1

‖A1/2u(t)‖‖A1/4θ(t)‖

≤ 12ε2κ2

λ
α−1/2
1

‖A1/2u(t)‖2 + 1

12
‖A1/4θ(t)‖2.

Now, using that W2 ↪→ W1 ↪→ W−2α , there exists K1,B > 0 such that

I7 ≤ ε2K1,B‖A1/2u(t)‖2 + 1

12
‖A1/4θ(t)‖2.

When n ≤ 4, from assumption (2.16), immersions W2 ↪→ W1 ↪→ W0 ↪→ W−2α and
W2 ↪→ L2(ρ+1), there exists K2,B such that

I8 ≤ 2εκK ′
f

λ
1/4+α/2
1

[
‖u(t)‖ + ‖u(t)‖ρ+1

2(ρ+1)

]
‖A1/4θ(t)‖

≤ ε2K2,B‖A1/2u(t)‖2 + 1

12
‖A1/4θ(t)‖2.
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When n ≥ 5, using (2.16), Hölder’s inequality with 4+2β
2n + n−4

2n + n−2β
2n = 1, embed-

ding Wβ ↪→ L
2n

n−2β (�) and W1 ↪→ Wβ−2α for β − 2α ≤ −1, we get

I8 ≤ 2εκK ′
f

∫
�

(1 + |u|ρ)|u||A−α/2θ |dx

≤ 2εκK ′
f

[∫
�

(1 + |u|ρ)
2n

4+2β dx

] 4+2β
2n ‖u‖ n−4

2n
‖A−α/2θ‖ 2n

n−2β

≤ 2εκK ′
f C|�|(1 + ‖u‖ρ

2nρ
4+2β

)‖u‖ n−4
2n

‖Aβ/4−α/2θ‖

≤ 2εκK ′
f C|�|λ

β−2α−1
4

1 (1 + ‖A1/2u‖ρ)‖A1/2u‖‖A1/4θ‖
≤ ε2K2,B‖A1/2u(t)‖2 + 1

12
‖A1/4θ(t)‖2.

Finally, by Hölder inequality, Young inequality and immersion W0 ↪→ W−2α , we
have

I9 ≤ 2εκ

λ
α/2
1

‖h‖‖θ(t)‖ ≤ ε

�λ1
‖h‖2 + εκ�

λα−1
1

‖θ(t)‖2.

Thus substituting I1, . . . , I9 in (3.40) and taking ε > 0 small enough such that

1

2
− ε

[
12λ−1/2+α

1 (1 + λ
−β/2
1 )

]
≥ 0 and

1

4
− ε

[
εq−2K0,B + K1,B + K2,B + 3

λ
−α+3/2
1

+ 12κ2

λ
α−1/2
1

]
≥ 0

we obtain

d

dt
Eε

β,κ (t) ≤ −1

2
‖A1/4θ(t)‖2

− ε

2
‖ut (t)‖2D(M1/2

β )
− ε

2
‖A1/2u(t)‖2 − εζ0‖A1/4u(t)‖2

− εζ1‖A1/4u(t)‖4 − ε( f̂ (u), 1) + ε(h, u)

+ ε

�λ1
‖h‖2 + εκ

(
2 + �

λα−1
1

)
‖θ(t)‖2

(3.41)

Still, using that

− 1

2
‖A1/4θ(t)‖2 ≤ −λ

1/2
1

2
‖θ(t)‖2
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and also taking ε such that
λ
1/2
1
2 − εκ(2 + �

λα−1
1

) ≥ εκ
2 , returning to (3.41), we obtain

d

dt
Eε

β,κ (t) ≤ − ε Ẽβ,κ (t) + εL1, where L1 = 2

�λ1
‖h‖2 + ζ 2

0

3ζ1
+ K f |�|.

(3.42)

From (3.36), immersions W2 ↪→ Wβ ↪→ W0 ↪→ W2β−2α ↪→ W−1 ↪→ W−2α ↪→
W−2 and (2.34), we obtain

∣∣∣Eε
β,κ (t) − Ẽβ,κ (t)

∣∣∣ ≤ ε
∣∣(Mβut , u)

∣∣+ 2εκ
∣∣∣(Mβut , A

−α/2θ)

∣∣∣
≤ ε

λ
1/2
1

‖ut (t)‖‖A1/2u(t)‖ + ε

λ
−β/4+1/2
1

‖Aβ/4ut (t)‖‖A1/2u(t)‖

+ 2εκ

λ
α/2
1

‖ut (t)‖‖θ(t)‖ + 2εκ

λ
−β/4+α/2
1

‖Aβ/4ut (t)‖‖θ(t)‖

≤ εKλ1 Ẽβ,κ (t),

where

Kλ1 =
[

4

λ
1/2
1

+ 4

λ
−β/4+1/2
1

+ 8εκ1/2

λ
α/2
1

+ 8κ1/2

λ
−β/4+α/2
1

]
.

Taking ε ≤ 1
2Kλ1

, we have

1

2
Ẽβ,κ (t) ≤ Eε

β,κ (t) ≤ 3

2
Ẽβ,κ (t). (3.43)

Substituting in (3.42), we have

d

dt
Eε

β,κ (t) ≤ −2ε

3
Eε

β,κ (t) + εL1.

Integrating from 0 to t , we get

Eε
β,κ (t) ≤ Eε

β,κ (0)e− 2ε
3 t + 3L1

2

Again using (2.34) and (3.43), we obtain

‖U (t)‖2Hβ,κ
≤Ẽβ,κ (t) ≤ 3Ẽβ,κ (0)e− 2ε

3 t + 3L1 (3.44)
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Taking R = 12L1 and using, we obtain

||U (t)||2Hβ,κ
≤ 12Ẽβ,κ (0)e− 2ε

3 t + R. (3.45)

��
Corollary 3.2 (Energy decay)Under assumptions of Proposition 3.1 with h ≡ 0, ζ0 =
0 and K f = 0 in (2.16), then the energy Eβ,κ (t) defined in (2.11) satisfies the following
decay rates

Eβ,κ (U (t)) ≤ Ce−γ t , ∀ t > 0.

where the constants C, γ > 0 depending on ||U0||Hβ,κ .

Proof The proof is an immediate consequence of Proposition 3.1 by noting that (3.44)
holds with L1 = 0 and Ẽβ,κ (t) = Eβ,κ (t)when one takes h = 0, ζ0 = 0 and K f = 0.

��
Corollary 3.3 (Absorbing set) Under assumptions of Proposition 3.1, let us consider
any bounded set B ⊂ Hβ,κ . If U0 ∈ B, then there exists tB > 0 such that

‖U (t)‖Hβ,κ
≤ R, ∀ t > tB, (3.46)

where U (t) = Sα,β,κ (t)U0 is the weak solution of problem (1.1)–(1.3) and R > 0 is
a constant independent of U0. In particular, the set

B = {U ∈ Hβ,κ ; ‖U‖Hβ,κ
≤ R}

is a boundedabsorbing set for Sα,β,κ (t)defined in (2.35). In otherwords, the dynamical
system (Hβ,κ , Sα,β,κ (t)) is dissipative.

Proof For initial dataU0 ∈ B we obtain from estimates (3.45) that there exists tB > 0
dependent of B ⊂ Hβ,κ such that

Ẽβ,κ (t) ≤ 2R, ∀ t > tB .

From (2.34) one sees that (3.46) follows by taking R = 2
√
2R > 0. ��

3.2 Lipschitz Continuity and Stabilization Inequality

Proposition 3.4 Let us take the assumptions of Proposition 3.1with |ζ0| ≤ λ
1/2
1
2 . Given

a bounded set B ⊂ Hβ,κ , let Ui = (ui , uit , θ
i ), i = 1, 2, be two mild (or strong)

solutions of problem (2.12) such that Ui (0) = (ui0, u
i
1, θ

i
0) ∈ B. Then, there exist a

uniform constant ε > 0 and constants �0,B, �1,B, �2,B > 0 such that
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(i) Lipschitz continuity:

||U 1(t) −U 2(t)||2Hβ,κ
≤ e�0,B t ||U 1(0) −U 2(0)||Hβ,κ

, (3.47)

(ii) Stabilization inequality: Assume that 0 < ρ <
n+2β
n−4 when β > 0 and n ≥ 5,

||U 1(t) −U 2(t)||2Hβ,κ
≤ �1,B ||U 1(0) −U 2(0)||2Hβ,κ

e−εt/4

+ �2,B

∫ t

0
e−ε(t−s)/4‖A(2−β)/4w(s)‖2ds. (3.48)

for all t > 0, where w = u1 − u2, z = θ1 − θ2.

Proof (i) From (2.21) we have

U1(t) −U2(t) = eLα,β,κ t [U1(0) −U2(0)] +
∫ t

0
eLα,β,κ (t−s)

[
Fκ (U1(s)) − Fκ (U2(s))

]
ds.

Using (2.28) in Theorem 2.1 there exist a constant �0,B > 0 such that

||U 1(t) −U 2(t)||Hβ,κ
≤ ||U 1(0) −U 2(0)||Hβ,κ

+ �0,B

∫ t

0
||U 1(s) −U 2(s)||Hβ,κ

ds.

From Gronwall’s lemma, we obtain

||U 1(t) −U 2(t)||Hβ,κ
≤ e�0,B t ||U 1(0) −U 2(0)||Hβ,κ

, t ≥ 0.

This proves inequality (3.47).

Proof (ii) In what follows we will prove inequality (3.48). We start by noting that
function (w,wt , z) = U 1 −U 2 is the mild (or strong) solution of problem

{
Mβwt t + Aw + [ S� + S� ] A1/2w + [ D� + D� ] A1/2(u1 + u2) + D f − Aα/2z = 0,
κzt + A1/2z + Aα/2wt = 0,

(3.49)

with initial condition

U 1(0) −U 2(0) = (w(0), wt (0), z(0)),

where

S� = ζ0 + ζ1

2

[
‖A1/4u1‖2 + ‖A1/4u2‖2

]
,

S� = 1

2

[
�(A1/2u1, u1t ) + �(A1/2u2, u2t )

]
,
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D� = ζ1

2

[
‖A1/4u1‖2 − ‖A1/4u2‖2

]
,

D� = 1

2

[
�(A1/2u1, u1t ) − �(A1/2u2, u2t )

]
,

D f = f (u1) − f (u2).

The energy functional to (3.49) is given by

Eβ,κ (t) = 1

2

[
‖wt (t)‖2D(M1/2

β )
+ ‖A1/2w(t)‖2 + κ‖z(t)‖2 + S�‖A1/4w(t)‖2

]
.

For simplicity, the same constant KB > 0 will be used to denote several different
constants depending on B in the next estimates. Initially, inequality (3.38) in Propo-
sition 3.1 implies that

||Ui (t)||2Hβ,κ
+ ζ2

∫ t

0

∣∣∣(A1/2ui , uit )
∣∣∣q ds +

∫ t

0
‖A1/4θ i (s)‖2 ds

≤ KB, ∀ t ≥ 0, i = 1, 2.

From definition of Eβ,κ , immersion W2 ↪→ W1 and using that |ζ0| ≤ 1
2λ1/21

, we have

1

4
||U 1(t) −U 2(t)||2Hβ,κ

≤ Eβ,κ (t) ≤
[
1 + ζ0

λ
1/2
1

+ ζ1

λ1
KB

]
||U 1(t) −U 2(t)||2Hβ,κ

.

(3.50)

The terms S� , D� and D� can be estimated as follows. Firstly, it is direct that

|S� | ≤ ζ2

2

[
|(A1/2u1, u1t )|q−1 + |(A1/2u2, u2t )|q−1

]
. (3.51)

Using that a2 − b2 = (a − b)(a + b), it is also direct that

|D�| ≤ ζ1

2

[
‖A1/4u1(t)‖ + ‖A1/4u2(t)‖

]
‖A1/4w(t)‖ ≤ KB‖A1/4w(t)‖. (3.52)

Using Mean Value Theorem in the function �(s) = |s|q−2s and identity

(A1/2u1, u1t ) − (A1/2u2, u2t ) = (A1/2w, ut ) + (A1/2u2, wt ),

we have

|D� | ≤ KB

[ ∣∣∣(A1/2u1, u1t )
∣∣∣q−2 +

∣∣∣(A1/2u2, u2t )
∣∣∣q−2

] [
‖wt (t)‖ + ‖A1/2w(t)‖

]
.

(3.53)
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Now, let us consider the perturbed functional

Eε
β,κ (t) = Eβ,κ (t) + ε

(Mβwt , w
)+ 4κε

(
Mβwt , A

−α/2z
)

. (3.54)

From (3.54), we have

Eε
β,κ (t) − Eβ,κ (t) = ε (wt , w) + ε

(
Aβ/4wt , A

β/4w
)

+ 4εκ
(
wt , A

−α/2z
)

+ 4εκ
(
Aβ/4wt , A

β/4−α/2z
)

Then, using that W2 ↪→ Wβ ↪→ W0 ↪→ W−1 ↪→ Wβ−2α ↪→ W−2α ↪→ W−2 we
have

∣∣∣Eε
β,κ (t) − Eβ,κ (t)

∣∣∣ ≤ εC0,λ1‖wt (t)‖D(M1/2
β )

‖A1/2w(t)‖
+εC1,λ1‖wt (t)‖D(M1/2

β )
κ1/2‖z(t)‖ ≤ εCλ1Eβ,κ (t).

Thus, taking ε ≤ 1
2Cλ1

, we obtain

1

2
Eβ,κ (t) ≤ Eε

β,κ (t) ≤ 3

2
Eβ,κ (t). (3.55)

Taking the derivative with respect to t in (3.54), we obtain

d

dt
Eε

β,κ (t) = d

dt
Eβ,κ (t)︸ ︷︷ ︸
J1

+ ε
(Mβwt t , w

)
︸ ︷︷ ︸

J2

+ε‖wt (t)‖2D(M1/2
β )

+ 4κε
(
Mβwt , A

−α/2zt
)

︸ ︷︷ ︸
J3

+ 4κε
(
Mβwt t , A

−α/2z
)

︸ ︷︷ ︸
J4

. (3.56)

In what follows we will estimate the terms J1, . . . ,J4 of equality (3.56). Firstly,
taking the scalar product in W0 of (3.49)1 with wt and (3.49)2 with z, we get

J1 = −‖A1/4z(t)‖2 +
5∑

i=1

J1,i ,

where

J1,1 = − ζ1

2

2∑
i=1

(A1/2ui , uit ) ‖A1/4w(t)‖2,

J1,2 = − D�

(
A1/2(u1 + u2), wt

)
,
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J1,3 = − S�

(
A1/2w,wt

)
,

J1,4 = − D�

(
A1/2(u1 + u2), wt

)
,

J1,5 = − (D f , wt ).

Note that, it is direct that

J1,1 ≤ KB‖A1/4w(t)‖2.

Using (3.52) and Young inequality, also it is direct that

J1,2 ≤ ε

2
‖wt (t)‖2D(M1/2

β )
+ KB,ε‖A1/4w(t)‖2.

We define

ψ(t) =
∣∣∣(A1/2u1, u1t )

∣∣∣q +
∣∣∣(A1/2u2, u2t )

∣∣∣q .

From (3.51), definition of Eβ,κ (t), (3.50) and Young inequality with q−1
q + 1

q = 1, we
have

J1,3 ≤
[ ε

24
+ Kεψ(t)

]
Eβ,κ (t).

From (3.53), definition of Eβ,κ (t), (3.50) and Young inequality with q−2
q + 2

q = 1, we
obtain

J1,4 ≤
[ ε

24
+ KB,εψ(t)

]
Eβ,κ (t).

When n ≤ 4 or β = 0, using MVT, Assumption (2.15) and the Hölder inequality

with 4
2n + n−2(2−β)

2n + n−2β
2n = 1, embeddingW2 ↪→ L

nρ
2 (�),W2−β ↪→ L

2n
n−2(2−β) (�)

and Wβ ↪→ L
2n

n−2β (�), we obtain

J1,5 ≤ K0

∫
�

(
1 + |u1(t)|ρ + |u2(t)|ρ

)
|w(t)||wt (t)|dx

≤ K0

[
1 + ‖u1(t)‖ρ

nρ
2

+ ‖u2(t)‖ρ
nρ
2

]
‖w(t)‖ 2n

n−2(2−β)
‖wt (t)‖ 2n

n−2β (�)

≤ K1

[
1 + ‖A1/2u1(t)‖ρ + ‖A1/2u2(t)‖ρ

]
‖A(2−β)/4w(t)‖‖Aβ/4wt (t)‖

≤ KB‖A(2−β)/4w(t)‖‖Aβ/4wt (t)‖
≤ ε

2
‖wt (t)‖2D(M1/2

β )
+ KB,ε‖A(2−β)/4w(t)‖2.
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When n ≥ 5 and β > 0, it follows from ρ <
4+2β
n−4 that there exists a δ : 0 < δ � β

such that ρ ≤ 4+2β−2δ
n−4 , which implies

2nρ

4 + 2β − 2δ
≤ 2n

n − 4
and W2 ↪→ L

2nρ
4+2β−2δ (�).

Thus, using MVT, Assumption (2.15) and the Hölder inequality with 4+2β−2δ
2n +

n−2(2−δ)
2n + n−2β

2n = 1, embedding W2−δ ↪→ L
2n

n−2(2−δ) (�) and Wβ ↪→ L
2n

n−2β (�), we
obtain

J1,5 ≤ K0

[
1 + ‖u1(t)‖ρ

2nρ
4+2β−2δ

+ ‖u2(t)‖ρ
2nρ

4+2β−2δ

]
‖w(t)‖ 2n

n−2(2−δ)
‖wt (t)‖ 2n

n−2β (�)

≤ K1

[
1 + ‖A1/2u1(t)‖ρ + ‖A1/2u2(t)‖ρ

]
‖A(2−δ)/4w(t)‖‖Aβ/4wt (t)‖

≤ KB‖A1/2w(t)‖(β−δ)/β‖A(2−β)/4w(t)‖δ/β‖Aβ/4wt (t)‖
≤ ε

2
‖wt (t)‖2D(M1/2

β )
+ ε

8
‖A1/2w(t)‖2 + KB,ε‖A(2−β)/4w(t)‖2.

Thus, substituting J1,1, . . . ,J1,5 in J1, we get

J1 ≤ − ‖A1/4z(t)‖2 + ε‖wt (t)‖2D(M1/2
β )

+ε

8
‖A1/2w(t)‖2

+KB,ε

[
‖A1/4w(t)‖2 + ‖A(2−β)/4w(t)‖2

]
+
[ ε

12
+ KB,εψ(t)

]
Eβ,κ (t).

(3.57)

Now, taking Eq. (3.49)1 into account, we can write the term J2 as follows

J2 = − ε‖A1/2w(t)‖2 − εS�‖A1/4w(t)‖2 +
5∑

i=1

J2,i ,

where

J2,1 = − εD�

(
A1/2(u1 + u2), w

)
,

J2,2 = − εS�‖A1/4w(t)‖2,
J2,3 = − εD�

(
A1/2(u1 + u2), w

)
,

J2,4 =ε
(
Aα/2z, w

)
,

J2,5 = − ε
(
D f , w

)
.

From (3.52) and immersion W1 ↪→ W0, we have

J2,1 ≤ KB‖A1/4w(t)‖2.
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From (3.51), it is direct that

J2,2 ≤ KB‖A1/4w(t)‖2.

From (3.53), definition of Eβ,κ (t), (3.50), immersionW2 ↪→ W1 and Young inequality
with q−2

q + 2
q = 1, we obtain

J2,3 ≤
[ ε

12
+ KB,εψ(t)

]
Eβ,κ (t).

Using that W1 ↪→ Wα , we have

J2,4 = ε
(
Aα/4z, Aα/4w

)
≤ ε

2λ−α/2+1/2
1

[
‖A1/4w(t)‖2 + ‖A1/4z(t)‖2

]
.

When n ≤ 4 or β = 0, from MVT, Assumption (2.15) and Hölder inequality with
ρ

2(ρ+1) + ρ+2
2(ρ+1) = 1, embedding W2 ↪→ L2(ρ+1)(�) and W1 ↪→ L

4(ρ+1)
ρ+2 (�), we

have

J2,5 ≤ K [ 1 + ‖u1(t)‖ρ

2(ρ+1) + ‖u2(t)‖ρ

2(ρ+1) ]‖w(t)‖24(ρ+1)
ρ+2

≤ KB‖A1/4w(t)‖2.

When n ≥ 5 and β > 0, using MVT, Assumption (2.15) and Hölder inequality with
3
n + n−3

n = 1 and embedding W3/2 ↪→ L
nρ
3 (�) for

nρ

3
≤ n

3
· 4 + 2β

n − 4
≤ n

3
· 4α + 2

n − 4
≤ 2n

n − 4
,

we obtain

J2,5 ≤ K [ 1 + ‖u1(t)‖ρ
nρ
3

+ ‖u2(t)‖ρ
nρ
3

]‖w(t)‖22n
n−3

≤ KB‖A3/8w(t)‖2 ≤ KB‖A1/2w(t)‖‖A1/4w(t)‖
≤ ε

8
‖A1/2w(t)‖2 + KB,ε‖A1/4w(t)‖2.

Substituting J2,1, . . . ,J2,5 in J2, we obtain

J2 ≤ − 7ε

8
‖A1/2w(t)‖2 − εS�‖A1/4w(t)‖2 + KB,ε‖A1/4w(t)‖2

+ ε

2λ−α/2+1/2
1

‖A1/4z(t)‖2 +
[ ε

12
+ KB,εψ(t)

]
Eβ,κ (t).

Using Eq. (3.49)2 we get

J3 = −4ε‖wt (t)‖2D(M1/2
β )

+
2∑

i=1

J3,i ,
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where

J3,1 = − 4ε
(
wt , A

1/2−α/2z
)

,

J3,2 = − 4ε
(
Aβ/4wt , A

β/4−α/2+1/2z
)

.

Using W1 ↪→ W2−2α , we have

J3,1 ≤ 4ε‖wt (t)‖‖A1/2−α/2z(t)‖ ≤ 4ε

λ
−1/4+α/2
1

‖wt (t)‖‖A1/4z(t)‖

≤ ε‖wt (t)‖2 + 4ε

λ
−1/2+α
1

‖A1/4z(t)‖2

and, using W1 ↪→ Wβ−2α+2, we obtain

J3,2 ≤ 4ε‖Aβ/4wt (t)‖‖Aβ/4−α/2+1/2z(t)‖
≤ 4ε

λ
−β/4+α/2−1/4
1

‖Aβ/4wt (t)‖‖A1/4z(t)‖

≤ ε‖Aβ/4wt (t)‖2 + 4ε

λ
−β/2+α−1/2
1

‖A1/4z(t)‖2.

Substituting J3,1,J3,2 in J3, we obtain

J3 ≤ −3ε‖wt (t)‖2D(M1/2
β )

+ εCλ1‖A1/4z(t)‖2.

Using Eq. (3.49)1 we get

J4 = 4κε‖z(t)‖2 +
6∑

i=1

J4,i ,

where

J4,1 = − 4κε
(
Aw, A−α/2z

)
,

J4,2 = − 4κεS�

(
A1/2w, A−α/2z

)
,

J4,3 = − 4κεS�

(
A1/2w, A−α/2z

)
,

J4,4 = − 4κεD�

(
A1/2(u1 + u2), A−α/2z

)
,

J4,5 = − 4κεD�

(
A1/2(u1 + u2), A−α/2z

)
,

J4,6 = −4κε
(
D f , A

−α/2z
)

.
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Using that W1 ↪→ W2−2α ↪→ W0, we have

J4,1 = − 4κε
(
A1/2w, A1/2−α/2z

)
≤ 4κε

λ
−1/4+α/2
1

‖A1/2w(t)‖‖A1/4z(t)‖

≤ ε

4
‖A1/2w(t)‖2 + 8κ2ε

λ
−1/2+α
1

‖A1/4z(t)‖2.

From W0 ↪→ W1−2α ↪→ W−1 and using |S�|, |S� | ≤ KB , we obtain

J4,2 + J4,3 = −4κε(S� + S�)
(
A1/4w, A1/4−α/2z

)

≤ εKB‖A1/4w(t)‖2 + κε‖z(t)‖2.

Using W0 ↪→ W−1 ↪→ W−2α ↪→ W−2, we get

J4,4 ≤ KB‖A1/4w(t)‖2 + κε‖z(t)‖2.

Finally, using W0 ↪→ W−1 ↪→ W−2α ↪→ W−2, Young inequality with q−2
q + 2

q = 1,
we obtain

J4,5 ≤
[ ε

12
+ KB,εψ(t)

]
Eβ,κ (t).

Again fromMVT,Assumption (2.15) andHölder inequalitywith 2+4α
2n + n−2

2n + n−4α
2n =

1, immersions W2α ↪→ L
2n

n−4α (�), W1 ↪→ L
2n
n−2 (�) and W2 ↪→ L

2nρ
2+4α (�) for

2nρ

2 + 4α
≤ 2n

2 + 4α
· 4 + 2β

n − 4
≤ 2n

n − 4
· 4 + 2(2α − 1)

2 + 4α
= 2n

n − 4
when n ≥ 5,

we have

J4,6 ≤ K εκ

[
1 + ‖u1(t)‖ρ

2nρ
2+4α

+ ‖u2(t)‖ρ
2nρ
2+4α

]
‖w(t)‖ 2n

n−2
‖A−α/2z(t)‖ 2n

n−4α

≤ K εκ
[
1 + ‖A1/2u1(t)‖ρ + ‖A1/2u2(t)‖ρ

]
‖A1/4w(t)‖‖z(t)‖

≤ KB‖A1/4w(t)‖2 + κε‖z(t)‖2.

Returning to J4, we have

J4 ≤ ε

4
‖A1/2w(t)‖2 + 7κε‖z(t)‖2 + 8κ2ε

λ
−1/2+α
1

‖A1/4z(t)‖2

+
[ ε

12
+ KB,ε

]
Eβ,κ (t) + KB‖A1/4w(t)‖2. (3.58)
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Thus, substituting (3.57), · · · , (3.58) in (3.56) and using W2−β ↪→ W1 ↪→ W0, we
obtain

d

dt
Eε

β,κ (t) ≤ − (
1 − εKλ1

) ‖A1/4z(t)‖2 − ε‖wt (t)‖2D(M1/2
β )

− ε

2
‖A1/2w(t)‖2

− εS�‖A1/4w(t)‖2 +
[ε
4

+ KB,εψ(t)
]
Eβ,κ (t) + KB‖A(2−β)/4w(t)‖2.

Taking ε such that 1 − εKλ1 > κε

λ
1/2
1

and using that −‖A1/4z‖2 ≤ −λ
1/2
1 ‖z‖2, we

obtain

d

dt
Eε

β,κ (t) +
[ ε

4
− KB,εψ(t)

]
Eβ,κ (t) ≤ KB‖A(2−β)/4w(t)‖2.

From (3.55), we obtain

d

dt
Eε

β,κ (t) + �ε(t)Eε
β,κ (t) ≤ KB‖A(2−β)/4w(t)‖2.

where �ε(t) = ε
6 − 2KB,εψ(t). By integrating from 0 to t , we obtain

Eε
β,κ (t) ≤ Eε

β,κ (0)e− ∫ t0 �ε(s)ds + KB

∫ t

0
e− ∫ ts �ε(τ)dτ‖A(2−β)/4w(s)‖2ds.

Using that ψ ∈ L1(0, t), we have

−
∫ t

s
�ε(s)ds = −ε

4
(t − s) + KB,ε

∫ t

s
ψ(τ)dτ = −ε

4
(t − s) + KB .

Thus,

Eε
β,κ (t) ≤ KBEε

β,κ (0)e−εt/4 + KB

∫ t

0
e−ε(t−s)/4‖A(2−β)/4w(s)‖2ds.

Again from (3.55), we have

Eβ,κ (t) ≤ 3KBEβ,κ (0)e−εt/4 + KB

∫ t

0
e−ε(t−s)/4‖A(2−β)/4w(s)‖2ds.

Finally, using (3.50) in the last inequality, we obtain (3.48) and the proof of Proposition
3.4 is now complete. ��

3.3 Attractors and Their Properties

Our main results on global attractors for dynamical systems (Hβ,κ , Sα,β,κ (t)) gen-
erated by (2.35) with (α, β, κ) ∈ ϒ = [ 1

2 , 1
]× (0, 2α − 1] × [0, 1] are formulated

123



   17 Page 32 of 37 Applied Mathematics & Optimization            (2024) 89:17 

below. To do so, we shall combine Proposition 3.4 with the abstracts concepts within
the theory of infinite-dimensional dynamical systems, see e.g. [1, 11–13, 17, 23, 29,
34].More specifically, we use the following notion of quasi-stable dynamical systems,
accordingly to [13, Definition 7.9.2] which started with the prior work [11], restricted
to our particular dynamical system.

Definition 3.1 The dynamical system (Hβ,κ , Sα,β,κ (t)) generated by (2.35) is called
to be quasi-stable on a set B ⊂ Hβ,κ if there exist a compact seminorm nX (·) on
X := W2 and nonnegative scalar functions a(t) and c(t) locally bounded in [0,∞),
and b(t) ∈ L1(R+) with lim

t→∞ b(t) = 0, such that

‖Sα,β,κ (t)U1 − Sα,β,κ (t)U2‖2Hβ,κ
≤ a(t)‖U1 −U2‖2Hβ,κ

, (3.59)

and

‖Sα,β,κ (t)U1 − Sα,β,κ (t)U2‖2Hβ,κ
≤ b(t)‖U1 −U2‖2Hβ,κ

+c(t) sup
s∈[0,t]

[
nX (u1(s) − u2(s))

]2
, (3.60)

for any U1,U2 ∈ B, where we denote Sα,β,κ (t)Ui = (ui (t), uit (t), θ
i (t)), i = 1, 2.

The result of quasi-stability to the dynamical system (Hβ,κ , Sα,β,κ (t)) defined in
(2.35) is an immediate consequence of the Proposition 3.4.

Theorem 3.5 (Quasi-stability) Under the assumptions of Proposition 3.4 with

(α, β, κ) ∈
[
1

2
, 1

]
× (0, 2α − 1] × [0, 1],

the dynamical system (Hβ,κ , Sα,β,κ (t)) generated by (2.35) is quasi-stable on any
bounded positively invariant set B ⊂ Hβ,κ .

Proof Let B ⊂ Hβ,κ be a bounded positively invariant set of Sβ,κ (t), U1,U2 ∈ B,

and

Sβ,κ (t)Ui = (ui (t), uit (t), θ
i (t)), i = 1, 2, u = u1 − u2.

Firstly, under the above notations, one sees promptly from (3.47) that (3.59) holds true
with a(t) = e�0,B t , being locally bounded in [0,∞). Then, setting

[nX (u)]2 := ‖A(2−β)/4u‖22, X = W2,

and noting that embeddings W2 ↪→ W2−β are compact for β ∈ (0, 2α − 1] with
α ∈ [1/2, 1], it follows that nX (·) is a compact seminorm on X . Additionally, from
(3.48) one has

‖Sα,β,κ (t)U1 − Sα,β,κ (t)U2‖2Hβ,κ
≤ b(t)‖U1 −U2‖2Hβ,κ

+ c(t) sup
s∈[0,t]

[nX (u(s))]2 ,
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where

b(t) = �1,Be
−εt/4 and c(t) = �2,B

∫ t

0
e−ε(t−s)/4ds, t ≥ 0.

Thus, b ∈ L1(R+) with lim
t→∞ b(t) = 0, and c(t) is globally bounded

c∞ = sup
t∈R+

c(t) < ∞. (3.61)

Hence, condition (3.60) alsoholds true,which completes theproof that (Hβ,κ , Sα,β,κ (t))
is quasi-stable on any bounded positively invariant set in Hβ,κ . ��

3.3.1 Global Attractor, Finite Dimensionality and Regularity

Theorem 3.6 Let assumptions of Theorem 3.5 be valid. Then,

(i) Global attractor: the dynamical system (Hβ,κ , Sα,β,κ (t)) generated by (2.35)
possesses a compact global attractor {Aα,β,κ }

(α,β,κ)∈
[
1
2 ,1
]
×(0,2α−1]×[0,1] =

Mu
α,β,κ (N ) ⊂ Hβ,κ , where Mu

α,β,κ (N ) is unstable manifold emanating from set
Nof stationary points.

(ii) Finite-dimensionality: the compact global attractorAα,β,κ has finite fractal dimen-

sion dim
Hβ,κ

f Aα,β,κ .
(iii) Regularity: any full trajectory χ = {U (t) = (u(t), ut (t), θ(t)); t ∈ R} from

attractor Aα,β,κ enjoys the following regularity properties,

ut ∈ L∞(R;W2) ∩ C(R,W0), utt ∈ L∞(R;Wβ), θ ∈ L∞(R;W0) if κ > 0,
ut ∈ L∞(R;W2) ∩ C(R,W0), utt ∈ L∞(R;Wβ), if κ = 0.

(3.62)

Moreover, there exists R1 > 0 such that

‖utt (t)‖2D(M1/2
β )

+ ‖A1/2ut (t)‖2 + κ‖θt (t)‖2 ≤ R2
1, t ∈ R, ∀κ ∈ [0, 1].

(3.63)

where R1 depends on the constant c∞ on the seminorm ηX in Theorem 3.5.

Proof (i) It follows from Proposition 2.2 and Corollary 3.3 that the system
(Hβ,κ , Sα,β,κ (t)) is gradient and dissipative, respectively, and, from Proposition 3.4
that the system is quasi-stable. Therefore using [13, Proposition 7.9.4, Corollary 7.9.5
and Theorem 7.2.3] it follows that the dynamical system (Hβ,κ , Sα,β,κ (t)) possesses
a compact global attractor Aα,β,κ such that Aα,β,κ = Mu

β,κ (N ) ⊂ Hβ,κ .

Proof (ii) It follows from [13, Theorem 7.9.6], because (Hβ,κ , Sα,β,κ (t)) possesses a
compact global attractor Aα,β,κ and is quasi-stable on Aα,β,κ by virtue of Theorem
3.5.
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Proof (iii) From (i) the dynamical system (Hβ,κ , Sα,β,κ (t)) possesses a compact
global attractor Aα,β,κ and is quasi-stable on the attractor Aα,β,κ . Since (3.60) holds
with the function c(t) possessing the property (3.61), it follows immediately from [13,
Theorem 7.9.8] that any full trajectory χ(t) = {U (t) = (u(t), ut (t), θ(t)); t ∈ R} ⊂
Hβ,κ from attractor Aα,β,κ satisfies (3.62)–(3.63). ��

3.3.2 Upper Semicontinuity of Attractors

Nowwewill prove that the family of global attractors {Aα,β,κ }
(α,β,κ)∈

[
1
2 ,1
]
×(0,2α−1]×[0,1]

to problem (2.12)–(2.13) is upper semicontinuous at (α0, β0, κ0) ∈ [ 1
2 , 1
] ×

(0, 2α − 1] × [0, 1].
Theorem 3.7 (Upper semicontinuity) Let assumptions of Theorem 3.5 be valid. Then,
the family of the attractors {Aα,β,κ }

(α,β,κ)∈
(
1
2 ,1
]
×[0,2α−1]×[0,1] to problem (2.12)–

(2.13) in the space Hβ,κ is upper semi-continuous on
[ 1
2 , 1
]× (0, 2α − 1] × [0, 1]

in the sense that

(i) for any μ0 = (α0, β0, κ0) ∈ [ 12 , 1]× (0, 2α − 1] × [0, 1] we have that

lim
(α,β,κ)→μ0

sup
y∈Aα,β,κ

distHβ0,κ0
(y,Aμ0) = 0 and (3.64)

(ii) for any μ0 = (α0, β0, 0) ∈ [ 12 , 1]× (0, 2α − 1] × [0, 1] we have

lim
(α,β,κ)→μ0

sup
y∈Aα,β,κ

distHβ0,1(y, Âμ0) = 0, (3.65)

where Âμ0 = {(u0, u1,−u1) ∈ Hα0,β0,1; (u0, u1) ∈ Aα0,β0,0}.
Proof Firstly, using Eq. (2.12)2, immersion W2 ↪→ W2α and regularity (3.63), we get

||A1/2θ(t)‖ = ‖κ θt (t) + Aα/2ut (t)‖ ≤ κ‖θt (t)‖
+ 1

λ
−α/2+1/2
1

‖A1/2ut (t)‖ ≤ C1,R, t ∈ R (3.66)

where the constant C1,R is independent of α, β, and κ . Now, using Eq. (2.12)1,
Assumption (2.15), (3.63), immersion W2 ↪→ W2α and (3.66), we obtain

||Au(t)‖ ≤ ‖utt (t)‖D(M1/2
β )

+ |B(u, ut )| ‖A1/2u(t)‖ + ‖ f (u)‖
+ ‖Aα/2θ(t)‖ + ‖h‖ ≤ C2,R, (3.67)

t ∈ R, where the constant C2,R is also independent of α, β, and κ . Finally, from
(3.63), (3.66) and (3.67) we deduce

sup
t∈R

{
‖Au(t)‖2 + ‖A1/2ut (t)‖2 + κ‖A1/2θ(t)‖2

}
≤ CR. (3.68)
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This showed that the attractor Aα,β,κ is a bounded set in the space W4 × W2 × W2.
We argue by contradiction in order to prove (3.64) (or (3.65) in the case κ∗ = 0).

if (3.64) (or (3.65)) does not hold. Then there exist a positive constant δ, a sequence
μn ≡ (αn, βn, κn) such that

μn −→ μ∗ = (α∗, β∗, κ∗)

and a sequence Un = (un, unt , θ
n) ∈ Aαn ,βn ,κn such that

distHβ∗,κ∗
(
Un,Aα∗,β∗,κ∗

) ≥ δ > 0, n = 1, 2, . . . . (3.69)

Let χn = {(un(t), unt (t), θn(t)); t ∈ R} be a full trajectory from the attractorAαn ,βn ,κn

with Un(0) = Un . Noting that embeddings W4 ↪→ W2, W2 ↪→ D(M1/2
β ) and

W2 ↪→ W0 are compact, it follows from (3.68) and Aubin’s compactness theorem that
there exists a sequence {nk} and a function U (t) ∈ Cbnd(R;Hβ∗,κ∗) such that

lim
k→∞ max

t∈[−T ,T ] ||U
nk (t) −U (t)||Hβ∗,κ∗ = 0.

Then, taking in (2.12) in the case κ∗ > 0 (or (2.13) in the case κ∗ = 0) the limit as

μnk −→ μ∗

one as see that U (t) = (u(t), ut (t), θ(t)) solves the Eq. (2.12) in the case κ∗ > 0 (or
(2.13) in the case κ∗ = 0). Since ‖U (t)‖Hβ∗,κ∗ ≤ R for all t ∈ R and some R > 0
the trajectory χ = {(u(t), ut (t), θ(t)); t ∈ R} belongs to the attractor Aα∗,β∗,κ∗ .
Therefore, Unk → U (0) ∈ Aα∗,β∗,κ∗ which is contradict (3.69). ��
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