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Abstract. In this paper, we investigate new classes of viscoelastic Timoshenko-
Ehrenfest systems under the presence of full or partial memory effects. Our achieve-
ments rely on recent approaches to the theory of dissipative structure for systems of
differential equations, by featuring optimal pointwise estimates in the Fourier space,
L?-estimates for the solutions, and explicit energy decay rates depending on the
viscoelastic damping coupling. Therefore, under a complete stability analysis, original
results as well as improvements of previous work in the literature are our main
findings.
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1. Introduction

In this article, we present new stability results concerning the following
viscoelastic beam model

P19y — k(b + ), + xrco(g1 * (f + b)) =0 in (0,00) x R,
(11) lepn - blpxx + be(QZ * lpxx) + K(¢x + lp)
— xro(gr = (¢, + 1)) =0 in (0,00) X R,

with initial data

(12) (¢7¢t’wth)(ovx) = (¢0?¢17‘//05w1)(x)a x€R,

where py,p,,%,b >0, ko,bp = 0, and * stands for the usual convolution

t

10 = [ gte=Dr@dr >0

0
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With respect to the memory kernels g; and g,, the following assumption is
taken into account.

Assumption 1.1. The relaxation functions gi,g, € C> N L' satisfy the fol-
lowing conditions
o0

g1(7)dz > 0, hy=1- bOJ g2(t)dt > 0,
0

0]

(13) & ;:1—KOJ
0

(14)  g(0)>0,  —Gug(1) <g/(t) < —¢ig;(0), g/ ()] < Cig;(0),

Jor j=1,2, and t > 0; where ¢;, Cj, C~f,~ are positive constants independent of
time .

As explained in the ending Appendix A, (1.1) is a valid model related to
viscoelastic beams of Timoshenko-Ehrenfest type, here posed on unbounded
domains. All physical meanings, as well as the deduction of (1.1), shall be
presented in detail throughout Appendix A. We advance here that (1.1) may
represent three classes of viscoelastic Timoshenko-Ehrenfest beams with differ-
ent features. Each case and its respective novelty shall be highlighted further
up.

To analyze the dissipative structure for (1.1)—(1.2), we introduce the new
variables

U= K(¢x + lﬁ), wi= ¢t’ Zi= blpx’ Y= Wzv

and set the vector-valued function u := (v,w,z, y)'. Thus, problem (1.1)-(1.2)
can be abstractly reformulated as

(L.5) A, + Auy + Lu + Mgy * ux + Mags % uy + Ngj xu = 0,
(16) M(O,X) = (1)07W0720a yO)(x) = MO(X)7

where we denote vy := 1(doy + Vo) Wo := ¢y, Zo := by, Yo : =1, and the
matrix coefficients

I/k 0 0 0 010 0
0 p 0 0 100 0
1.7 Aoz A= —
(1.7) 0 0 1/b 0] 000 1}
0 0 0 p 0010
000 —1 0 00 0
000 O k6 0 0 0
L= M —
000 0 : 0 00 0}
100 0 0 000
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00 0 O 0 0 0 0
My = 00 0 O N o 0 0 0 0
00 0 o0} 0 0 0 0
0 0 by O —x9g 0 0 O

Therefore, along the next sections our main results feature estimates
and stability properties with respect to both problems (1.1)—(1.2) and (1.5)-
(1.6). To this purpose, three possible cases come into play as pointed out
below.

1.1. Full viscoelastic coupling: case x, > 0 and by > 0

For k9 >0 and by >0, (1.1) represents a fully damped viscoelastic
Timoshenko-Ehrenfest system with memory coupling on both the bending
moment and shear force. To our best knowledge, problems (1.1)—(1.2) and
(1.5)-(1.6) have not been studied in literature so far. Only on bounded
domains, namely, replacing R by [0,L], L > 0, there is a slightly modified
semilinear version of (1.1) presented with past history, cf. [7], where the asymp-
totic behavior of solutions was studied with exponential kernels g1, g». But the
latter as well as its results are not comparable to our case due to the character
of the systems here and there addressed.

Here, we present for the first time optimal stability results concerning
system (1.1), by following recent developments, cf. [16, 17, 18], adopted to our
problem.

Our main results in this case feature the following novelties:

e In Section 2, Theorem 2.2 provides pointwise estimates for the solu-
tion of (1.5)—(1.6) in the Fourier space when xy > 0 and by > 0, and the
optimality of such pointwise estimates is evaluated in Section 3 for
suitable choices of the exponential kernels g;, g,, by analyzing the ex-
pansion for the corresponding eigenvalues.

* Proposition 4.5 delivers L>-estimates for the solution of problem (1.5)-
(1.6) by means of the fundamental solution obtained in Section 4.

e Theorems 5.1 and 5.4, in Section 5, bring out the energy and decay rate
estimates, respectively, with respect to the solution of problem (1.5)-
(1.6) and, consequently, (1.1)—(1.2).

1.2. Partially viscoelastic coupling: case xo > 0 and by =0

For kg > 0 and by =0, (1.1) means the Timoshenko-Ehrenfest system with
a viscoelastic coupling on the shear force only. In this case, it reduces into the
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following system

(1 8) {/’1¢tr - K(¢X+¢)X+KK0(Q1 * (¢r + w)x) =0 in (07 OO) X R7
' prrt - wax + K(¢\ + lﬁ) - KKO(gl * (¢x + '70)) =0 in (07 OO) x R.

As far as we know, system (1.8) has not been addressed in the literature. Only
in a bounded interval, we mean on [0,L], L >0, it has been treated very
recently, cf. [1], where the authors studied the uniform general stability of
the energy. Two main points in computations are regarded in [1], namely,
Poincaré’s inequality and estimates with bounds 1/L, which do not hold true
in the present work. Therefore, we rely on estimates as in the previous case
that are not considered so far in the literature for this model on R.
The highlights with respect to (1.8) and (1.5)—(1.6)p,—0 are given as follows:
e Theorem 2.3 displays pointwise estimates for the solution of (1.5)—
(1.6)p,—0 in the Fourier space, and the optimality of such pointwise
estimates is also assessed in Section 3 for an explicit exponential choice
for ¢,.
 Proposition 4.6 exhibits L>-estimates for the solution of problem (1.5)-
(1.6)p,—0 through the fundamental solution, still obtained in Section 4 for
this case.
e Theorems 5.2 and 5.5 present the energy and decay rate estimates, re-
spectively, in what concerns the solution of problem (1.5)—(1.6);,—0 and,
therefore, (1.8) with initial data (1.2).

1.3. Partially viscoelastic coupling: case ko =0 and by > 0

For k9 =0 and by > 0, (1.1) stands for the Timoshenko-Ehrenfest system
with viscoelastic coupling on the bending moment only. In this case, it turns
into the classical viscoelastic system

(1.9) {pl¢nff(¢x+lﬁ)x0 in (0,0) x R,
' P — b 4 bbo(g2 * W) + 1(p + ) =0 in (0,0) x R.

In bounded domains like [0,L], L >0, it has been firstly introduced in [2]
with an exponentially decaying positive kernel ¢g,. The authors proved that
the related system is exponentially stable if and only if the equal wave speeds
condition x/p, =b/p, is satisfied. After that, several works have treated
related problems on bounded intervals, see e.g. [1] where it is provided a
survey of references containing more recent generalized results still in bounded
intervals.

On the other hand, there are just a few papers dealing with problem
(1.9), say on unbounded domains, as e.g. the real line R. We quote the
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pioneering work by Liu-Kawashima [9] where it is presented the decay property
of solutions to the Timoshenko system with memory-type dissipation on the
bending moment equivalent to (1.9). Furthermore, Mori [11] improved the
decay estimate derived by [9]. In this third (and complementary) case, our
main purpose is to recall the known result obtained in [11], and derive the same
decay estimate for (1.9). Indeed, Liu-Kawashima [9] and Mori [11] considered
(1.9) with p; = p, =x = by =1, and they did not focus on the relation to the
physical parameters. We will pay attention to the physical parameters and
derive the desired decay structures. By following the same lines as in the two
aforementioned cases, our main results concerning problems (1.9) and (1.5)—
(1.6),—0 are stated in Theorem 2.4, Proposition 4.7, and Theorems 5.3, 5.6.

2. Fourier analysis

By means of the Fourier transform applied to (1.5)—(1.6), we obtain the
problem

2.1) {Aoﬂl + A+ La+ iEMgy * it + iEMhgr x i + Ngy x 1 = 0,
. ﬁ(07é) = (607w0a207 )A;O)(é) = ﬁo(i)?

where the matrix coefficients are the same as in (1.7). Besides, system (2.1) can
be written in terms of its components as follows

b — kiéw — kpy = 0,

PiWr — iED + 10ié (g1 x 0) = 0,

Z,—bicy =0,

PaY, — iEZ + boil(ga * 2) + 0 — xo(g1 * 0) = 0.

(2.2)

In what follows, we are going to provide pointwise estimates in the Fourier
space for the solution u of problem (1.5)—(1.6), namely, through the solution #
of system (2.1) and its components equations (2.2). The existence of solution to
(1.5)-(1.6) will be addressed in Section 4.

Before proceeding with the main results, let us first prepare the basic energy
identity. We first observe that some properties of the memory effect are useful
to our approach. Indeed, for any complex-valued functions g and f, we define

t

(g0 f)(1) = J gt~ 7)(f() - £(1))d,

0
(GO (0) = j;go “ I - f)Pde.

Then, we have the following lemma, whose proof is referred to [2, 10].
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Lemma 2.1. Let g be a real-valued function. Then, for any complex-valued
function ¢, the following identities hold

(@00 = (] o) ot + (o0,

Re{(g * 9)(02.(0)} =5 (' Do) (1)~ 3(0lo (o)’

_%%{(gD(ﬂ)(I)_ (J(:g(r)dr>|(ﬂ(l)|2}a

|@o@®fﬁ<£M@MQOMDWM-

Now, taking the inner product of (2.1) with %, and taking the real part in
the resulting expression, we have

1o/1 R 1. .
5 35 (08 + Al + 3128+ ool

_ % Re((g] * ﬁ)ét) _bb_O Re((gz * f)ét) =0.

To control the memory terms, we employ the second equation in Lemma 2.1,
and obtain the energy relation
0

ey =

Ko 2 Ko ~  bo a2 bo .
Ey +;J1(l)|v|2 —;(Qiljv) +392(Z)|Z|2 —X(QQDZ) =0,
where
1 L2 NEE. .2 .2, Ko ~ . bo R
Ey = ;hl(t)|v\ + py Wl Jr5112(1)|Z| + pa| ¥l +;(91Dv) +Z(9252)7

and

1

h(t):=1- KoJ g1(1)dr, () :=1—by Lj g2(1)dr.

0
From (1.3), we have /(f) > h{ and hy(t) > h; for t > 0. Equation (2.3) means
that Ej is conservative if ko = by = 0. This implies that the stability analysis
must be done when at least one of the coefficients x, or by is positive. For
completeness, we consider all possibilities below.

2.1. Pointwise estimate for o > 0 and by > 0

Theorem 2.2. Let u be a solution of problem (1.5)—(1.6) with iy >0
and by >0. Then u satisfies the following pointwise estimates in the
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Fourier space:
&

(2.4 (Ol < Ce i@, where p(&) = -y

for some constants C,c > 0.

Proof. For the next computations, let us regard the component equations
n (2.2).

We initially multiply the first and second equations in (2.2) by p,iéw
and —iép, respectively, and add them up. Then, taking the real part, we
get

0 = . . =
(2.5) pié5; Re(iow) + pyued[iv]* — E0f” — py k& Re(ipw)
+ K&? Re((gy * 0)0) = 0.
Similarly, using the third and fourth equations in (2.2), we obtain
a AN A A AR
(26) paé s Re(i92) + |2 — pbE2|317 + & ReiiF)
— Ko Re(i(g1 * B)Z) — bo&® Re((ga * £)2) = 0.
Furthermore, the second and third equations in (2.2) give

2.7)  p % Re(Wz) — & Re(itz) + p,bE Re(iwp) + xoé Re(i(gy * 0)z) = 0.

Then, to eliminate the interaction terms, we combine (2.6) and (2.7), and
obtain

(28)  + {pE Re(ipd) + py Re(h2)} + &1z — pab?| 3 + pybé Re(ih)
— by® Re((g2 * £)5) = 0.

Therefore, summing up (2.5) and (2.8), we get

(29) T {p1& Re(iom) + paé Relis2) +py Re(w2)} + & (pyilil? + |21)
— E(18” + pab131%) + p1 (b + 1)E Re(ih) + 1o Re((g1 + 0)9)
— by? Re((g2 * £)3) = 0.

On the other hand, multiplying the first and fourth equations in (2.2)
by p,7 and o, respectively, taking the real part, and combining the resultant
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equations, we get

a AR~ ~ ~ A~
5, Re(@9) + [o] = por|3I” — px¢ Re(iivg)

P2
+ & Re(idz) + bo¢ Re(i(ga * 2)0) — xo Re((g1 * 8)8) = 0.
The second and fourth equations in (2.2) give
—pibo Re((g2 * £)W0r) — parco Re((g1 # 8)3,) + x3lgr * 8|
— bo& Re(i(gs * £)0) — 1o Re(i(gy * 8)2) — o Re((gy * 0)d) = 0.

Then, adding the above last two equations, it yields

a AR~ ~ A ~ « A~ AN
P2, Re(@y) + 10— rolgr * B)]> — pox| 91 — porcé Re(ip) + & Re(iZ)
— ro& Re(i(g1 * 0)2) — pybo Re((ga * 2)W,) — pyrco Re((g1 % 0)y,) = 0.

Furthermore, combining (2.7) and this equation, we obtain

(210) < {py Re(2) + py Re(59) — pybo Re((g2 « 2)8) — pako Rel(gs +9)5))

+ 16— ro(g1 % 8)|* = par| 3> + (p1b — pore)é Re(i)

— p1bo Re(W(ga * 2),) + pyrco Re(¥(g1 * 0),) = 0,

and
a AN A A A\ A~ ~
(2.11)  =p1py 5 {0 Re(09) + x Re(1wZ) — rob Re((g1 + 9)7)} + piparb| 31

— p1bl — Ko(g1 % 8)|* = (pyb — pare) & Re(idZ)
+ Ko(p1b — pyr)E Re(i(g1 * 0)Z) — pyparcob Re(F(g1 0),)

+ p2bby Re((g * £)w,) = 0.

To capture the memory effect, multiplying the second equation in (2.2) by
—ié(gy * 0), and taking the real part, we have

0 (1

2 Ll o - e Relintor + 9 |+ pysan 00107

+ pixg1(0)¢ Re(iwp) + pi& Re(i(g] * 8),) — &% Re(8(g1 * 9),) = 0.
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To eliminate Re(iwy), we combine (2.5) and this equation. This yields
0

(212) 2B+ &Pl — x0&® Re((g1 +0)0)
P1 A 1 2 - A\
+ 71(0) ¢ Re(iw(gy = 9),) — 91(0) &” Re(d(g1 * 0),) = 0,

where

1 1 _ _
Ei= {Exocﬂgl # 8 = pi& Re(i(gr +9),) — p1g1(0)¢ Re(iﬁ@}.

Similarly, multiplying the fourth equation in (2.2) by —i&(gs * Z), and taking the
real part, we also obtain

6 A PN ! ~
(213) S B, + pob |52 + L2 Re(if(gh + 2),) —

c R & Re(2(g2 +2),)

g2 (0)
__1
g2 (O)

& Re(id(ga * 2),) + gf—fmf Re(i(g) * 9)(g2 # 2),) = 0,

where

1 1 -
Ey = 5(0) {§bof2|gz « 27 = py¢ Re(ip(g2 * f)z)}-

The above identities are enough to achieve the energy estimate. Indeed,
computing (2.9) x &% + (2.10) x &% + (2.12) x 2&%, we obtain

& 2B+ & + pyrlif? + 2 + €10 — sl 0 — palbe? + 0031
+{p1(b+ 1) + (p1b — paic) Y& Re(iwd) — ro&* Re((g1 * 8)0)
Nz 2 o= 2
— byt Re((g2 * 2)2) + 91/()(1)) &3 Re(iw(g] * 0),) — o)
— p1bo&® Re(W(ga * £),) + poxo&” Re(j(g1 # ),) = 0,

54 Re(ﬁ(gl * E)z)

where

Ei :=2E, + p,& Re(itw) + p,& Re(ip2) + 2p; Re(Wz) + p, Re(ip)

— p1bo Re((g2 * 2)Ww) — pyro Re((g1 * 0) ).

Using the Holder inequality and the fact that (gx¢), =g(0)p+ (¢’ x¢) =
g()p + (9’ o p), we estimate
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ey Lm0 @ e + 2 e+ D ey

(2p1b + x(p, —Pz))z}ézmz

g{p2b62+p2(zc+ico)+ ok

16,01|g{(t)|2 21412 2 szog1(l)> 21a2
+7ng(0) il +(gl<0)é + 3 g1(H)E°|D]

2 1 2 2 V|2
# (& +1) o)

4 2 P2KON oy 1 a2 16p,
+<g%<0>h1<z>é +250) et o) *920)

4p.b2g3(t
+p1?€gz()

&g o0

o b o dp B2 )
2+ L& (g2 0 2) + L0 (g 0 2).

On the other hand, the equation (2.13) is estimated as

0 pab < P29 Ol 7o 5|2
(2.15) = Ey +—2 E9° < Zgzz(O) 22 +bq2(0)‘(g2 0 Z)|
1 . z
gz( )f Re(2(g2 % 2),) + gz—(O)éRe(w(gz*Z),)

gz( )f Re(i(g1 * 0)(g2 % 2),).

Therefore, calculating (2.15) x (&2 4 1) + (2.14) x «;, we obtain

A 08 ) + 250 (2 B ey B g

O‘th()f | | +p2b{(1_2“1)62+1

2 2p1b+K(py — py))? )
204 K+K0+( p1b + Kk(p1 — p2)) 2P <+
b P1P2K

Here, we take

o =

B

) -1
mind 1,5 K+K0+(2p1b+i€(p1 P2))
P1pax

and estimate
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- 2, pakogi(f) 21412 6061/71|91()‘
1o (e PR g e 4 SO e

16O<1P1 =12 of 1 o 2 12
s 2 o) +omco(mé +2>é (g1 09)

4 2 PaKON w2y a2
b A g o)

91
4 2
@( K 2 4G +p2Kgl(0))g](z)§2|ﬁ2

2r091(0) x0g1(0) 8

2 =2
KO{ K (1 G >éz+’2€+P2KC1 " 4p G }fz(glﬂﬁ),

h (l) 4 + Kod1 (O) 8xo Kéglz(())
o, 4“1P1b292(l) .2
s { g @+ D(E 4 @4 ) )+ Ry

/ 2 2
+ 2B @ 1P + 2 o)

L (3, 1y M} o
+{Ong%(O) <2+h2(t)>(f H 1T+ l(g202)]

bg3(0)
bo b 2 3 2, 5 G\ | pibboga(t) 2
= b{bogz<o>(‘f +1)<<2 l“)f R R (LU
by | b 4 bC
+3{§é +O€1b0g2 ( [)
P C3 &4
+ |:|U
Pz " }g2
derived by
t
B R 1
216 lged)l < ( Og,(r)dr) (9/00) < — (g;00),
gj

2

G )
;(ngU),

(600 < (| (-aj(oae) (-gjmi) <
9;(0)CG;(g;09),

0
: &
(g) o 9)* < ( 0 |g;'<r>|dr)<| 106) < 2 (0/00)

81



82 Marcio Antonio JORGE SILVA and Yoshihiro UEDA

for j=1,2, where g; :=xy and o, := by. Namely, this yields

9 It
@17 S{(E+E +a15251}+“1 (éz >52|ﬁ|2+°‘1”1’€f4| 2
h3 b .
OCI 1 f4| | +p‘2'. (é + 1)62|y|2
< %cv*(fz +1)Eg1(1)]o + (1 09))
b A~ A
+5 CHE 1D (a0l + (9202)),
where
. K 4G prgi(0) (1 G )
C’ = , + — =+ 7
’ max{2’€ogl(0) x0g1(0) 8 hy Kx0g1(0)

EJFPZ’CC%+ 4p,C}
2 8wy x3g3(0)

b 5 b 5 .M sz) P1bbog(0)
Cf := max —+1], 4 + 7
- {bogz(O) <20€1 > bogz(O) <20€1 b K

bCy <5 1 ) b bC, (5 1 ) 7 C3  pbC3
— st 5ty s+t + .
Otlbogz(O) 2 /’15 8 Otlbogz(()) 2 h; bOQZ( ) K

Consequently, making the combination (2.3) x (&2 +1)% + (2.17) x ag, we
arrive at

0 ool R Aol P1K oo
@18 G <fz )lev|2+Mf4| 2 4 20200 a2

0p2b(

+ E+1E +5 (é + 1291 (0)]6]* + 1 (91 00))

L@+ 1202 + e2(g202) <0

o |

where &) := (f + ) Ey +oco(£2+ I)Ey—i—ocooclszl and og is chosen as

1 . 1 C1 1 (&)
: < = —— ey p
(2.19) %<5 mm{C;"C,j"CZ*’CZ*}
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We estimate the energy &). Because of Lemma 2.1 and (2.16), we
have

(2.20) |E,| 3(1+K0 0 )>é 6] 4301

<>U
1 20 .1 ~12
+ ov
24700) |
3p1 1 Ci\ .o A
§(1+ )é |B]* + 2L [w)? +—(0) <1+ 2)6 (1000),
s(1+ )<2|z| R+ gy 0 8 4l o 2P
2 boga(0 92(0) 295(0)

IA

1 21412 | 212 1 G
(54 joagey ) SR+ 29E 4 (14 F) (@)
and

X 2 33
|E| < 2|Ey| + 5 (52 +h ()67 + 297 W) +72|J’\2

2 K] 2 b} R
(& + 1+ h3(t ))|z|2+7°|g1<>v\2+7°|gz<>z|2

1

3

1 4 5 " )
<3 (5 @) OO+ 910 43 1+ B0

&4 2)(9150) bz(gzDﬁ)

Thus, we estimate

2
@+ DB+ e < )€+ D +%52W

)(z e+ 2 2

[\ EENRON)
S
(=]
<«Q
[\5)
/\
\./

(
i <4g1(0) *%) (&4 D& (9130)
{ 1 (”%) bo}(f + 1) (9:00),

and this gives
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3hk N
Q21) &= 1|v\ + 2Ll + 212+ 25+ 5 (01 06) + (92DZ)
LIAPERL higi(1)
> Lo + |w|+ |z|+ 2|52 + g(o)||+ O (g1016)
h;gz(l‘) b R

> mo([a)* + g1 (0)|5]* + (91039) + 92(2)|2] + (92002)),
o < Mo(|)* + g1 (1)|6]” + (91030) + g2(1)|2]* + (9202)),

where

— min hopyhy py B wo hy  bo
2k’ 272b7 2 " 4Keg,(0)’ 21 4bgy(0) ' 2b )’

1 5 1 5,
My = - LI 142
o= m { K <8+2K091(0))’p1< - 4)

n( ) (o 5) s e (1 2) 5

and we take o) satisfying (2.19) and

Y N N C IR S T S B T
-2 "2 \8  2r091(0)) 5p, 2b\4  bog2(0)) llp,’

Ko (24 Cp Ko - bo 1 G bo -
o +s) Haw(1+2)+5) }

Therefore, using (2.18) and (2.21), we get

my :

t 2
(2.22) |a|2+Uw,f1+”°j{ <R+ 1P

my

where Ulp,z] := g1(D)8)* + 1 (g1 009) + g2(1)|2|2 + ¢2(g2[0%) and

1 . cxoocl(hl*)2 oo oppab
ng := = ming 1, ———" g px, , .
{ 2+ h 2 2
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Therefore, the pointwise estimate (2.4) is finally obtained by using (2.18)
and (2.21), and the proof of Theorem 2.2 is complete. O

2.2. Pointwise estimate for xy > 0 and by =0

Theorem 2.3. Let u be a solution of problem (1.5)—(1.6) with 1y > 0 and
by =0. Then u satisfies the following pointwise estimates in the Fourier space:

(2.23) (1, €)| < Ce™ " iy (&)

for some constants C,c > 0, where

& K b
e il At 2
(1+¢&H P
2.4 -
(2.24) n(&) 6 .

aver Vo

Proof. Here, we take advantage of the computations provided in the proof
of Theorem 2.2 with by = 0. From (2.7), the equations (2.5), (2.9), and (2.10),
in case by =0, can be rewritten as

(225) m%{é Refie) - Re(vvf)} T il — &P
+ %5 Re(it3) + x0¢2 Re((gy * )7) — %5 Re(i(g1 * §)3) = 0,

226) £, { e Re(iom) + ps¢ Re() -2 Re(id) | + gyt + 12)

=200 4 pabl3f) + e Regied) - TP e Re(i(g, + 817
+ 150&” Re((g1 * 9)D) = 0,
and
0 [b = = b = .
221 —po g {7 ReF) + Re(i) - Rel(gr +0)7) | + patl3P

h— _
|6 — r0 (g1 * {J)|2 _ 0T Pk pzké Re(itz)
P1K

{

K b — K . N2 Kob P D
+0(p1p1cp2)f Re(i(g1 * 0)2) _PzTO Re(y(g1 *0),) = 0.
1

Then, combining (2.26) and (2.27), we obtain
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0 . . . .
(228) = B+ E(piwlil’ + [2°) + pab (& + D3 - ol

208 4 )lo— kalgr + D) + s Re((gr + 99) + 1 ¢ Refi)

0B ¢ gy 51 - W’pl‘KpZK) (28 + 1)¢ Refio?)

0P = PaR) (522 | 1) Re(i(gy + )5)
prr

P2 (02 4 1) Re((g: #9),) =0,

where

Es = p,& Re(itw) + p,& Re(ij3) — TK Re(10%)

— (282 + 1){% Re(9p) + Re(wz) — % Re((g; * ﬁ)i)}.

Case p;b # pyic. In the case of different wave speeds, we combine (2.25)
and (2.28) to obtain

g{E Py (5 Re(ie) — - Re(»ﬁ)) } T (& 4 DER + 2

+pab(E 4 ISP~ (€ + DENP 222+ Jo — wolgr =)
T ro(@ + 1) Re((g1 # 0)D)

+ {% (k& + 1+ b) — (mbp%ﬁ) (2¢% + 1)}5{Re(mé) — 5o Re(i(g1 * 9)2)}

-2 2 4 1) Re((g1 +5),) = 0.

Thus, applying the Holder inequality to this equation, we estimate

(2.29) % {Ez +pi & (5 Re(itw) — g Re(ﬁzé)) } + k(& 4 DE )

1
+5 1A+ pab(E + D15
< b (0)(&* + 1)&)o)? +§(252 + 1) |1 (0)D — K0 (g1 © D)|*

+x0(E% + 1)E0] (91 0 9)]
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n (’H‘ b +2|P1b —P2K|>2(52

2012 A2 2 ~\(2
e + D201 + k3l (g1 9)/)

$P20 (022 1 1) Re(G(g1 +0),
Co& + 12O + K191 0 9))

2K0b

+7 (287 + 1) Re(J(g1 % 9),),

where

k+b  2pb— x|\ 4b V2+1
C,:= +
b pLK K 2hy

Calculating (2.12) x (&2 4 1)2E2 + (2.29) x &*/(2C,) and using (2.16), we get
0 1 — -
30) &2 {(5 +1VE, +féz e’ (é Rel(icf) — - Re(Wﬁ))}

hl (l)

4 pPiK
+T( )f|\+4c( DE W
6 pab 2
+ e B+ 22+ 1))

< O (¢t + 2 2y
+%(£2+1)3|ﬁ|2+%6 hz())(é + 1) (g1 0 0)*
228 2 g o) & Ve oo
D E )l o0

Ko 2k pbCY 2k 20,CC2\ L s R
1 .
3 <2+h* kCo  kog1(0)hf  x5g7(0) (¢ + 1)1 039)

Consequently, making the combination (2.31) x (&2 +1)* + (2.30) x ,, we
arrive at
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ﬁo 2y 4 ﬁopl’C 2 6112 . Bo 602
@31) £ +H @ 1R + PO 2 s + S el
ﬁo/’zb Kog1( ) 2 4112
FRE @ DEBE R @ 4 )Y
S (@D @00 <o,
where

& = (&2 + 1)4Eo+ﬁoéz{(€2+ 1)?

2
2C,
1

4 AT _E s
s s (¢ Reim) — Re9)) §.
and f, is taken as

K 2p,C,C}
2.32 < = mm +
(2:32) o { (K0g1 (0) * xog1(0)

o\ -1
Kk 2Kk p,bCP 2Kk Cy 2p1CL.C12
(2 T h + xC, + Kog1(0)h} * x3g3(0) '

Next, we estimate the energy ;. From (2.20) and

Es + p, & (g Re(itw) — = Re(wz)) ’

-1
2 bg(0
+ P2K0 91( )) ,

xC,

b

27,2
<<; b hy ()>(f +1) |ﬁ|2_~_(p12+P§)(fz—|—1)|W|2

l\JI'—‘

(3+ 2)(5 DI+ 225+ (2 1))

we estimate

1 - -
(@ + D]+ 5 &)+ i (¢ Reiom) — § Retid) )|
! L DR 2, 22,2
= (1+K091(0) 4C, 2K2Cu>(f R
2
(3 +p';p2><f2+ VIl + 5o (3+ )(é + 1))z
5P2

1 C b2 )
25 1 (b g+ A ) (€ 10
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and this gives

3 .

(233) flzf,jlvlﬂ%\wm 27+ 22151 + 5 (01 09)
1|v| +2 5 i+ \I +2 5191 + 16“(t)|| +  (g105)
4rcg1(0)
> my (|a]* + g1 (0)|8]* + (g1 019)),

& < Mi(Ja]* + g1 (0)|8]* + (g:009)),

where
1.—2 7p1’b7p2’2l<g1(0)’;c s

1 1 1 b*hi(1) 1 pl+p3
M, = —+(1 L = (3p1) + 2
! max{ﬁ( +x0g1(0)+4cv+z;czcv)’p1+2<”IH 2C,

l 1 2 5p2 Ko 1 C] K0b2
»ac, (3+b> ( 4Cl,>7;+(g1(0)+ + ) ’

291(0)  2x%C,
where we take f, satisfying (2.32) and

| A | 1 b2\ P2+ p2\"!
<-mind 2 (14—t 45— ,2(3p +5-22
bo = me{ ’2K< JrKogl(O)JF4CU+2K2CU> ’ <p1+ ) ) ’

4C, K2\ 4G, by [ 1 G b\
3+5) = + + :
b b? 5p,7 b \g1(0)  2¢1(0) 2x2C,

Thus, using (2.31) and (2.33), we get

(2.34) |u|+U1[]+—Jt ¢ 15)* + & W) + & El
mi Jo (62_"_1)2 (62"1'1)3 4

M, . > .
< —
< (il + Uifa),

where Uj[i] := g1(2)]5]* + ¢1(¢91[J9) and

ny =

DO | —

mind Pt Boprie Bo Bopab Ko Kocr
2 ' 2C, '2C,7 2C, 'k’ '

89
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Therefore, by virtue of (2.31) and (2.33), one can conclude the pointwise
estimate (2.23) with # given in (2.24) for p,b # pyi.
Case p;b = p,x. In the case of equal wave speeds, equation (2.28) gives

0 . 1.,. -
(235) o B+ pieil” +5 812" + pab(E + D3P

4
< (&[5 + K0 (91 0 0)] |8 +;b<52 + DO + x5l(g100)%)

(kk+b)?
bz

< Co(E + )R (0)]8]” + 3] (g1 0 D))

Pz’Cob(
K

+ (R (18] + x5 1(g1 0 9)|) +@(252 +1) Re((g1 +6),)

- 28 +1) Re(J(g1 * 9),),

where

o (kb 4b V241

C=(57)

Calculating (2.12) x (&> 4+ 1)&% + (2.35) x ¢*/(2C,) and employing (2.16), we
get

szz} 1 2 pyenap? + O

20 0 . 1
(2.36) ¢ a{(f D+ 4

L 6.2, Pb 2 41412

1 S+ P2 s
S( 1 +2p21c§b~g1(l)
91(0) K2C,

L 2.Glgi (o)’
2(0
xg1(0)

2p1 CL‘
197 (0)
2
poKgh 1 ) 2 410 1 a2
+2 — + +1 o

K0< K 2p,C,CY 2pyiobg (0)

< — =
Kk \k0g1(0)  Kog1(0) xC,

)gl(t)(éz et

: +2) (& + )& (g1 05)

2 21412 2
@+ 0%+ (54 50

(& + 1)(97 0 0)?

)gl(t)(éz+ 1ol

Ko (E 2k 2p,bC? 2kCy 2p,C,C?

T ~ 2+1 3 A~ .
2 Iy xC, xog1(0)h] Kgglz(O))(é ) (91000)

K
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Consequently, making the combination (2.31) x (&2 4 1)* + (2.36) x f,, we
arrive at

(2.37) —g +ﬂ°h*(f + 1)t +ﬁ°p"€56| W+ 2L by é6|2|2
Bopsb Kog1 (1)
BT T
K()Cl

+ o ——(E+ 1) (g108) <0

where

& =

(& +1)°E Jrﬁofz{(fz + 1)E, +21652E2}

v

and f, is taken as

. -1

~ 1. K 2p,C,C} 2p,kobgi (0)
2.38 < - min + + = )
238) bo=3 { (Kogl(o) x0g1(0) xC,

R
Kk 2K p,bC}? 2Kk Cy 2p,G.C}
alz+=+—+ + :

! ( hi  kC,  rog1(0)hf  xigi(0)

We also estimate the energy &. Because of

27,2
2l = (542 € 4 DI+ (53 4 pE" 4 Dl

1 K? 5 2 Koh? X
(3+b2>( +1)‘Z| + /2)2( 2+1)|y|2+%(£2+1)(g150),

we have
(E+1) | Es|
1 1 b2hi(1)
= (”xogl(m ac, 2xzcv>(§ D

1 2403 1 K
+§<3p12+plcvp2)(éz+l) | +4C <3+ )(f +1)EXz)?

+ C1 + K()b2
g1(0) * 2¢1(0)  2x2C,

2
+ 22y )P +< )<52+ )& (g1 000),
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and this gives

~ 3h7 . .
39) Gz (@ [ D g o 5+ 5 (000
p p
> (@ + 0GP + S0P + 55 P + 22 15P
g ()

A2 Ko N
o+ 2 000}

> g (&2 + 1) (1) + g1(0) |8 + (9100)),

& < M(E + 1) (| + g1 (D8] + (91 09)),

. 1 1 1 b2 3p0\ PP+ pr
M, = (e — 1+2L 1 -7
! max{K+< +zcogl(O)+4CU+21<2CU>’/)1< 5 >+ 2C,

1 1 3+ 2 5p2 @_’_ 1 + Cl +K0b2
b Tac, ")\ Tac ) T g0 T2a0) T2 ) [

where we take f, satisfying (2.38) and

N 1 1 opr ! pi4p3\ !
b < oM {2’E(1+K0g1(0)+4—6}+2x2€v> ,2(3p1+ Gy ’

, N\ 4c, by [ 1 G kb
3+5) + - :
b S5p, b \g1(0)  2¢1(0)  2x2C,

Therefore, using (2.31) and (2.39), we get

4

~ t 4
40) >+ Ul +,’;—11j0{(5ff1)2<|ﬁ|2 1P
56
I >+U1[v1}d
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where

PR Boli ﬂopl’C Bo ﬂoﬂzb Ko Kocl
g ‘_2mm{ 2 ' 2G, '2C, 2G, K

Finally, the pointwise estimate (2.23), with # given in (2.24) for p,b = p,i,
is also obtained by virtue of (2.31) and (2.39). This completes the proof of
Theorem 2.3. |

2.3. Pointwise estimate for o =0 and by > 0

Theorem 2.4. Let u be a solution of problem (1.5)—(1.6) with xy =0
and by > 0. Then u satisfies the following pointwise estimates in the Fourier
space:

(2.41) li(2,&)| < Ce™ iy (&)

for some constants C,c > 0, where

&t Kk b

—— i —#F—,

(2.42) 0 = (1+52)3 P P
& pr_b

(1+¢&%)? PPy

Proof. We also employ here the equations derived in the proof of
Theorem 2.2, but now regarding that xy = 0.
Combining (2.9) and (2.10) for xo =0, we firstly have

(243) %E3 + (Pl + 12°) + (& + DI = po((2 + 5)E + x)| 5

+pi(b + ©)E Re(ip) + (p1h — pyr) (287 + 1)E Re (i)
— bo&® Re((g2 % 2)2) — pybo(2¢* + 1) Re((ga % 2),) = 0,
where
Es 1= p,& Re(itW) + po¢ Re(ip3) + p, Re(1wF)
+(28% + 1){py Re(Z) + py Re(99) — p1bo Re((g2 * 2)W)}.

As before, we separate again the next proofs in two cases concerning the
wave speeds.

Case pb # p,xc. In the case p b # p,k, we combine (2.8) and (2.43) to
obtain
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(s + (a8 Re(ig2) + py Re(h2))} + pyil? 4+ (2 + DEJEP + (&4 D]of

= pa(B(E* + 1)E + k(287 + 1))[§]* = py (B> + b + K)E Re(iP)
— (p1b = pyr) (287 + 1)E Re(iWp) + bo (&> + 1)E* Re((g2 * 2)Z)
+ p1bo (262 4 1) Re(w(ga * 2),).

Therefore, applying the Holder inequality in the right-hand side of this identity,
we estimate

Q44) LB+ E (s Re(i) 1 py Re(i)} + 252

JrhzT(l)(é2 + DEE + (& + Dol

by

gy & T Vg0

< pobCy(E + 1) 37 +

+ p1bo(2E2 4 1) Re(Ww(ga * 2),),

where

(b+1)°  4pib—pa)’
K P ’

1
= — 2 b
G b {Pz( K +b)+p

Then, calculating (2.13) x (&2 4 1)> + (2.44) x £%/(2C,) and using (2.16), we
get

(2.45) % {(52 +1)°E, + %62@3 + & (paé Re(i92) + py Re(wém}

4 2+12A2+M4A2+h27(f) 24 eEdiz)?
(& + DEI + go- Wl + 5 (€ + e
202 e

by
4/’12([)Cy

92(1)
~ 92(0)

(E+ 1)z + (& + D&Y (g2 0 2))?

Lo 26
95(0)ha (1)

4p,bg
xkC,

(E+1) gy oz

- &+ DGO + g o 2)
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2Cy 3, 2701512 . a2
T ¢ +1 HZI" + 9,0z
g%(O)( ) (92 (D2 + gz © 2[7)
£ 20 (g + Il o 2P)
bgz( )
bO < b 4p1bb0g2(0) ZbCy 2/72C22> ) -
=% * + + 0(E+1
b \bog2(0) xC, bog2(0) ~ boga(0) 92(1)(& )’ 2]
ho b@m@ 1) %qg( 1>
+— = + + 1+
b (Cy Ko 4ha(1)) - boga(0) ha(2)
2'02(?22 2 3 R
b242(0) (€7 +1)7(92002).

Consequently, making the combination (2.31) x (&2 +1)° + (2.45) x y,, we
arrive at

0 2 21712, Y0P1K L4 Vo (1) 2 41412
(246) oyl (€ DE 4 gl + H (- D

+12D 2y P 2 g

b"cz S @+ 1908 <0

where

& = (E+ 1) Ey + m{(éz +1)’E,

+ 50 C B+ e Re() + py Re(i) .
y

and y, is taken as

1. b 4pbbogs(0)  2bC,  2p,C? )1
2.47 < = min + + + )
@47) % 2 { (bogz(o) kCy bog2(0) ~ bog2(0)

b (4p,C} 1 ) 2bCyC2( 1 )
o= + + 1+
2<cy< Kk 4in(t)) " boga(0) ha (1)
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Let us estimate the energy &,. Using (2.20) and
|Es + & (paé Re(i52) + py Re(2))
2 512 2£2 12 202 21412
< S+ D" +3p7 (&7 + DIw]" +p2 (87 + 17|

+ (1 + ha()H(E + D2 + bo(E* + 1)(g2002),

we have

(& + 1)IE, |+ é |Es + & (pyé Re(ifZ) + py Re(2)))|

1
@44ﬁw|+ <f+>8wﬁ+&(—44)é+nﬁw

2C
1 1 1 +h2(f)2 2 21412
+ <2+b0g2(0) + 3G, )(é +1)&7|Z|

1 (&) by N 5 )
! N 1
+<92(0)( + )+2C)(é +1)°¢7(92002),
and this gives
! by
48) 62> (€ 1) (5ol + 5P + P + 218+ 5 (2002
1
2(52+1)}< |52 +p1\ E + H JrPz| E

h5ga(1) bo
b e + 5o (02009

> my (€2 + 1) (| + g2 () 2] + (9202)),

& < My(E + 1) (] + g2 (0)|2]” + (9202)),
where

m '—1min : i hi b
2~_2 7/)17 b 7p272bq ( ) b )

13 321 1 1 I
My = - Bt U —
2 ma"{ 36,20, T2 T hg0) TG

1 b 1 G\ | b
2( 2 20 (= 2) 4 20
el )3 G (9) -3
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where we take y, satisfying (2.47) and

-1
B Y (N B R
Yo = 36 "3p, 4b \2 " bega(0) T 2C, ’

1 /1 Lo /1 C, bo \ !
1) 22— (1) .
2 (2@+ ) 2 (gz(O)< " 2)+2Cy>

Then, using (2.46) and (2.48), we conclude

(249)  |a*+ U —t S S S
. 2[]+ (f + )2|U| +(52+1)3|W| +(52+1)2|Z‘
+ & 191 + Us[4] bdr
41

M, . R
< (il + Ual2),
where Us[2] := g2(1)|2]> + ¢2(g2[0%) and

Hence, the pointwise estimate (2.41), with { given in (2.42) for p;b # p,i,
can be conclude from (2.46) and (2.48).

Case p;b = p,x. In the case p;b = p,x, the equation (2.28) (with xy = 0)
provides

(2.50) %E+plkf||+ >é||+(é+)ll
< pabGy (& + DI + 520 07
20y (1)
+p1bo(28% + 1) Re(W(ga * 2),),
where
C, = ib{p2(2K+b)+p2K+%}-

Then, calculating (2.13) x (¢2 4+ 1) + (2.50) x ¢2/(2C,) and employing (2.16),
we get



98 Marcio Antonio JORGE SILVA and Yoshihiro UEDA

0 2 1 2 pl’C
(2.51) E{(é +1)E},+Eé E3}+E(é + 1) vy él K

hz() 4 Pz ) 3
g SR B E 1P
g2(1) ,.» 21412 b2
= g0 & TS (1 )é 9202/
ZC}’ 2 20 1 A2
+m(€ +1)7gy 0 2
2
LB (2 201 4 1g 0 2P)
xCy
2p, 2 2
+bg§(0) &+ D2 (1950121 + 195 0 2%)
2C, )
+ oy (€ DGR ¢ lgho 2

bo b n 4p,bbog2(0)
bog2(0) xC,

(P C3 + béy>>gz(t)<fz +1)%2

by (b (4p1C22 1 ) 2béycz( 1 )
+— = + + 1+

b (Cy K 4hy(1))  boga(0) ha(t)
2/’2622
b395(0)

+

>(éz +1)*(g2002).

Consequently, combining (2.31) x (€2 4 1)* + (2.51) x 7, we obtain

a 2 20502, DPIK capn, Pola(t) 4
e L +4C &+ D’ + gay e + B2t

+@(f +1)%(g2002) <0,
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where

= (2 +1)’Eo+ %{(62 +1)E, +%52E3},

¥
and 7, is taken as

-1
~ 1 . b 4p1bb0g2(0) 2 2 ~
2.53 < — min + = + G5 +bC ,
( ) yO 2 { <b0g2(0) K'Cy bOgZ(O) (pz 2 y)

~ ~ -1
b (4p,C3 1) 2bcyc2< 1) 2p,C5
(c( ko dhy) T boga(0) b3g3(0)

We also estimate the energy & as follows. Because of (2.20) and

Bl < €+ DI +3p3(E + DI + (14 B0)(E + D
+3L£<52+1)|A2 bo(E + 1 ;
3 I+ bo(E” + 1)(92002),

we have

(& + DIE]+ 54 é|E3|_4C(é+1)é||+ <2+1>¢2\W|2

I, 1 1+h§(z)> S
+<2+bogz(0)+ 2C, (& + D]

+P§<1 +42> &+ 175
bo 1 G , , )
* <2_cy+m (1 +7)>(f +1)&%(92002)

and this provides

~ 1
@54 Gz (& 1 (Gelil + 5P + P + 1P+ 55 002
> (&4 1) (1 6 + 201012 + 22 2 42252
h;gz(l‘) bo

> (& + 1)2(Jaf + 92 (1) 2 + (92102)),

& < My(E + 12 (ja* + g2(0)|2” + (92002)),
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where
m '—lmin : h hi o
2~—2 7;017 b 7p2a2bg ( ) b )
M, := max l—ki +3L%2 1+1 1 +1+h§(l)
2 Kk 4C, V20, b T2 boga(0) T 2C,

3\ by b 1 c
2 bo Do &
P2+/’2(1+4c) R Te (0)<1+2>},

and 7, is taken as (2.47) and

o min]2 46 26 B (11 1445 -
) 36 "3p, 26 \2 " bega(0) T 2C, ’

L) s (149) )

Thus, using (2.52) and (2.54), we finally get

o2 N 1S R PR S
@55) i+ Ul [ 3 6P+ 15P)

4
Jr(ézéTI)Z(W2 +121%) + Uz[z]}df

M, . R
< o (il + U2,

where

. L i) Vol’l’C %hi‘ 770,02/3 by bocy
S 2 2C,7 4C, 74C," 2 b7 b

Therefore, the pointwise estimate (2.41), with { given in (2.42) for
p1b = pyxc, is obtained by means of (2.52) and (2.54). This finishes the proof
of Theorem 2.4. |

3. Spectral analysis

In this section, we investigate the optimality of the pointwise estimates
achieved in Theorems 2.2, 2.3, and 2.4, for a suitable choice of the memory
kernels. To this end, we shall proceed as before by dealing with the three cases
concerning the parameters xy and b.
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3.1. Optimality for o >0 and by > 0

Let us assume xo > 0 and by > 0 and suppose that g;(¢) := gjue "' /g; for
J=12, where y; >0, 0 <¢ <1 and oy = and g2 =by. Then, it is easy
to check that these functions satisfy the conditions (1.3)—(1.4) required in
Assumption 1.1, with constants ¢; = C; = y; and C’J = ,uj2. Under this setting,

we introduce the new variables

vi=rx(d, + V), wi=g, z:=by,, Y=,
pi=x(d+¥) _Kg_’fo(gl (g +V), qi=by, — [’ig—i‘)(g2 w ).

Consequently, problem (1.1) can be rewritten as the following symmetric hyper-
bolic system

(3.1) A, + Auy + Lu = 0,

where u = (v,w,z,y,p,q)" and A° = diag(é/x p, &/b py &1/ &/b),

0 & 0 0 0 O
& 0 0 & O
4 0 0 E) & 0 0 7
0 0 & 0 0 &2
0 &g 0 0 0 O
0 0 0 & 0 O
0 0 0 —g 0 0
0 00 O 0 0
I E) 0 0 0 0 0 7
&g 0 0 0 &1 0
0 0 0 —& eu/x 0
0 00 O 0 &, /b

where ¢ :=1—¢; for j =1,2. Additionally, the symmetric system (3.1) can be
expressed in term of its components as follows

v —Kkwy — Ky =0,

prwe— (1 —e)vx —e1py =0,

z,— by, =0,

pryi— (1 —&)zy —erqx + (1 —e1)u+e1p =0,
pr—Kkwy =Ky + 4y p =0,

q: — byx + 1,4 = 0.
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Also, applying the Fourier transform in (3.1), we obtain
(3.2) A, + iEAd + La = 0.

To obtain the desired property for the solution # of the Fourier problem
(3.2), we analyze the eigenvalues of the corresponding eigenvalue problem. For
detailed arguments on the subject applied to other systems, we refer [16, 17, 18]
to readers.

Here, the eigenvalues satisfy the characteristic equation

det(A — @(i€)) =0,  where ®(i¢) ;= —(4°) 7" (icA+ L),
that is, the parameter A satisfies the following sixth-order polynomial equation
(3.3) P1o2 (4 ) (o4 )2+ {p1b (2 + 1) (4 + p1o2)
+ o (At ) (A4 8 YR + pirc(ht 1) (A + 1) 22
+ kb ()4 &) (A4 182)E* = 0.

Let us study the asymptotic expansion of A= A(£) for |£] — 0 and for
|€| — oo, once these expansions essentially determine the asymptotic behavior of
solutions. We first consider the following asymptotic expansion for |&| — 0:

(3.4) (&)=Y itk j=1,....6
/=0

Substituting (3.4) in (3.3), we compare the terms of the same order in ¢. Doing
so, we obtain

(3.5) A& =+ 0(<]), (&) =~ + O([E]),

be b be g |be
ik(f) _ i 2162 i [5) ipl 32+/~72K81 ﬁl é4+0(|é|5)
P 2p110 2pxé) P

for j=1,2,3 and k=5,6. Here, w; is a solution for f(w) =0 with

(3.6) f(0) = o® + pw? L 8
P2 P2

Remark that these solutions satisfy w;+wy+ w3 =—py,. Since f(0) =
K& /py >0 and f(—py) = —Kkue1/p, <0, we get Re(w;) <0 for j=1,2,3.

Analogously, we consider the asymptotic expansion for |¢| — co. For
this purpose, we introduce v by A=¢v, and we get from (3.3) the next
identity
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(3.7)  pipa (v mE )+ W+ pir(v i (v i TEY?
H{pb(v+ 1 EN v+ mEBET) + (v + (v mEET Y
+ 1b(v + 1,8 E v+ aéré ) =0

Then we make the ansatz

(38) V/(f) = Zvj,kfika ]: 17"'767
k=0
and replace this expression in (3.7). Thus, we obtain
(3.9) M(&) = —md + 07, A8 = —wi +0(¢ ),
and
(3.10) R s !

J42(&) = \f €224 o(e ™

for j=3,4 if p\b # p,x,

1 4k
Bl (&) = | ~ie—= (ulsl + e + \/(ulel — pye)* — —) +0(g™h,
P1 4 P2
N K . 1 2 4 -1
Aj2(&) = —\/—lf ~2 <ﬂ181 + e + \/(/hel ) __> +0([¢]),
P1 P2

for j=3,4 if p;b = p,k.
In conclusion, the asymptotic expansions (3.5), (3.9), (3.10) and (3.11)
reveal us that the pointwise estimate in Theorem 2.2 is optimal.

3.2. Optimality for xy > 0 and by =0

In the case xp > 0 and by = 0, the Timoshenko system (1.1) is rewritten as
(3.1) with u = (v,w,z, y,p)" and A° = diag(& /x p, 1/b p, & /K),

0 & 0 0 O 0 0 0 —& 0

& 0 0 ¢ 0 00 O 0
A=—-]10 0 0 1 0|, L=]10 00 0 0

0 01 0 0 & 0 0 0 &

0 & 0 0 O 0 0 0 —& ep/x



104 Marcio Antonio JORGE SILVA and Yoshihiro UEDA

Then, the corresponding characteristic equation is
(3.12) P12t 1) 24+ {pib(A+ ) + parc(h+ &) 1222
+ pi(2+ é1)2 + kb4 &) E = 0.

We also consider the asymptotic expansion of A = A(&) for |£| — 0 and || — oo.
Now, replacing (3.4) in (3.12), we obtain for [¢] — 0

(3.13)  4(&) = w; + O(|&)),

b . ,_ pb+pxke |b .
(&) = 4y | i 3 POTLIEL 2 e
P 2p Kt P
1 b _ 3(pib +por@)’\ b | s 7
s {#181 <P2 Iy o ¢ (1€

for j=1,2,3 and k = 4,5, where w; is a solution for f(w) =0 with (3.6). On
the other hand, employing (3.8) for |&] — oo, we get

(3.14) (&) = —é +o(E ™,

and

(3.15) 4(¢) = i\/pzlié (SR

b . PiK b .. pixbi & -2 -3
Ayea(§) = | il £ 5ty [T - S 6 0(1¢] ),
742(8) P2 2(p1b — paxc) \| pa 2(p1b—p2K)2 (1)

for j=2,3 if p;b # p,x, and

, | 4 -
(B16) ()= pﬁzf—z(meli <ﬂlel>2—p—“)+0<|f| ),

2

| 4
2j2(8) = —\/pzlif ~7 <ﬂ181 + /() - p_};> +0(¢7,

for j=2,3 if p;b = p,x. Eventually, the asymptotic expansions (3.13), (3.14),
(3.15) and (3.16) tell us that the pointwise estimate in Theorem 2.3 is also
optimal.

3.3. Optimality for xo =0 and by > 0

In the case xp = 0 and by > 0, the Timoshenko system (1.1) is rewritten as
(3.1) with u= (v,w,z,y,q)" and A° = diag(1/x p, &/b p, &/b),
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01 0 0 0 000 -1 0
100 0 0 000 0 0
A=-]00 0 &% 0|, L=|000 0 0
00 & 0 & 100 0 0
00 0 & 0 00 0 0 eu/b

Here, the corresponding characteristic equation is given by
Pip2(0t 1)t + {pib (A + ma2) + parc(h+ 1) Y202
+ pi(ht 1) 2% + Kb (2 + py8) &t = 0.

Using the same arguments as in the previous subsections, we obtain the expan-
sion for the eigenvalues. For the sake of brevity, we omit the technical details
below.

In the low frequency region (|¢| — 0), we have

(3.17)  Ai(&) = —u, + O([<]),
K. 1( buwe _1[(pb+pk buie K .
(&) =+ —z—{ #222 _</’1 P2k pabps 22)\/:1}62
Py 2\ k+puy K 1 K+ pay) \ P2
+0(¢l),

, be ., bey | p1bé&r + prk b82
Ai2(8) = 24 [—i& — + &+ 0(l¢
42(¢) P1 <2P1ﬂ2 2px Pl ( | )

for j=2,3. On the other hand, in the high frequency region (|¢| — ), we
infer

+

(3.18) M1(E) = —pér + 0(1¢ 7,

and

(3.19) 2(8) = \[ -2+ 0(¢ ™),

K. P1K K .1
j+2(¢) Vo ¥ 2(p1b — pax) \ py e

N T _ _
_ P1EOULEL 26 2+0<|é‘ 3)7
2(p1b = pyxc)

for j=2,3 if p;b # p,K,
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(3.20) (&) = \/pzlié —% (;4282 + 4/ (1p22)” — %) +0(1¢™h),

1 4
2j2(&) = —\/pilif ~1 (ﬂﬁz + 4/ (82)” — p_};> +0(¢™,

for j=2,3 if p;b=p,x. At last, the asymptotic expansions (3.17), (3.18),
(3.19) and (3.20) provides the optimality of the pointwise estimate in Theorem
2.4,

3.4. No dissipative structure

In the rest of this section, we consider the eigenvalues for (1.1) with ry =
by = 0, simply to show that it has no dissipative structure under this undamped
situation. Moreover, it does agree with the fact that the energy E, is con-
servative when xo = by = 0, see the energy identity (2.3).

Indeed, for this case, the initial problem (1.1) is rewritten as (3.1) with
u=(v,w,zy) and A° = diag(1/x p, 1/b p,),

0100 000 —1
100 0 000 0
A==to 001" T oo o0 o
001 0 100 0

Thus, the corresponding characteristic equation is given by
P12t (pib + par)E227 + pyici® + bt = 0,

from where one sees that the eigenvalues satisfy

1
= A(ib o+ pa)E it V(o1 + pa1)2 + pyi)* — dpypyrchE®).

A simple calculation shows that
((p1b + par)E* + pi1e)? — 4pypyrch*
= (p1b = pa)°E* 4 pIic® + 2p11e(pyb + py)E” > 0,

from where we obtain A% <0. Namely, we get 1€ iR for any ¢ e R, which
means (1.1) with xp = by =0 has no dissipative structure.
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4. Fundamental solution

In this section, we shall construct the fundamental solution of the sys-
tem (1.5)—(1.6). Let G(¢,x) be a 4 x 4 matrix-valued function. Then G(¢,x)
is called the fundamental solution of (1.5)—(1.6) if it satisfies the following
problem:

(4.1) A°G, + AG, + LG + Mgy * Gy + Mags % Gy 4+ Ng1 + G =0,
G(0,x) =o(x)1,

where I is the 4 x 4 unit matrix and J(x) denotes the Dirac delta function.
Applying the Fourier transform in (4.1), we obtain

A°G, +iEAG + LG + iEMygy x G + iEMagr % G+ Ngy + G = 0, G(0,8) =1.
Furthermore, applying the Laplace transform in the latter, we also obtain
(42) MO L[G(, ) =1,

where the matrix coefficient M (4, &) is defined by

M(23,8) i= 2 + (A°) " (i€A + L+ iEM, Z]g1)(2) + iEMa Z]g2)(2) + N Z[91](4)).

Then, we formally obtain G(1,¢) = £ '[M(-,&)""](r). Once this Laplace
inverse transform exists, we get the fundamental solution G(¢,x) described
as

G(1,x) = 7' [G(1,)](x).
The next lemma guarantees that G(z,¢) is well-defined.

Lemma 4.1. For each &€ R, the inverse matrix M(/l,f)71 exists as an

analytic function of A in {A € C; Re 1 > 0}. Consequently, G(t,&) is well-defined
and is given by the formula

R 1 y+ico
(4.3) 6 =5| me

27Zi y—ioo
where v is a fixed positive number.

Proof. For the case o = 0 and by > 0, the proof of Lemma 4.1 is already
knonwn by Liu-Kawashima [9]. Therefore, in the present proof we assume
Ko >0 and by > 0.

Let us fix £e R. Let A=y+iv and assume that y > —c¢j, where ¢ :=
min{cy,c2}, and ¢; and ¢, are the positive constants defined in Assumption
1.1. Then, the Laplace transforms Z[gi](1) and L[g,](2) are well-defined
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and give

L1g)(2) = | e g l0) costundr — | e gy (0) sin(unidt = g1 ~ ia(2)
0 0
for j=1,2. Since (1.3), we obtain
(44) h]](/l) =1 Kod11 (/1) > 0, hyy (/1) =1 b092] (/1) > 07

for y > 0. On the other hand, we have

(45) ha(d) =225 — | " e
0

v

sin(|v|?)
V]
for y>0,v#0, and j=1,2. The proof of (4.5) is similar to that presented in
8, 9].
By a straightforward computation, we have

dt >0,

A(), &) = det M(1,¢)

_ 1 K — K09 2))é& ? E — bo4 ?
{,1 +p1(1 0L [g1](1))é }{/1 +p2(1 boZg2](4))& }

+ 52201 = ko L[] (),
P2

and this furnishes
b
(4.6) Re d(A,¢) = (y2 —v2 4+ Khll(z)52) (y2 v 4 hzl(/l)fz)
P1 P2
K
+— (7 = v)h (%)
P2
2KK)

bb
- (Zyv Ll glz(i)fz) (23"’ + —0922(1)52) - g12(A),
P1 P2 P

2

(4.7) Im A(4,¢) = (y2 -+ pfhn(z)éz) (2yv + %922(A)§2>
1 2

KK
+=2 (2 = v)ga(2)
P2

b ; 2
+ (y2 —v 4+ —hy (/1)52) (2VV + @glz(ﬂ)fz) + —KVth(/U
P2 P P2

To prove the analyticity for M(4,¢)", we will study roots of

(4.8) A(), &) = 0.
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We suppose that A =7y +iv with y > —¢y is a root of 4(4,&) =0. Then we
consider the two situations as follows.

Firstly, we consider in the case £ # 0. Then, if v=0, we have A =y and
(4.6) gives

K b K
Re 4(2,¢) = (Vz +—h11(l)52> <V2 +—hy (/1)52) +—7"hn(4) >0,
P1 P2 P2
for y > 0, which estimate comes from (4.4). Namely, there is no root for (4.8)
with A =7 > 0. On the other hand, if v # 0, we assume Im A4(4,¢) =0. Then
(4.6) and (4.7) lead to

<2y + ?hlz(/l)éz) Re A(4,&)
1

2 2
= —{(y2 — v2+£hn(z)¢2) +? (2y+@/m(z)éz) }
P1 P1

bb . KK
x (Zy + —thz(ﬂ)fz) — 22052 90 2y (A)
P2 %)
252 .
— S (M1 (2)? + k3 hiy (2))yE.
P1P>

Thus, we obtain Re A(1,¢) < 0 for y > 0. Namely, there is no root for (4.8)
with A=y+1iv, y>0 and v #0.
Secondly, we consider in the case £ =0. Then (4.8) yields

22 (/12 + p%(hn(i) + iKogu(/l))) =0,

from where =0 a root, and the other roots satisfy 4(1) =0, where

A02) = 22+ 5 (1 (2) + ixogia (7).
P2

Here, we have

Re A(7) = 7% —1? +p£h11(2), Im A(Z) = 2yv —|—?g12(2).
2 2

If v=0, we have Re 4(1) >0 for y>0. On the other hand, if v #0, we
obtain Im A(4) >0 for y>0. Namely, there is no root for (4.8) with 1=
y+iv and y > 0.

We conclude that M (4,&) " is analytic in {4 e C; Re > 0} for & =0 and
in {4 € C;Re A >0} for & #0. Therefore we obtain Z[G(-,&)](4) = M(4,&)”"
for Re 4 > 0.
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Consequently, for any fixed y > 0, we can formally express its Laplace
inverse transform as

49 G =2 MO0 =g MG @

y—io0

1 o0
= EL@ e M(7,8) " dv,
where A =y +iv in the last equation. In the rest of this proof, we show the
convergence for the last integral in (4.9). To this end, because e*M(4,¢&)~"
is integrable over |v| <R for any R >0, it is enough to prove that
Juizr e M(2,E) " 'dv converges. Since

J MM (2, &) dy
V>R

_ J 3 dv + j 27 M (3, &) (AL — M(2,E))d,
v|=R [v|=R
and

Zlgn)(3)] < J: wld<—. |2l < j: a(0ldr < -

it is not hard to prove IMZ €M M2, f)fldv converges. Therefore, we can con-
clude that the last integral in (4.9) converges. Hence, the existence of G(¢,¢)
is proved as well as it is given by the formula (4.3). This completes the proof
of Lemma 4.1. |

4.1. Pointwise estimates in the Fourier space

Using the fundamental solution G(¢,x) of (1.5)—(1.6), the solution of prob-
lem (2.1) is given by

a(t, &) = G(t, &)iig (),

where G(z,¢) is set in (4.3). Therefore, as a prompt consequence of Theorems
2.2, 2.3, and 2.4, we have the following pointwise estimates for G(t, ¢) for all
cases with respect to xg and by.

Corollary 4.2. Let us consider kg > 0 and by > 0, and let G be given by
(4.3). Then, G satisfies the pointwise estimate in the Fourier space: |G(1,&)| <
Ce= O with p(&) set in (2.4).
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Corollary 4.3. Let us consider ko >0 and by =0, and let G be given by
(4.3). Then, G satisfies the pointwise estimate in the Fourier space: |G(1,&)| <
Ce=1C) with 5(&) set in (2.24).

Corollary 4.4. Let us consider kg =0 and by > 0, and let G be given by
(4.3). Then, G satisfies the pointwise estimate in the Fourier space: |G(t,&)| <
Ce=SC with {(&) set in (2.42).

4.2. L2-estimates via the fundamental solution

By means of the fundamental solution, we know that the solution of
problem (1.5)—(1.6) is given by the formula

(4.10) u(t,x) = (G(t,) * o) (),

where * denotes the standard convolution with respect to x € R.

Therefore, through Corollaries 4.2, 4.3, and 4.4, we are able to express
the L>-estimates for the solution operator G(7)* (and its derivatives) set by the
solution formula (4.10). More precisely, we have:

Proposition 4.5. Let us consider kg > 0 and by > 0. Let us also take k > 0
and 1 < p <2. Then the solution (4.10) satisfies the following decay estimates:

101

@11) (105G (1) * uoll 2 < C(1+ 1) 555l ., + Ce (|05 uo| .-

for some constants C,c > 0.

Proposition 4.6. Let us consider 19 >0 and by=0, and also take
k>0,/>0,1<p<2 Then the solution (4.10) satisfies the following decay
estimates:

4.12)  [105G(1) * upll 2 < C(1 + 1) S5 D6 ug|| ., + C(1+ 1) 2|05 wo]| .2
K b
e
L1 P2

up|

and

(4.13) (105G (1) * uol| 2 < C(1+ 1) 760 6]y

Kk b
7+C€70t||6ku0” 2 if —=—
b Y P P2

for some constants C,c > 0.

Proposition 4.7. Let us consider xyg=0 and by >0, and also take
k>0,/>0,1<p<?2 Then the solution (4.10) satisfies the following decay
estimates:
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_ Ll

4.14)  05G(0) * woll 2 < CO+ ) I g, + C(1L+ 0) 7705 uo| 2
b

K
i~
L1 P2

and

(4.15) [0%G(0) * uo|l ;2 < C(1 + )5 97|y

L11+C€7d||6,1;“0”u if p_:_
1

for some constants C,c > 0.

Remark 1. In the case of different wave speeds, one sees from the decay
estimates (4.12) and (4.14) that the decay estimates are of the regularity-loss
type because the decay rate (1 + ¢) 2 s only achieved by assuming the addi-
tional /th-order regularity for the initial data. On the other hand, in the case
of equal wave speeds, the decay estimates (4.13) and (4.15) are not of regularity-
loss type, by having similar features to the decay rate (4.11).

The proofs of Propositions 4.5, 4.6 and 4.7 are derived by the standard
argument based on Theorems 2.2, 2.3 and 2.4, respectively. Indeed, to derive
such desired results we apply the Plancherel theorem and then analyze the low
and high frequency region. We omit the detailed proofs here since they will
be encompassed by the proofs of Theorems 5.4, 5.5, and 5.6 in the subsequent
Section 5. See also [9, 16] for similar approach to other models.

5. Main results on stability

In this section, we show the energy estimate and the decay estimate of
solutions to the problem (1.5)—(1.6). The key argument is the energy method
in the Fourier space, which was implicitly deduced in the proofs presented in
Section 2.

5.1. Energy estimates

Theorem 5.1. Let us suppose that xy >0 and by > 0, and also take on
up € H® for s > 0. Then the solution u of problem (1.5)—(1.6), which is given by
the formula (4.10), belongs to the class u e C°([0, c0); H*) and satisfies the energy
estimate:

t
(5.1) lae() 7+ + JO 103u(D) | 77:2dT < Cllusllzy,

for some constant C > 0.
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Theorem 5.2. Let us suppose that kg >0 and by =0, and also take on
ugpe H® for s =0. Then the solution u of problem (1.5)—(1.6), which is given
by the formula (4.10), lies in the class u e C°([0,0); H*) and satisfies the energy
estimates:

! Kk b
(52) |ww;+jM@@mHMSamﬁs il
0 Pr P2

and
2 L 2 2 R
(5.3) ) + | 10200 ode < Cllnlfy i 2=
0 P1 P2

for some constant C > 0.

Theorem 5.3. Let us suppose ko =0 and by >0, and also take on
uy € H*® for s >0. Then the solution u of problem (1.5)—(1.6), which is given
by the formula (4.10), is in the class ue C°(0,0); H*) and satisfies the energy
estimates:

! x b
(54) u(t)13;- +J 63u(t)|pesdt < Clluollfye if — #—
0 P12

and
2 L 2 2 . Kk b
(5.5) le)lZ + | 102u@l3odr < Cluolll if =
0 Pr P2

for some constant C > 0.

Proof of Theorems 5.1, 5.2, and 5.3. In the previous section, we have
just proved that the solution u is given by the formula (4.10) for all cases.
Furthermore, in Section 2, we have shown that this solution satisfies, in each
specific case, the energy estimates (2.22), (2.34) and (2.40), (2.49) and (2.55)
in the Fourier space. Therefore, the completion of the proof is done as
follows.

Case 19 > 0 and by > 0. Multiplying (2.22) by (% +1)° and integrating
the resultant inequality with respect to ¢ and &, we have

t
() 7. + L(Hﬁx(v, P @rr + 1030w, 2) @)l 72 )dT < Clluollzy.,

which gives (5.1).
Case ko > 0 and by = 0. Here, we apply the same argument to (2.34) and
(2.40). Then we arrive at
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t
() 775 + L(naiv(r)nzu F 0335 + 1832 s + 1020 (@) |7 )dx
< Clluo| 775

for p,b # p,x, and

t
() + L(H@i(v, V)@l + 1300, 2) (@) )T < Cluol|7:

for p;b = p,x. These estimates imply that (5.2) and (5.3) hold true.
Case ko = 0 and by > 0. Now, we note that the estimates (2.49) and (2.55)
lead to

t
()75 + j0<||axv<r>||?,.\-fz + 02w 3rss + 102212 + 105 0(2) 17751 ) T
< Clluoll7s

for p,b # p,x, and

2
HS

lee ()17 + JO(Ilﬁx(w POzt + 10308,2) (0) [ 77:2)de < Cluo]

for p;b = p,k. These estimates also provide (5.4) and (5.5). O

5.2. Decay rate estimates

Theorem 5.4. Under the same assumptions of Theorem 5.1, let us addi-
tionally consider uy € L? for 1 < p <2. Then the solution satisfies the following
decay estimate:

1%u(t) | e < CL+ D5 (ol + uoll ), 0<k <5
for some constant C > 0.

Theorem 5.5. Under the same assumptions of Theorem 5.2, let us addi-
tionally consider up € L? for 1<p<2 and s> (1/p—1/2)/3, and set the

number
1 1 1
spi==43s—|——=]=>0.
w=3{y-(5-3)}

Then the solution satisfies the decay estimates:
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1l 1y _k
105 u(O) | preeieen < CQL+ )0 76(|[ug]| 1, + Nt 7+), OskS%J}
g
0%u()) 2 < CL+ 0 luol o + uollyr)s  dsp <k <
b

K
lf_7é_7
P P2

where £ = (1/p—1/2)/3 +k/3; and

L1y k K b
O5u(®) e < CO+ 0D (fugl|p + [full ), Ok <5 if —=

P P2

for some constant C >0 in both cases.

Theorem 5.6. Under the same assumptions of Theorem 5.3, let us addi-

tionally consider uye L? for 1 <p<2 and s=(1/p—1/2)/2, and set the
number

Then the solution satisfies the decay estimates:

L 1k
l0u(dll g < €L+ 059 ugll, + ol ). 0 <k <y
Lok
lokudll> < €L+ 07 ugll o + ol ) rp <k <s

b
lf'i;é_a
P P2

where £ = (1/p—1/2)/2+k/2; and

_Ll_Iy_k ., K
[0%u() | e < CL+8) 5275 (lug | 1 + Nuolls), O <k <s, if —

for some constant C > 0 in both cases.

Proof of Theorems 5.4, 5.5, and 5.6. Since the proof of Theorem 5.4 is
the same (not to say simpler) as the other proofs, we only detail the proof of
Theorems 5.5 and 5.6. Furthermore, because of the similarity of the arguments
(again not to say simpler) in case x/p; = b/p,, we only give the proof in case
k/p1 # b/p,.

Firstly, we prove Theorem 5.5 with x/p, # b/p,. Since 5(&) > &8 for
|€] <1 and 5(&) > c&72 for |¢] > 1, we have
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A R e LI
R

SCL(52+1> (k) 226 g en(€V | (£)] 2l

IA

CJ5<1<52 + 1)Ayf(k+/)£2kefcf(’t|a0(é)‘Zdé

+ CJ (52 + l)sf(kJrf) 2k€76572t|ﬁ0(€)|2df
1<1=1

=Jr+Jy.

In the low frequency region, employing the Holder inequality, we estimate

J<C J ey (&)|2de < Cl|ee

l¢[<1

Lr(lg < 1) ”uOHLp

< C(1+ 00D g |,

for k >0, where p’ and r are satisfied 1/p+1/p’ =1 and 1/r+2/p’ =1 for
1 < p <2. On the other hand, in the high frequency region, we also estimate

Ty < C sup (&Y et J 1(52 +1)°)i0 ()2 < C(1+ 0 |Juo|| 7«
cl=

[€/>1
for k >0 and 7 > 0. Therefore, combining these estimates, we obtain
(5:6)  Nku()|Fwen < C(1+ 1) 5D
For

2+ 0 uole.

substituting /= (1/p —1/2)/3 4+ k/3 in (5.6), we arrive at

Ll 1y 1
0% ()| v < C(L+ 1) 0D ([ug |7, + lluol 770)-

On the other hand, for
i{3s— (;—;)} <k<s,

substituting / = s — k in (5.6), we get

105 (r)

These estimates lead to the desired estimates in Theorem 5.5.

22 < CO+ 0" luoll7, + lluoll77.)-




for |
(5.7)
For
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Secondly, we prove Theorem 5.6 with x/p, # b/p,. Because of 5(&) > c&*
¢ <1 and (&) = c&72 for |¢] = 1, we also have

1 u(D) |3 e < C(L+ )T D7 g |12, 4 C(1+ 1)~ [fuo |-

1 I 1

replacing /= (1/p—1/2)/2+k/2 in (5.7), we arrive at

Ll 1y 1
0% u(O)| v < C(L+ 1) 207D (|Jug |7, + lluol 772)-

On the other hand, for

1 1 1

replacing / =s—k in (5.7), we get

loxu(n)liz: < C(1+ 0" (luolz, + luolz-)-

Thus, these estimates also lead to the desired estimates in Theorem 5.6. There-

fore,

the proofs are over by noting that the remaining estimates follow similarly.

O

Remark 2. We finally stress the novelties and improvements of this section

as follows.

(1)

(iii)

In case xyp >0 and by > 0, Theorems 5.1 and 5.4 provide, for the first
time, new decay rate estimates for the system (1.5)—(1.6), independently
of any relation among the coefficients and also without regularity-loss of
decaying.

In case xyp > 0 and by = 0, Theorems 5.2, and 5.5, also prove for the first
time new decay estimates as expressed therein. They are optimal in sense
of Section 3 but in case of different wave speeds we note that the results
are of regularity-loss type.

In case k9 =0 and by > 0, as already mentioned before, Liu-Kawashima
[9] and Mori [11] derived the energy estimate and the decay estimate
previously. The estimates achieved in Theorems 5.3 and 5.6 are optimal
and revealed the relationship between the decay estimates and the physical
parameters.

A. Physical modeling and mathematical aspects

For the sake of completeness, and also to clarify the physical modeling

behind the mathematical system (1.1), we bring to our context the main ideas
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developed recently by Alves et al. [1]. Then, as a mathematical curiosity, we
employ different geometric aspects on distance in R to consider the model along
the whole real line.

Our starting point is the Boltzmann theory for viscoelastic materials where
the stress ¢ is assumed to rely on both the instantaneous strain ¢ and the strain
history {g(s); 0 <s <t¢}. Thus, according to Boltzmann [3, 4], the following
stress-strain constitutive law is in place

t

AD o) = E{e(t) —J

0

ot = S)ls)ds | = E{a(1) ~ (g +5)0).

where the constant E stands for the Young modulus of elasticity, and the
function g is known as relaxation measure of the material or simply memory
kernel.

On the other hand, in what concerns a thin 3D-beam

[-L, L] x @ ={(x,p,2); xe [-L,L] and (y,z) € Q}

of length L >0 and uniform cross section 2 C R*> made of homogeneous

isotropic viscoelastic material, the following Timoshenko Hypotheses (H) are

assumed (cf. Priiss [12, Chapter 9] and Drozdov-Kolmanovskii [5, Chapter 5]):

(Hy) (0,0) is the center of Q so that [,z dydz = [, y dydz = 0;

(H) diam Q « L so that the thickness of the beam is very thin when com-
pared to length;

(H3) the bending takes place only on the (x,z)-plane, that is, normal stresses
in the y-axis are negligible in general,

(Hy) the matrix of stress tensor o = (o), ;. is considered with only two
effective stresses, namely, oi; and o3, and the remaining stresses are
neglected (g, ~0).

Additionally, the displacements and the rotation angle in the (x,z)-plane
are expressed by means of the following Notations (N):

(N1) u=u(t,x): the longitudinal displacement of points lying on the hori-
zontal x-axis;

(N2) ¥ =(t,x): the angle of rotation for the normal to the x-axis;

(N3) wi(t,x,z) = u(t,x) + zy(¢,x): the longitudinal displacement;

(Ng) wa(t,x,z) = ¢(t,x): the vertical beam displacement.

Under the above structural conditions, we can derive the linear model (1.1)
which refers to viscoelastic Timoshenko beams with a viscoelastic coupling on
both the shear force and the bending moment. To clarify this statement, we
proceed in some steps as designed below.

Stress-Strain relations. Taking into account the relevant stresses g;; and o3
in the Boltzmann context (A.1), then the stress-strain relations for viscoelastic
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Timoshenko beams (cf. [5, 12]) are given by
(A.2) 0'13(1‘, ) = 2kG{813(l, ) — Ko(gl * 813)(1, )},
(A.3) on(t,) = E{en(t,) — bo(gz * enn)(t,-)},

where G is the constant shear modulus, k is a shear correction coefficient,
g:=rog1 and g := bog, are relaxation memory kernels with non-negative
weighted coefficients xy and by that might cancel the viscoelastic effect on
bending and shear deformations, and the index - denotes points lying in the
(x,z)-plane.

Elastic strains. Now, following again [5] (see (2.4) on page 339 therein), the
standard formulas for the components of the infinitesimal elastic strain tensor
can be exhibited by

(a4 el =5 (G TR0 = 300 + 400,
(A.5) enn(t, ) : o, (t,-) = ux(t,x) + 2. (2, ).

T ox

Shear and Bending relations. Going back to postulations (Hj)-(H4) and
following once again [12] (see the identities (9.10)—(9.11) therein) the standard
formulas for the bending moment and the shear force are given by

(A6)  S(t.x) = J

ous(t, )dydz  and M(t,x):J zon (1, )dyds,
Q

Q

respectively, where we have normalized the equations in (A.6) by the area
A := [, dydz and inertial moment I := [, z? dydz of the cross section Q.

Viscoelastic coupling on the shear force. Regarding (A.2), (A.4), and the first
identity in (A.6), the following (not so classical) viscoelastic law for the shear
force comes up

(A.7) S(t,x) = kGA{(¢ + ¥)(1,x) — wo(g1 * (. +¥))(2,X)},
which has been firstly derived in [1, Section 2].

Viscoelastic coupling on the bending moment. Now, using (A.3), (A.5), the
second identity in (A.6), and also (Hj), one gets the (classical) viscoelastic law
for the bending moment

(A.8) M(1,x) = E{y.(1,x) — bo(g2 * ) (1, )},

which eliminates the variable u = u(t,x) corresponding to the longitudinal
displacement on the x-axis. In other words, it can be interpreted as a too
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small horizontal displacement (u ~0) when compared to the vertical displace-
ment ¢ and the rotation angle  in the beam deformation.

Motion equations for beams of Timoshenko-Ehrenfest type. In order to derive
the desired viscoelastic system (1.1), we are going to consider a well accepted
model in differential equations encompassing bending and shear deformations.
To do so, we follow the model for vibrations of prismatic beams developed by
Timoshenko-Ehrenfest, cf. [6, 14, 15], namely,

pAG,(t,x) — Sx(t,x) =0,
(A9) {pl;&t,(t, x) — M. (t,x)+ S(t,x) =0,

for (¢,x) € (0,00) x (—L, L), where p represents the mass density per area unit.
The remaining variables are already set above.

The viscoelastic model on bounded intervals. Under the above structured steps,
we can deduct the viscoelastic Timoshenko system related to (1.1) but on
bounded domains. Indeed, replacing (A.7)—(A.8) in (A.9), we arrive at the next
viscoelastic beam system:

pA¢tt - kGA((¢‘C + lp)x - Ko(gl * (¢‘C + w)x)) = O’
(AlO) phptt - El(lpxx - bo(gz * lpxx))
+ kGA((4 + ) — r0(g1 * (¢ + ¥))) =0,

for (t,x) e (0,00) X (=L, L). Therefore, by using the notation
(A.11) P = pA, pr=pl, K =kGA, b=EI,

one can see that (A.10) corresponds to (1.1) but for spatial x-variable belonging
to the bounded domain (—L,L), L > 0. For xy >0 and by =0, (A.10) means
the Timoshenko system with viscoelastic coupling on shear force, being treated
for x € [0, L] only recently in [1]. On the other hand, when xy = 0 and by > 0,
then (A.10) reduces to the classical viscoelastic Timoshenko system firstly intro-
duced by [2], and subsequently studied by several authors up to nowadays,
still in bounded intervals like [0,L]. Finally, for xo >0 and by > 0, (A.10)
represents a fully damped viscoelastic Timoshenko-Ehrenfest system. A slightly
modified version of (A.10) was considered by Grasselli et al. [7], where the
authors present the system with history, nonlinear source terms and external
forces.

The model posed on 1D-spaces: a mathematical curiosity. Under the physical
meanings aforementioned, a simple way to reach (1.1) by means of (A.10)-
(A.11) it is, mathematically speaking, to take the limit L — oo over the interval
(—L, L), that is, to consider the beam length L > 0 large enough to understand
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the problem over R = Llim (=L,L). This procedure may lead to the issue of

— 00

infinite beam length. On the other hand, according to the stereographic pro-
jection 7 of R onto the unit sphere S'—{(0,1)} C R?, one can see R as a
subset of the extended real line 2 := {+00} U R which in turn is isometric to S’
with some proper notion of distance, called chordal metric, leading to the notion
of finite length in S' — {(0,1)}. For all details of these statements we refer to
[13, Chapter 4] (see §4.2 therein). Below we present the main ideas adapted to
our case. Indeed, one knows that

n:R—S'—{(0,1)}

2x  x2—1
X m(x) = 1+x2'x24+1

is a bijection with explicit inverse

n':8"—{(0,1)}) - R

X1

X = (x1,%2) = 7' (x) = —x

Thus, we can extend 7 to a bijection I7 : # — S' by setting IT(+0) = (0, 1).
Moreover, we can define a metric d on # by the formula

d(x, y) = [ (x) = ()|
According to [13, Theorem 4.2.1], we have

2

(1+ |x)'?
2[x — y|

(1 ) 21+ )2

if xeR, y=+o0,

d(x,y) =
if x,yeR.

The metric d is called the chordal metric on %, and by definition one can
see that the map I7 is an isometry from (#,d) to S ! with the Euclidean metric
induced by R?, which proves the desired. Moreover, we observe that: (i) the
metric space 2 = IT'(S') is compact, being known as one-point compactifi-
cation of R; (ii) the metric topology on R induced by the chordal metric is
the same as the Euclidean topology, once = maps R homeomorphically onto
the open subset S' — {(0,1)} of S'. Therefore, the metric space R, seen as a
subset of # and with the notion of chordal distance therein, is bounded. More
specifically, we have

R=n"'(S'—{(0,)}) = 17"(S' —{(0,)}) c T'(S") = &.
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Under the above mathematical concerns, one can interpret the issue of

infinite beam length as a beam given by the intrinsic measure of S' — {(0,1)}
in S', which is for sure finite. In conclusion, this fact provides mathematical
aspects, just for the reader’s curiosity, to consider the viscoelastic beam system
(A.10) in (0,00) x R, by leading to the beginning problem (1.1).
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