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Intrinsic Polynomial Squeezing for 
Balakrishnan-Taylor Beam Models 

Eduardo H. Gomes Tavares, Marcio A. Jorge Silva, Vando Narciso, 

and André Vicente 

Abstract We explore the energy decay properties related to a model in extensible 

beams with the so-called energy damping. We investigate the influence of the 

nonlocal damping coefficient in the stability of the model. We prove, for the first 

time, that the corresponding energy functional is squeezed by polynomial-like 

functions involving the power of the damping coefficient, which arises intrinsically 

from the Balakrishnan-Taylor beam models. As a consequence, it is shown that such 

models with nonlocal energy damping are never exponentially stable in its essence. 

1 Introduction 

In 1989 Balakrishnan and Taylor [3] derived some prototypes of vibrating extensible 

beams with the so-called energy damping. Accordingly, the following one dimen-

sional beam equation is proposed 

.∂t tu − 2ζ
√

λ∂xxu + λ∂xxxxu − α

[
ˆ L

−L

(

λ|∂xxu|2 + |∂tu|2
)

dx

]q

∂xxtu = 0, (1) 

where .u = u(x, t) represents the transversal deflection of a beam with length . 2L >

0 in the rest position, .α > 0 is a damping coefficient, . ζ is a constant appearing 

in Krylov-Bogoliubov’s approximation, .λ > 0 is related to mode frequency and 
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spectral density of external forces, and .q = 2(n+β)+1 with .n ∈ N and .0 ≤ β < 1
2
. 

We still refer to [3, Sect. 4] for several other beam equations taking into account 

nonlocal energy damping coefficients, as well as [2, 4, 6, 7, 12, 17, 18] for associated 

models. A normalized n-dimensional equation corresponding to (1) can be seen as 

follows 

.∂t tu − κΔu + Δ2u − α

[
ˆ

Ω

(

|Δu|2 + |∂tu|2
)

dx

]q

Δ∂tu = 0, (2) 

where we denote .λ = 1 and .κ = 2ζ ; . Ω may represent an open bounded of . R
n; and 

the symbols . Δ and . Δ2 stand for the usual Laplacian and Bi-harmonic operators, 

respectively. Additionally, in order to see the problem within the frictional context 

of dampers, we rely on materials whose viscosity can be essentially seen as friction 

between moving solids. In this way, besides reflecting on a more challenging model 

(at least) from the stability point of view, one may metaphysically supersede the 

viscous damping in (2) by a nonlocal frictional one so that we cast the model 

.∂t tu − κΔu + Δ2u + α

[
ˆ

Ω

(

|Δu|2 + |∂tu|2
)

dx

]q

∂tu = 0. (3) 

The main goal of this paper is to explore the influence of the nonlocal damping 

coefficient in the stability of problem (3). Unlike the existing literature on extensible 

beams with full viscous or frictional damping, we are going to see for the first time 

that the feature of the energy damping coefficient 

.Eq(t) := Eq(u, ut )(t) =
[
ˆ

Ω

(

|Δu(t)|2 + |∂tu(t)|2
)

dx

]q

, q > 0, (4) 

not only prevents exponential decay, but also gives us a polynomial range in terms 

of q whose energy is squeezed and goes to zero polynomially when time goes to 

infinity. More precisely, by noting that the corresponding energy functional is given 

by 

. Eκ(t) := Eκ(u, ut )(t) =
ˆ

Ω

(

|Δu(t)|2 + |∂tu(t)|2 + κ|∇u(t)|2
)

dx, κ ≥ 0,

(5) 

then it belongs to an area of variation between upper and lower polynomial limits as 

follows 

.c0 t
− 1

q ≲ Eκ(t) ≲ C0 t
− 1

q , t → +∞, (6) 

for some constants .0 < c0 ≤ C0 depending on the initial energy .Eκ(0), κ ≥ 0. 

Indeed, such a claim corresponds to an intrinsic polynomial range of (uniform) 

stability and will follow as a consequence of a more general result that is rigorous 

stated in Theorem 2. See also Corollary 1. In particular, we can conclude that (3) is
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not exponentially stable when dealing with weak initial data, that is, with solution 

in the standard energy space. See Corollary 2. 

In conclusion, Theorem 2 truly reveals the stability of the associated energy 

.Eκ(t), which leads us to the concrete conclusions provided by Corollaries 1 and 2, 

being pioneering results on the subject. Due to technicalities in the well-posedness 

process, we shall work with .q ≥ 1/2. In Sect. 2 we prepare all notations and initial 

results. Then, all precise details on the stability results shall be given in Sect. 3. 

1.1 Previous Literature, Comparisons and Highlights 

In what follows, we are going to highlight that our approach and results are different 

or else provide generalized results, besides keeping more physical consistency in 

working exactly with (4) instead of modified versions of it. Indeed, there are at 

least three mathematical ways of attacking the energy damping coefficient (4) along 

Eq. (3) (or (2)), namely: 

1. Keeping the potential energy in (4), but neglecting the kinetic one; 

2. Keeping the kinetic energy in (4), but neglecting the potential one; 

3. Keeping both potential and kinetic energies, but considering them under the 

action of a strictly (or not) positive function .M(·) as a non-degenerate (or 

possibility degenerate) damping coefficient. 

In the first case, equation (3) becomes to 

.∂t tu − κΔu + Δ2u + α

[
ˆ

Ω

|Δu|2dx

]q

∂tu = 0 in Ω × (0,∞). (7) 

This is, for sure, the most challenging case once the damping coefficient becomes 

now to a real degenerate coefficient. In [5, Theorem 3.1], working on a bounded 

domain . Ω with clamped boundary condition, it is proved the following with . q = 1

in (7): for every .R > 0, there exist constants .CR = C(R) > 0 and . γR = γ (R) > 0

depending on R such that 

.Eκ(t) ≤ CR Eκ(0) e−γR t , t > 0, (8) 

only holds for every regular solution u of (3) with initial data .(u0, u1) satisfying 

.‖(u0, u1)‖(H 4(Ω)∩H 2
0 (Ω))×H 2

0 (Ω) ≤ R. (9) 

We stress that (8) only represents a local stability result since it holds on every ball 

with radius .R > 0 in the strong topology .(H 4(Ω) ∩ H 2
0 (Ω)) × H 2

0 (Ω), but they 

are not independent of the initial data. Moreover, as observed by the authors in [5], 

the drawback of (8) and (9) is that it could not be proved in the weak topology
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.H 2
0 (Ω) × L2(Ω), even taking initial data uniformly bounded in . H 2

0 (Ω) × L2(Ω).

Although we recognized that our results for (3) can not be fairly compared to such a 

result, we do can conclude by means of the upper and lower polynomial bounds (6) 

that the estimate (8) will never be reached for weak initial data given in . H 2
0 (Ω) ×

L2(Ω). Therefore, our results act as complementary conclusions to [5] by clarifying 

such drawback raised therein, and yet giving a different point of view of stability by 

means of (6) and its consequences concerning problem (3). 

In the second case, Eq. (3) falls into 

.∂t tu − κΔu + Δ2u + α

[
ˆ

Ω

|∂tu|2dx

]q

∂tu = 0 in Ω × (0,∞). (10) 

Unlike the first case, here we have an easier setting because the kinetic damping 

coefficient provides a kind of monotonous (polynomial) damping whose computa-

tions to achieve (6) remain unchanged (and with less calculations). This means that 

all results highlighted previously still hold for this particular case. In addition, they 

clarify what is precisely the stability result related to problems addressed in [19, 20], 

which in turn represent particular models of abstract damping given by Aloui et al. 

[1, Section 8]. In other words, in terms of stability, our methodology provides a way 

to show the existence of absorbing sets with polynomial rate (and not faster than 

polynomial rate depending on q) when dealing with generalized problems relate to 

(10), subject that is not addressed in [19, 20]. 

Finally, in the third case let us see Eqs. (2) and (3) as follows 

. ∂t tu − κΔu + Δ2u + M

(
ˆ

Ω

(

|Δu|2 + |∂tu|2
)

dx

)

A∂tu = 0 in Ω × (0,∞),

(11) 

where operator A represents the Laplacian operator .A = −Δ or else the identity 

one .A = I . Thus, here we clearly have two subcases, namely, when . M(·) ≥ 0

is a non-degenerate or possibly degenerate function. For instance, when . M(s) =
αsq , s ≥ 0, and .A = −Δ, then we go back to problem (2). For this (degenerate) 

nonlocal strong damping situation with .q ≥ 1, it is considered in [11, Theorem 3.1] 

an upper polynomial stability for the corresponding energy, which also involves a 

standard nonlinear source term. Nonetheless, we call the attention to the following 

prediction result provided in [11, Theorem 4.1] for (2) addressed on a bounded 

domain . Ω with clamped boundary condition and .q ≥ 1: By taking finite initial 

energy .0 < Eκ(0) < ∞, then .Eκ(t) given in (5) satisfies 

.Eκ(t) ≤ 3Eκ(0)e−δ
´ t
0 ‖u(s)‖2qds, t > 0, (12) 

where .δ = δ( 1
Eκ (0)

) > 0 is a constant proportional to .1/Eκ(0). 

Although the estimate (12) provides a new result with an exponential face, it  

does not mean any kind of stability result. Indeed, it is only a peculiar estimate
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indicating that prevents exponential decay patterns as remarked in [11, Section 4]. 

In addition, it is worth pointing out that our computations to reach the stability result 

for problem (3) can be easily adjusted to (2), even for .q ≥ 1/2 thanks to a inequality 

provided in [1, Lemma 2.2]. Therefore, through the polynomial range (6) we provide 

here a much more accurate stability result than the estimate expressed by (12), by  

concluding indeed that both problems (2) and (3) are never exponentially stable in 

the topology of the energy space. 

On the other hand, in the non-degenerate case .M(s) > 0, s ≥ 0, but still taking 

.A = −Δ, a generalized version of (11) has been recently approached by Sun and 

Yang [16] in a context of strong attractors, that is, the existence of attractors in the 

topology of more regular space than the weak phase space. In this occasion, the 

.C1-regularity for .M > 0 brings out the non-degeneracy of the damping coefficient, 

which in turn allowed them to reach interesting results on well-posedness, regularity 

and long-time behavior of solutions over more regular spaces. Such assumption of 

positiveness for the damping coefficient has been also addressed by other authors for 

related problems, see e.g. [8–10]. From our point of view, in spite of representing a 

nice case, the latter does not portray the current situation of this paper so that we do 

not provide more detailed comparisons with such a non-degenerate problems, but 

we refer to [5, 8–11, 16] for a nice survey on this kind of non-degenerate damping 

coefficients. Additionally, we note that the suitable case of non-degenerate damping 

coefficient .M(s) > 0, s ≥ 0, and .A = I in (11) has not been considered in the 

literature so far and shall be concerned in another work by the authors in the future. 

At light of the above statements, one sees e.g. when . M(s) = αsq , s ≥ 0,

and .A = I , then problem (11) falls into (3), being a problem not yet addressed 

in the literature that brings out a new branch of studies for such a nonlocal (possibly 

degenerate) damped problems, and also justifies all new stability results previously 

specified. 

2 The Problem and Well-Posedness 

Let us consider again the beam model with energy damping 

.∂t tu+Δ2u−κΔu+α

[
ˆ

Ω

(

|∂tu|2 + |Δu|2
)

dy

]q

∂tu = 0 in Ω×(0,∞), (13) 

with clamped boundary condition 

.u =
∂u

∂ν
= 0 on ∂Ω × [0,∞), (14) 

and initial data 

.u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), x ∈ Ω. (15)
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To address problem (13)–(15), we introduce the Hilbert phase space (still called 

energy space) 

. H := H 2
0 (Ω) × L2(Ω),

equipped with the inner product .
〈

z1, z2
〉

H
:=

〈

Δu1,Δu2
〉

+
〈

v1, v2
〉

for . zi =
(ui, vi) ∈ H, i = 1, 2, and norm .‖z‖H =

(

‖Δu‖2 + ‖v‖2
)1/2

, for . z = (u, v) ∈

H, where .〈u, v〉 :=
ˆ

Ω

uv dx, .‖u‖2 := 〈u, u〉 and .‖z‖2
H

:= 〈z, z〉H. 
In order to establish the well-posedness of (13)–(15), we define the vector-valued 

function .z(t) := (u(t), v(t)), .t ≥ 0, with .v = ∂tu. Then we can rewrite system 

(13)–(15) as the following first order abstract problem 

.

{

∂tz = Az +M(z), t > 0,

z(0) = (u0, u1) := z0,
(16) 

where .A : D(A) ⊂ H→ H is the linear operator given by 

.Az = (v,−Δ2u), D(A) := H 4(Ω) ∩ H 2
0 (Ω), (17) 

and .M : H→ H is the nonlinear operator 

.M(z) = (0, κΔu − α‖z‖2q
H

v), z = (u, v) ∈ H. (18) 

Therefore, the existence and uniqueness of solution to the system (13)–(15) relies 

on the study of problem (16). Accordingly, we have the following well-posedness 

result. 

Theorem 1 Let .κ, α ≥ 0 and .q ≥ 1
2
be given constants. If .z0 ∈ H, then (16) has a 

unique mild solution z in the class . z ∈ C([0,∞),H).

In addition, if .z0 ∈ D(A), then z is a regular solution lying in the class 

. z ∈ C([0,∞),D(A)) ∩ C1([0,∞),H).

Proof To show the local version of the first statement, it is enough to prove that . A

given in (17) is the infinitesimal generator of a .C0-semigroup of contractions . eAt

(which is very standard) and . M set in (18) is locally Lipschitz on . H which will be 

done next. Indeed, let .r > 0 and .z1, z2 ∈ H such that .max{‖z1‖H, ‖z2‖H} ≤ r . We  

note that 

. 

∥

∥

∥‖z1‖2q
H

v1 − ‖z2‖2q
H

v2
∥

∥

∥ ≤
[

‖z1‖2q
H

+ ‖z2‖2q
H

]

‖v1 − v2‖

+
∣

∣

∣
‖z1‖2q

H
− ‖z2‖2q

H

∣

∣

∣
‖v1 + v2‖. (19)
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The first term on the right side of (19) can be estimated by 

. 

[

‖z1‖2q
H

+ ‖z2‖2q
H

]

‖v1 − v2‖ ≤ 2r2q‖z1 − z2‖H.

Now, from a suitable inequality provided in [1]1 we estimate the second term as 

follows 

. 

∣

∣

∣
‖z1‖2q

H
− ‖z2‖2q

H

∣

∣

∣
‖v1 + v2‖ ≤ 4qr2q‖z1 − z2‖H.

Plugging the two last estimates in (19), we obtain 

. 

∥

∥

∥‖z1‖2q
H

v1 − ‖z2‖2q
H

v2
∥

∥

∥

H
≤ 2(2q + 1)r2q‖z1 − z2‖H.

Thus, 

. ‖M(z1) −M(z2)‖H ≤
(

κ + 2(2q + 1)αr2q
)

‖z1 − z2‖H,

and . M is locally Lipschitz in . H. 

Hence, according to Pazy [15, Chapter 6], if .z0 ∈ H (.z0 ∈ D(A)), there exists a 

time .tmax ∈ (0,+∞] such that (16) has a unique mild (regular) solution 

. z ∈ C([0, tmax),H) (z ∈ C([0, tmax),D(A)) ∩ C1([0, tmax),H)).

Moreover, such time .tmax satisfies either the conditions .tmax = +∞ or else . tmax <

+∞ with 

. lim
t→t−max

‖z(t)‖H = +∞. (21) 

In order to show that .tmax = +∞, we consider .z0 ∈ D(A) and the corresponding 

regular solution z of (16). Taking the inner product in . H of (16) with z, we obtain 

.
1

2

d

dt

[

‖z(t)‖2H + κ‖∇u(t)‖2
]

+ α‖z(t)‖2q
H

‖∂tu(t)‖2 = 0 t ∈ [0, tmax). (22) 

Integrating (22) over .(0, t), t ∈ [0, tmax), we get 

. ‖z(t)‖H ≤ (1 + c'κ)1/2‖z0‖H, t ∈ [0, tmax).

1 See [1, Lemma 2.2]: Let X be a normed space with norm .‖ · ‖X . Then, for any .s ≥ 1 we have 

.
∣

∣‖u‖s
X − ‖v‖s

X

∣

∣ ≤ s max{‖u‖X, ‖v‖X}s−1‖u − v‖X, ∀ u, v ∈ X. (20)
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Here, the constant .c' > 0 comes from the embedding .H 2
0 (Ω) →ͨ H 1

0 (Ω). The  

last estimate contradicts (21). Hence, .tmax = +∞. Using a limit process, one can 

conclude the same result for mild solutions. 

The proof of Theorem 1 is then complete. 

3 Lower-Upper Polynomial Energy’s Bounds 

By means of the notations introduced in Sect. 2, we recall that the energy functional 

corresponding to problem (13)–(15) can be expressed by 

.Eκ(t) =
1

2

[

‖(u(t), ∂tu(t))‖2H + κ‖∇u(t)‖2
]

, t ≥ 0. (23) 

Our main stability result reveals that .Eκ(t) is squeezed by decreasing polynomial 

functions as follows. 

Theorem 2 Under the assumptions of Theorem 1, there exists an increasing 

function .J : R+ → R
+ such that the energy .Eκ(t) satisfies 

. 

[

2q+1αqt +
[

Eκ(0)
]−q

]−1/q
≤Eκ(t)≤

[

q

J (Eκ(0))
(t − 1)+ +

[

Eκ(0)
]−q

]−1/q

,

(24) 

for all .t > 0, where we use the standard notation .s+ := (s + |s|)/2. 

Proof Taking the scalar product in .L2(Ω) of (13) with . ∂tu, we obtain 

.
d

dt
Eκ(t) = −α||(u(t), ∂tu(t))||2q

H
‖∂tu(t)‖2, t > 0. (25) 

Let us prove the lower and upper estimates in (24) in the sequel. 

Lower Bound We first note that 

. ||(u(t), ∂tu(t))||2q
H

‖∂tu(t)‖2 ≤ 2q+1 [Eκ(t) ]q+1 ,

and replacing it in (25), we get 

.
d

dt
Eκ(t) ≥ −2q+1α [Eκ(t) ]q+1 , t > 0. (26)
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Thus, integrating (26) and proceeding a straightforward computation, we reach the 

first inequality in (24). 

Upper Bound Now, we are going to prove the second inequality of (24). To do so,  

we provide some proper estimates and then apply a Nakao’s result (cf. [13, 14]). 

We start by noting that 

.||(u(t), ∂tu(t)||2q
H

‖∂tu(t)‖2 ≥ ‖∂tu(t)‖2(q+1), (27) 

and replacing (27) in (25), we get 

.
d

dt
Eκ(t) + α‖∂tu(t)‖2(q+1) ≤ 0, t > 0, (28) 

which implies that .Eκ(t) is non-increasing with .Eκ(t) ≤ Eκ(0) for every .t > 0. 

Also, integrating (28) from t to .t + 1, we obtain 

.α

ˆ t+1

t

‖∂tu(s)‖2(q+1) ds ≤ Eκ(t) − Eκ(t + 1) := [ D(t) ]2. (29) 

Using Hölder’s inequality with .
q

q+1
+ 1

q+1
= 1 and (29), we infer 

.

ˆ t+1

t

‖∂tu(s)‖2ds ≤
1

α
1

q+1

[ D(t) ]
2

q+1 . (30) 

From the Mean Value Theorem for integrals, there exist .t1 ∈ [t, t + 1
4
] and . t2 ∈

[t + 3
4
, t + 1] such that 

.‖∂tu(ti)‖2 ≤ 4

ˆ t+1

t

‖∂tu(s)‖2ds ≤
4

α
1

q+1

[ D(t) ]
2

q+1 , i = 1, 2. (31) 

On the other hand, taking the scalar product in .L2(Ω) of (13) with u and 
integrating the result over .[t1, t2], we have  

. 

ˆ t2

t1

Eκ(s) ds =
ˆ t2

t1

‖∂tu(s)‖2 ds +
1

2
[(∂tu(t1), u(t1)) − (∂tu(t2), u(t2))]

−
α

2

ˆ t2

t1

||(u(s), ∂tu(s))||2q
H

(∂tu(s), u(s)) ds. (32)



630 E. H. Gomes Tavares et al.

Let us estimate the terms in the right side of (32). Firstly, we note that through 

Hölder’s inequality, (31) and Young’s inequality, we obtain 

. |(∂tu(t1), u(t1)) − (∂tu(t2), u(t2))| ≤ d

2
∑

i=1

‖∂tu(ti)‖‖Δu(ti)‖

≤
8d

α
1

2(q+1)

[ D(t) ]
1

q+1 sup
t1≤s≤t2

[Eκ(s)]1/2

≤
128 d2

α
1

q+1

[ D(t) ]
2

q+1 +
1

8
sup

t1≤s≤t2

Eκ(s),

where the constant .d > 0 comes from the embedding .H 2
0 (Ω) →ͨ L2(Ω). 

Additionally, using that .Eκ(t) ≤ Eκ(0), we have  

. ‖(u(t), ∂tu(t))‖2q
H

≤ 2q [Eκ(t) ]q ≤ 2q [Eκ(0) ]q .

From this and (30) we also get 

. 

∣

∣

∣

∣

ˆ t2

t1

||(u(s), ∂tu(s))||2q
H

(∂tu(s), u(s)) ds

∣

∣

∣

∣

≤
22q+3d2 [Eκ(0) ]2q

α
− q

q+1

[ D(t) ]
2

q+1

+
1

8α
sup

t1≤s≤t2

Eκ(s).

Regarding again (30) and replacing the above estimates in (32), we obtain 

.

ˆ t2

t1

Eκ(s) ds ≤ K (Eκ(0)) [ D(t) ]
2

q+1 +
1

8
sup

t1≤s≤t2

Eκ(s), (33) 

where we set the function . K as 

. K(s) :=

[

64 d2 + 1

α
1

q+1

+ 2(q+1)d2α
2q+1
q+1 s2q

]

> 0.

Using once more the Mean Value Theorem for integrals and the fact that . Eκ(t)

is non-increasing, there exists .ζ ∈ [t1, t2] such that 

.

ˆ t2

t1

Eκ(s) ds = Eκ(ζ )(t2 − t1) ≥
1

2
Eκ(t + 1),
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and then 

. sup
t≤s≤t+1

Eκ(s) = Eκ(t) = Eκ(t + 1) + [D(t) ]2 ≤ 2

ˆ t2

t1

Eκ(s) ds + [D(t) ]2.

Thus, from this and (33), we arrive at 

. sup
t≤s≤t+1

Eκ(s) ≤ [ D(t) ]2 + 2

ˆ t2

t1

Eκ(s)ds

≤ [ D(t) ]2 + 2K (Eκ(0)) [ D(t) ]
2

q+1 +
1

4
sup

t≤s≤t+1

Eκ(s),

and since .0 < 2
q+1

≤ 2, we obtain 

. sup
t≤s≤t+1

Eκ(s) ≤
4

3
[ D(t) ]

2
q+1

[

[ D(t) ]
2q

q+1 + 2K (Eκ(0))

]

. (34) 

Observing that .[ D(t) ]
2q

q+1 ≤ [Eκ(t) + Eκ(t + 1)]
q

q+1 ≤ 2
q

q+1 [Eκ(0) ]
q

q+1 , and 

denoting by 

.J(s) :=
(

4

3

)q+1
[

(2s)
q

q+1 + 2K(s)
]q+1

> 0, (35) 

and also recalling the definition of .[D(t)]2 in (29), we obtain from (34) that 

. sup
t≤s≤t+1

[Eκ(s)]q+1 ≤ J (Eκ(0)) [ Eκ(t) − Eκ(t + 1) ].

Hence, applying e.g. Lemma 2.1 of [14] with .Eκ = φ, .J (Eκ(0)) = C0, and .K = 0, 

we conclude .Eκ(t) ≤
[

q
J(Eκ (0))

(t − 1)+ + 1
[

Eκ (0)
]q

]−1/q

, which ends the proof of 

the second inequality in (24). 

The proof of Theorem 2 is therefore complete. 

Remark 1 It is worth point out that we always have 

. 

[

22q+1αqt +
[

Eκ(0)
]−q

]−1/q
≤

[

q

J (Eκ(0))
(t − 1)+ +

[

Eκ(0)
]−q

]−1/q

,

(36) 

so that it makes sense to express .Eκ(t) between the inequalities in (24). Indeed, 

from the definition . J in (35) one easily sees that .J (Eκ(0)) ≥ 1
22q+1α

, from where 

one concludes (36) promptly.
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Corollary 1 (Polynomial Range of Decay) Under the assumptions of Theorem 2, 

the energy functional .Eκ(t) defined in (23) decays squeezed as follows 

.c0 t
− 1

q ≲ Eκ(t) ≲ C0 t
− 1

q as t → +∞, (37) 

for some constants .0 < c0 ≤ C0 depending on the initial energy . Eκ(0).

In other words, .Eκ(t) decays polynomially at rate .t−1/q (.q ≥ 1/2) as .t → +∞.

⨅⨆

Corollary 2 (Non-exponential Stability) Under the assumptions of Theorem 2, 

the energy .Eκ(t) set in (23) never decays exponentially as .e−at (.a > 0) as .t → +∞.

⨅⨆
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