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Abstract. This work is concerned with new results on long-time dy-
namics of a class of hyperbolic evolution equations related to extensi-
ble beams with three distinguished nonlocal nonlinear damping terms.
In the first possibly degenerate case, the results feature the existence
of a family of compact global attractors and a thickness estimate for
their Kolmogorov’s ε-entropy. Then, in the non-degenerate context,
the structure of the helpful nonlocal damping leads to the existence of
finite-dimensional compact global and exponential attractors. Lastly,
in a degenerate and critical framework, it is proved the existence of a
bounded closed global attractor but not compact. To the proofs, we
provide several new technical results by means of refined estimates that
open up perspectives for a new branch of nonlinearly damped problems.

1. Introduction

In the present article, we address the following evolution problem of hy-
perbolic type with nonlocal nonlinear damping term{

utt + κAu+A1u+ f(u) + k
(
Eα(u, ut)

)
ut = hλ, t > 0,

u(0) = u0, ut(0) = u1,
(1.1)
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where κ is non-negative parameter, A and A1 are linear self-adjoint positive
definite operators related to Laplacian and bi-harmonic differential opera-
tors, respectively, f(u) corresponds to a nonlinear source of lower order and
growth exponent p, hλ = λh represents an external force with λ ∈ [0, 1] and
h lying in a Hilbert space (H, ∥ · ∥), and

Eα(u, ut) = ∥Aαu∥2 + ∥ut∥2, α ∈ [0, 1], (1.2)

with fractional powers Aα to be well defined later. Our study encompasses
the abstract model (1.1) including three possibilities concerning the scalar
function k(·) as follows:
(k.1) k(·) is a monomial-like function on [0,∞) with exponent q ≥ 1/2,

namely,

k(s) = γsq, s ≥ 0, with γ > 0;

(k.2) k(·) is any C1-function on [0,∞) such that k(s) > 0, s ≥ 0;
(k.3) k(·) is a bounded Lipschitz function on [0,∞) such that k ≡ 0 on

[0, 1] and k(s) is strictly increasing for s > 1.

Through the coming statements, we try to be more transparent as possi-
ble in clarifying that problem (1.1)-(1.2) with damping coefficient obeying
the three possibilities (k.1)-(k.3) has not been studied in the literature,
by reaching in each specific case a level of results concerning its long-time
behavior. In what follows, we state our main achievements.

1.1. The possibly degenerate case (k.1). In such a case the “polyno-
mial” structure of the function k(·) says that the nonlocal damping coef-
ficient can degenerate whenever the argument Eα(u, ut) vanishes, and the
rate of degeneracy (of such unknown degenerate points) is determined by
the exponent q. Additionally, the long-time dynamics of the system (1.1)
is characterized by a “polynomial behavior” of type 1/q, which can be very
slow when q is very large. Within this scenario, our main achievements are
stated in Sections 4 and 5 whose highlights are presented as follows:

(1) We prove a new key inequality (see Proposition 4.9) that gives a suit-
able estimate for the difference of two trajectory solutions of (1.1). Moreover,
it will be very useful in the proof of attractors (smooth properties) for criti-
cal aspects in terms of the exponent p. To its proof, we launch a generalized
Nakao’s inequality (see Proposition 4.8) whose proof is only given in Appen-
dix A.2. We point out that such a generalized Nakao’s lemma will be also
applicable to a wide class of autonomous and nonautonomous dynamical
systems in the near future.
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(2) Theorem 5.1 brings out the existence of a family of attractors for the
dynamical system associated with problem (1.1) as well as their geometric
and continuity properties. All statements in this result are reached for criti-
cal parameters p and subcritical power α ∈ [0, 1) due to lack of compactness
when α = 1 (which is the subject of the case (k.3)). To the proof of as-
ymptotic smoothness/compactness properties, we have combined our new
generalized Nakao’s inequality with an extended version of Khanmamedov’s
limit (see Proposition 4.11). For the continuity properties with respect to
parameter λ ∈ [0, 1], we still prove a new Lipschitz continuous result (Propo-
sition 4.12)

(3) In the subcritical framework with respect to both parameters α and p,
we can compute an estimate of Kolmogorov’s ε-entropy of the family of at-
tractors, see Theorem 5.2, which roughly speaking measures the “thickness”
of the compact attractors. For such an achievement, we have regarded the
stabilizability estimate provided by Corollary 4.10 instead of the above men-
tioned key inequality and this reveals why we must go down to the subcritical
case concerning the growth exponent p.

As far as we know, the model (1.1)-(1.2) in case (k.1), as well as the above
mentioned results, have not been addressed in the literature in the sense of
dynamical systems. In what concerns the stability to equilibrium, closer
models we have found are [9, 31]. In [9] an interesting local stability result
is presented with degenerate coefficient γ

[
∥Au∥2

]q
ut, but only when initial

data is taken regular and bounded, cf. [9, Theorem 3.1], which is not viable
in the study of dynamical systems in the pattern weak phase space. In [31]
the authors address the problem with nonlocal structural (strong) damping
γ
[
∥Au∥2+∥ut∥2

]q
Aut instead of the nonlocal weak one γ

[
∥Aαu∥2+∥ut∥2

]q
ut.

However, due to technical difficulties, in [31, Theorems 2.1 and 3.1] the
authors only deal with existence and stability of regular solution when q ≥ 1.
Here, we have surpassed such difficulties and all results are provided for
q ≥ 1

2 . Moreover, it is worth pointing out that our particular Corollary 4.5
(see also Remark 4.2) gives the precise answer on polynomial stability to the
related homogeneous problem, which finally clarifies the prediction estimate
stated in [31, Theorem 4.1]. We still stress that, in this case, all results
encompass the particular one with nonlocal averaged damping γ∥ut∥2qut,
that is, by neglecting the potential energy ∥Aαu∥2 in (1.2).

Finally, it is worth notifying that we also put some strength in the at-
tempts of proving finite dimensionality for the family of compact global at-
tractors obtained in Theorem 5.1. Indeed, throughout the whole Subsection
5.3, we clarified that it seems a delicate task due to the nature of such a
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damping term in case (k.1). Our conclusion is that we could not reach the
assumptions of the current abstract results in dynamical systems to prove
the finiteness of dimension in this case of nonlocal nonlinear possibly de-
generate damping and a keener theory must be done for this purpose. All
technical details concerning this issue are elucidated in Subsection 5.3.

1.2. The non-degenerate case (k.2). It is for sure a more touchable case
where we can thrive up to the existence of exponential attractors. As a
matter of fact, such an assumption in (k.2) is already employed by the
authors in [28, 29, 30] for related extensible beam models with nonlocal

averaged damping coefficient k
(
∥A1/4u∥2

)
instead of the energy damping

coefficient k
(
∥Aαu∥2 + ∥ut∥2

)
. Nevertheless, our results here improve and

generalize those provided in these references. Indeed, this case is treated in
Section 6 and the highlights are:

(1) In Theorem 6.3, we catch up the same results as in Theorem 5.1 by
aggregating finite fractal dimension and regularity of the existing global at-
tractors, and also the existence of generalized fractal exponential attractors,
that is, exponential attractors whose fractal dimensional is finite only in an
extended space. Moreover, thanks to a new stabilizability estimate in this
case (see Proposition 6.2), all these properties in Theorem 6.3 are achieved
for the critical source exponent p but still in the subcritical case with respect
to fractional power α.

(2) We also draw attention to the fact that positive constant functions
are also incorporated in this case, and for such a very specific situation
we can go further and prove the existence of time-dependent exponential
attractors (with finite fractal dimensional in the standard phase space). This
is the subject of Theorem 6.6 whose proof is mainly achieved by means of a
new smoothing property (see Proposition 6.5) in the subcritical aspect with

respect to p and assuming the commutative case A = A
1/2
1 .

Therefore, the above facts furnish a considerable extension of the previous
results achieved by authors in [28, 29, 30] concerning the criticality of the
exponent p and the existence of exponential attractors in the linear damping
case. Additionally, we note that standard examples of functions k(·) are:

k(s) = γe±s, k(s) =
γ

1 + s
, k(s) = γ, s ≥ 0, γ > 0.

1.3. The degenerate case (k.3). This is exactly the case where we address
the critical parameter α = 1 and it justifies why in the previous ones we only
get compact global attractors for subcritical powers α ∈ [0, 1). In fact, due
to lack of compactness of the damping coefficient in the standard phase
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space and since k(·) vanishes on [0, 1], then we shall prove in Section 7 the
existence of a noncompact global attractor even by assuming f = hλ = 0
in the model (1.1). Here, our main result is Theorem 7.1 that proves the
existence of a closed bounded (but not compact) global attractor for κ > 0
small enough, and due to the uniqueness of a global attractor (when it there
exists), this precludes the existence of a compact global attractor under the
assumptions considered in the present third case. We also point out that
our main result is an extension of the one stated in [12, Proposition 5.3.9]
where the particular case κ = 0 is considered. To our knowledge, the case
κ > 0 has never been approached and, although similar, it requires different
computations.

Examples of functions k(·) in this case are given as follows.

k(s) =

{
0, 0 ≤ s ≤ 1,

γ(1− s−1), s > 1,
k(s) =

{
0, 0 ≤ s ≤ 1,

γ(1− e−s), s > 1,
γ > 0.

We finish the introduction with the organization of the remaining paper:
In Section 2, we provide a physical motivation for studying the problem

(1.1) and its abstract formulation through concrete problems in mathemat-
ical physics;

In Section 3, we state the well-posedness of the model (1.1)-(1.2) under the
three conditions (k.1)-(k.3) and set the corresponding dynamical system.

From Section 4 to Section 7, we state and prove our main results con-
cerning the long-time dynamics of problem (1.1) as well as it is exhibited
additional remarks on the novelties introduced in the present article com-
paring to previous literature;

In Appendix A, we present some supplementary technical proofs.
Last, aiming reader’s convenience and also for the sake of selfcontainment,

in Appendix B, we remind several concepts and results coming from the
meaningful literature in dynamical systems.

2. Physical and mathematical patterns

In this section, our main goal is to clarify that the abstract problem (1.1)-
(1.2) is motivated by concrete problems in mathematical physics. More
precisely, we are going to set it up as an abstract version of the following
generalized n-dimensional extensible beam equation with nonlinear source
and nonlocal damping terms

utt−κ∆u+∆2u+f(u)+k
(
∥(−∆)αu∥2+∥ut∥2

)
ut = hλ in Ω×(0,∞), (2.1)
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where Ω ⊂ Rn is a bounded domain with smooth boundary ∂Ω, κ is a
non-negative constant, f(u) is a nonlinear source whose assumption will be
given in Section 3 (see Assumption 3.1), α ∈ [0, 1], hλ = λh with λ ∈ [0, 1]
and h ∈ L2(Ω), the notation ∥ · ∥ stands for the usual norm in L2(Ω), and
the scalar function k(·) is given in some class of functions encompassed by
(k.1)-(k.3). Additionally, problem (2.1) is considered with initial data

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (2.2)

and either physical boundary conditions: clamped

u =
∂u

∂ν
= 0 on ∂Ω, (2.3)

where ν is the outward normal to ∂Ω, or hinged (simply supported)

u = ∆u = 0 on ∂Ω. (2.4)

2.1. Physical motivation. In Balakrishnan [4] it is presented the damping
phenomena in flight structures with a free response. Accordingly, the one-
dimensional model is described in terms of the basic second-order dynamics
for the displacement variable y(t) as follows

ÿ(t) + ω2y(t) + γD(y(t), ẏ(t)) = 0, (2.5)

where ω is the mode frequency and γ > 0 corresponds to a (small) damping

coefficient. Here, ẏ = dy
dt stands for the time derivative. Since D(y(t), ẏ(t))

is responsible by damping effects, it has been firstly considered as function
depending on ẏ(t) only, namely,

signẏ(t), |ẏ(t)|ẏ(t), |ẏ(t)|αẏ(t), α ∈ (0, 1).

After that, employing Krylov-Bogoliubov’s approximation, Balakrishnan
and Taylor [5] suggested a new class of damping models, called by energy
damping, that are based on the instantaneous total energy of the system.
More specifically, denoting the instantaneous energy associated with the sys-
tem (2.5) by

E(t) = w2

2
[y(t)]2 +

1

2
[ẏ(t)]2,

then D(y(t), ẏ(t)) is represented as

D(y(t), ẏ(t)) = [E(t)]qẏ(t), q > 0. (2.6)

Thus, a straightforward computation with (2.5)-(2.6) reveals

d

dt
E(t) = −γ[E(t)]q[ẏ(t)]2,
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from where one sees that the stability of the system is driven by a possibly
degenerate nonlocal nonlinear dissipative term involving the energy as a
damping coefficient.

The same conclusion can be done with Krasovskii’s system presented in
[34], namely,

ÿ(t) + y(t) + k
(
[y(t)]2 + [ ˙y(t)]2

)
ẏ = 0, (2.7)

where the damping coefficient function k(·) is assumed to satisfy suitable
properties for the generation of a dissipative dynamical system in R2. See
also [12, Subsection 5.3.3] for more details on the infinite-dimensional version
of (2.7).

By following the same spirit of [5, Section 4], where the authors derive
some prototypes of models for uniform Bernoulli beams, we consider the fol-
lowing one-dimensional beam bending for a beam of length 2L and nonlocal
damping coefficient in terms of the energy

utt − 2ζ
√
λuxx + λuxxxx − γ

[ ∫ L

−L

(
λ|uxx|2 + |ut|2

)
dx

]q
uxxt = 0, (2.8)

where u = u(x, t) represents the transversal deflection of the beam, γ > 0 is
a damping coefficient, ζ is the constant coming from the Krylov-Bogoliubov
approximation and λ = 2ζw

σ2 with w being the mode frequency and σ2 the
spectral density of a Gaussian external force. Moreover, for materials whose
viscosity can be essentially seen as friction between moving solids, one may
interpret beam modes like (2.8) with nonlocal frictional damping term in-
stead of the viscous one. In this way, and also in accordance with the energy
damping (2.6), the following equation emerges

utt − κuxx + uxxxx + γ
[ ∫ L

−L

(
|uxx|2 + |ut|2

)
dx

]q
ut = 0, (2.9)

where we have normalized the equation with respect to an appropriate struc-
tural constant (λ = 1) and also denoted κ = 2ζ for the sake of notation.

Furthermore, in order to see (2.9) in the n-dimensional scenario, we con-
sider the representative mathematical model

utt − κ∆u+∆2u+ γ
[ ∫

Ω

(
|∆u|2 + |ut|2

)
dx

]q
ut = 0, (2.10)

where Ω is a bounded domain of the Euclidian space Rn, n ≥ 1.
Now, we note that (2.10) represents (2.1) with

f = hλ = 0, k(s) = γsq, α = 1,

E1(u, ut) =
∫
Ω

(
|∆u|2 + |ut|2

)
dx := ∥∆u∥2 + ∥ut∥2,
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and, roughly speaking, problem (2.1) is a particular case of (1.1)-(1.2) with

A = −∆ and A1 = ∆2. (2.11)

We still remark (1.1) can be seen as an infinite-dimensional generalization
of Balakrishnan-Taylor’s model (2.5)-(2.6) and Krasovskii’s system (2.7).

Finally, since the long-time dynamics of problem (2.1)-(2.4) seems to be
not studied in the literature so far, we feel motivated to investigate this issue
by means of the abstract version (1.1) whose precise details on its abstract
configuration are presented thereupon.

2.2. Abstract formulation of the problem. Below, we provide the pre-
cise details to set problem (2.1)-(2.4) up in an abstract formulation as
given in (1.1), not only formally taking operators as in (2.11). We no-
tice that the theory on functional analysis used below can be found e.g. in
[6, 12, 18, 37, 38, 47, 48].

Throughout this work, the notation (·, ·) stands for the L2-inner product,
and ∥ · ∥p denotes the Lp-norm, p ≥ 1. For commodity, when p = 2, we
design ∥ · ∥2 = ∥ · ∥. As usual, we denote by Hs(Ω) the L2-based Sobolev
space of the order s > 0 and by Hs

0(Ω) the closure of C∞
0 (Ω) in Hs(Ω). Let

us also set H = L2(Ω).
We first introduce the second-order (Laplacian) unbounded linear opera-

tor A by the formula

Au = −∆u, u ∈ D(A) = H2(Ω) ∩H1
0 (Ω).

It is well-known that A is a positively self-adjoint operator in H and, con-
sequently, we can define the fractional powers As of A, s ∈ R, with domains
D(As). The spaces D(As) are Hilbert spaces with inner product and norm

(u, v)D(As) = (Asu,Asv), ∥u∥D(As) = ∥Asu∥.

Now, we consider the fourth-order (Biharmonic) unbounded linear oper-
ator A1u = ∆2u with domain

u ∈ D(A1) =

{
H4(Ω) ∩H2

0 (Ω) for (2.3),

{u ∈ H4(Ω); u = ∆u = 0 on ∂Ω} for (2.4).

From the spectral theory, we know that there exists a complete orthonormal
basis {wj}j∈N in H consisting of eigenvectors of A1, say with eigenvalues
{σj}j∈N, such that

wj ∈ D(A1), A1wj = σjwj , j ≥ 1,
0 < σ1 ≤ σ2 ≤ · · · with σj → +∞ as j → +∞.
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Likewise, we can also define the fractional powers As
1 of A1, s ∈ R, with

domains D(As
1) which are Hilbert spaces with inner product and norm

(u, v)D(As
1)

= (As
1u,A

s
1v), ∥u∥D(As

1)
= ∥As

1u∥.

In both cases, we have densely inclusions

D(As1) ⊂ D(As2) and D(As1
1 ) ⊂ D(As2

1 ), s1, s2 ∈ R, s1 ≥ s2,

with continuous embedding when s1 ≥ s2 and compact embedding in case
s1 > s2.

Let us still stress some particular properties of the above operators and
spaces. In fact, we first note that D(A0

1) = D(A0) = H, and

D(A
1
2
1 ) =

{
H2

0 (Ω) for (2.3),

H2(Ω) ∩H1
0 (Ω) for (2.4).

Hence, in any case, concerning the boundary conditions, we have

D(A
1
2
1 ) ⊆ D(A) and ∥A

1
2
1 u∥ = ∥Au∥, ∀u ∈ D(A

1
2
1 ). (2.12)

More particularly, in the specific case of hinged boundary condition (2.4),
one knows that

Asu = A
s/2
1 u, ∀u ∈ D(As) = D(A

s/2
1 ), (2.13)

providing a good symmetry (say commutativity) to the extensible beam
model (2.1), and consequently to problem (1.1). Moreover, the next partic-
ular embedding inequalities will be useful throughout this text

σ1∥u∥2 ≤ ∥A
1
2
1 u∥

2, σ
1
2
1 ∥A

1/4
1 u∥2 ≤ ∥A

1
2
1 u∥

2, ∀ u ∈ D(A
1
2
1 ),

which can be taken for both boundary conditions.
Under the above construction, we are in the position to rewrite the con-

crete problem (2.1)-(2.4) in the following abstract class of second-order evo-
lution problems{

utt + κAu+A1u+ f(u) + k
(
∥Aαu∥2 + ∥ut∥2

)
ut = hλ, t > 0,

u(0) = u0, ut(0) = u1,

which fairly corresponds to the beginning problem (1.1)-(1.2), where the
damping coefficient is assumed to satisfy (k.1)-(k.3).
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3. Well-posedness and associated dynamical system

The asymptotic behavior of the solutions of problem (1.1) will be consid-
ered on the Hilbert phase space

H = D(A
1
2
1 )×H, ||(u, v)||2H = ∥A

1
2
1 u∥

2 + ∥v∥2, (u, v) ∈ H.

As we shall see later, H is natural finite energy space for (1.1), and if we
define the Sobolev phase space

Hα = D(Aα)×H, ||(u, v)||2Hα
= ∥Aαu∥2 + ∥v∥2, α ∈ [0, 1],

then

H = D(A
1
2
1 )×H ⊆ D(A)×H = H1, ||(·, ·)||H = ||(·, ·)||H1 .

The energy functional E(u(t), ut(t)) := E(t), t ≥ 0, corresponding to
problem (1.1) is expressed by

E(t) =
1

2

[
∥ut(t)∥2+∥A

1
2
1 u(t)∥

2+κ∥A
1
2u(t)∥2

]
+
(
f̂(u(t)), 1

)
−
(
hλ, u

)
, (3.1)

where we set hereafter f̂(u) =
∫ u
0 f(τ)dτ as the primitive of the function

f , whose assumptions are given below in order to address the Hadamard
well-posedness of problem (1.1) as well as its long-time dynamics results.

Assumption 3.1. Let f : R → R be a C1-function with f(0) = 0 and
satisfying

|f ′(u)| ≤ Cf ′(1 + |u|p), u ∈ R, (3.2)

−Cf −
cf
2
|u|2 ≤ f̂(u) ≤ f(u)u+

cf
2
|u|2, u ∈ R, (3.3)

for some constants Cf , Cf ′ > 0, cf ∈ [0, σ1) and growth exponent p ≤ 4
n−4

for n ≥ 5.

Remark 3.1. We observe that p∗ := 2(p + 1) ≤ 2n
n−4 can be the critical

(Sobolev) exponent for the continuous embedding D(A
1
2
1 ) ↪→ Lp∗(Ω), which

is not compact for the critical case p = 4
n−4 . From Section 4 to Section 6,

we present several results on long-time behavior in critical and subcritical
frameworks. We do not work in lower dimensions 1 ≤ n ≤ 4 since they do
not require compactness issues with respect to p, by holding the same results
with unchanged computations.
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3.1. Well-posedness.

Theorem 3.1 (Hadamard Well-Posedness). Let us assume that α, λ ∈ [0, 1],
hλ := λh ∈ H, and f satisfies Assumption 3.1. Then, problem (1.1) is
Hadamard well-posed for k(·) given in any case (k.1)-(k.3).

The proof of Theorem 3.1 is given below separately concerning the cases
(k.1)-(k.3). We start with the possibly degenerate case (k.1) in what con-
cerns the function k(·). The other cases (k.2)-(k.3) shall be treated at the
end of this section.

Well-posedness: case (k.1). In this case, problem (1.1) can be written
explicitly as{

utt + κAu+A1u+ γ
[
∥Aαu∥2 + ∥ut∥2

]q
ut + f(u) = hλ, t > 0,

u(0) = u0, ut(0) = u1.
(3.4)

Theorem 3.2 (Existence and Uniqueness). Let γ > 0, q ≥ 1
2 and κ ≥ 0 be

given constants. Additionally, let us take on α, λ ∈ [0, 1], hλ = λh ∈ H, and
Assumption 3.1.

(i) If (u0, u1) ∈ H, then there exists Tmax > 0 such that problem (3.4)
has a unique mild (weak) solution (uλ, uλt ) := (u, ut) in the class

(u, ut) ∈ C([0, Tmax),H).

(ii) If (u0, u1) ∈ D(A1) × D(A
1
2
1 ), then the solution U is more regular

(strong).

In both cases, we have Tmax = +∞.

Proof. We first define vector-valued function U(t) := (u(t), v(t)), t ≥ 0,
with v = ut. Then we can rewrite system (3.4) as the following first order
abstract problem {

Ut = AU +M(U), t > 0,

U(0) = (u0, u1) := U0,
(3.5)

where A : D(A) ⊂ H → H is the linear operator given by

AU = (v,−A1u), U ∈ D(A) := D(A1)×D(A
1
2
1 ), (3.6)

and M : H → H is the nonlinear operator

M(U) = (0,−κAu+ γ||U ||2qHαv − f(u) + hλ), U ∈ H. (3.7)

Therefore, the existence and uniqueness of solution to the system (3.4) rely
on the study of problem (3.5). To this purpose, and according to Pazy [41,
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Chapter 6], it is enough to prove that A given in (3.6) is the infinitesimal
generator of a C0-semigroup of contractions eAt (which is very standard) and
M set in (3.7) is locally Lipschitz on H (which will be done in Appendix
A.1 for the sake of completeness – here is the precise moment where, for
a technical reason, we consider q ≥ 1/2 as clarified later). From this, one
concludes the proof of items (i) and (ii).

It remains to check that Tmax = +∞, that is, both mild and regular
solutions are globally defined in time. Indeed, taking the scalar product in
H of (3.4) with ut, we obtain

d

dt
E(t) + γ||(u(t), ut(t))||2qHα ∥ut(t)∥2 = 0, t > 0. (3.8)

Integrating (3.8) over (0, t), t > 0, we get

E(t) + γ

∫ t

0
||(u(τ), ut(τ))||2qHα ∥ut(τ)∥2 dτ = E(0), t > 0. (3.9)

Now, using (3.3) and Young’s inequality with σ1ω := σ1−cf > 0, we have[ (
f̂(u(t)), 1

)
−
(
hλ, u(t)

) ]
≥ −

cf
2σ1

∥A
1
2
1 u(t)∥

2 − Cf |Ω| −
1

ωσ1
∥hλ∥2 −

ω

4
∥A

1
2
1 u(t)∥

2.

From the energy defined (3.1), we infer

E(t) ≥ ω

4
∥A

1
2
1 u(t)∥

2 +
1

2
∥ut(t)∥2 − Cf |Ω| −

1

ωσ1
∥h∥2

≥ ω

4
||(u(t), ut(t))||2H −Kλ,

where we denote Kλ =
[
Cf |Ω| + 1

ωσ1
∥hλ∥2

]
> 0. From this and (3.9), we

arrive at

ω

4
∥(u(t), ut(t))∥2H ≤ E(t) +Kλ ≤ E(0) +Kλ, ∀ t ∈ [0, Tmax). (3.10)

If Tmax < +∞, we have that ∥(u(t), ut(t))∥H blows up in finite time (cf. [41,
Theorem 1.4]), which is contraction with (3.10). Therefore, Tmax = +∞. □

Hereafter, for the sake of notation, we still omit the parameter λ ∈ [0, 1]
indexed to the solution of (3.4), by simply writing down uλ := u.

To the continuous dependence result, we invoke the following technical
lemma on the power function sr for r ≥ 1 (cf. [2]).
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Lemma 3.3 ([2, Lemma 2.2]). Let X be a normed space with norm ∥ · ∥X .
Then, for any r ≥ 1, we have∣∣∥u∥rX − ∥v∥rX

∣∣ ≤ rmax{∥u∥X , ∥v∥X}r−1∥u− v∥X , ∀ u, v ∈ X. (3.11)

Theorem 3.4 (Continuous Dependence). Under the assumptions of The-
orem 3.2, let U1 = (u1, u1t ) and U2 = (u2, u2t ) be two (strong or weak)
solutions of problem (3.4) corresponding to initial data U1

0 = (u10, u
1
1) and

U2
0 = (u20, u

2
1), respectively, and let T > 0 be any positive time. Then, there

exists a positive non-decreasing function Q(t) = Q
(
||U1

0 ||H, ||U2
0 ||H, t

)
such

that
||U1(t)− U2(t)||H ≤ Q(t)||U1

0 − U2
0 ||H, t ∈ [0, T ]. (3.12)

Proof. Setting w = u1 − u2 and F (w) = f(u1) − f(u2), the difference
U1−U2 = (w,wt) is a solution (in the strong and weak sense) of the following
problem{

wtt + κAw +A1w +
γ

2
Π1wt +

γ

2
Π2

[
u1t + u2t

]
+ F (w) = 0,

w(0) = u10 − u20 := w0, wt(0) = u11 − u21 := w1,
(3.13)

where
Πi(t) = ||U1(t)||2qHα + (−1)1−i||U2(t)||2qHα , i = 1, 2.

The next estimates are done for strong solutions, and the same result can
be achieved for weak solution through density arguments.

We still denote

Ew(t) = ∥wt(t)∥2 + κ∥A
1
2w(t)∥2 + ∥A

1
2
1w(t)∥

2, t ≥ 0. (3.14)

Taking the inner product in H of (3.13) with wt, we obtain

1

2

d

dt
Ew(t) +

γ

2
Π1(t)∥wt(t)∥2 = J1 + J2, (3.15)

where
J1 = −

(
F (w), wt

)
, J2 = − γ

2
Π2(t)

(
(u1t + u2t ), wt

)
.

Using D(A
1
2
1 ) ↪→ D(A) ↪→ D(A

1
2 ), it is easy to see that

||U1(t)− U2(t)||2H ≤ Ew(t) ≤ (1 + κµ0)||U1(t)− U2(t)||2H, (3.16)

where µ0 > is a constant independent of initial data. In what follows, we
will denote by C several constants that depend on the initial data. From
assumption (3.2), Hölder’s inequality with p

p∗ + 1
p∗ + 1

2 = 1, the embedding

D(A
1/2
1 ) ↪→ Lp∗(Ω), and (3.16), we can estimate the term J1 as follows∣∣J1

∣∣ ≤ Cf ′
[
|Ω|+ ∥u1(t)∥p

∗

p∗ + ∥u2(t)∥p
∗

p∗
] p
p∗ ∥w(t)∥p∗∥wt(t)∥
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≤ C∥w(t)∥p∗∥wt(t)∥ ≤ C∥A
1
2
1w(t)∥∥wt(t)∥ ≤ CEw(t), (3.17)

for some constant C > 0 depending on initial data. This is the precise
moment where we should use q ≥ 1/2 to the handling of Π2(t). Indeed,
since 2q ≥ 1, we can apply Lemma 3.3 to obtain the following estimate∣∣Π2(t)

∣∣ ≤ 2qmax{∥U1(t)∥Hα , ∥U2(t)∥Hα}2q−1
[
Ew(t)

] 1
2 ,

and then,∣∣J2

∣∣ ≤ γ

2

∣∣Π2(t)
∣∣[ ∥u1t (t)∥+ ∥u2t (t)∥

]
∥wt(t)∥ ≤ CEw(t), (3.18)

for some constant C > 0 depending on initial data. Replacing the above
estimates (3.17)-(3.18) in (3.15), we obtain

1

2

d

dt
Ew(t) +

γ

2
Π1(t)||wt(t)||2 ≤ CEw(t), (3.19)

for all t ∈ [0, T ] and some constant C > 0 depending on initial data. Hence,
integrating (3.19) on [0, t], applying Gronwall’s inequality and using (3.16),
we arrive at

||U1(t)− U2(t)||2H ≤ C0e
C1t||U1

0 − U2
0 ||2H,

for some constants Ci = Ci(||(ui0, ui1)||H) > 0, i = 0, 1, which proves (3.12)
with non-decreasing function Q(t) := C0e

C1t as desired. □

Well-posedness: cases (k.2)-(k.3). Concerning the well-posedness of
problem (1.1) with function k(·) given in cases (k.2) or (k.3), we can proceed
verbatim as in the proofs of Theorems 3.2 and 3.4 by noting that such cases
do not interfere in the locally Lipschitz property of operator M set by (3.7)
nor in the computations for the continuous dependence (3.12). Thus, we
shall omit the details here. □

For similar approaches in these cases, we refer to [29, Sect. 2] and [12,
Subsect. 5.3.3].

3.2. Generation of the dynamical system. For every hλ = λh ∈ H, λ ∈
[0, 1], Theorem 3.1 ensures the Hadamard well-posedness of problem (1.1)
and, consequently, the definition of a family of nonlinear C0-semigroups
Sλ(t) : H → H given by

Sλ(t)(u0, u1) = (uλ(t), uλt (t)) := (u(t), ut(t)), t ≥ 0, (3.20)

where (u, ut) is the unique solution of the abstract system (1.1). Moreover,
through the condition (3.12) one sees that Sλ(t) is locally Lipschitz contin-
uous on the phase space H.
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Accordingly, we also note the change of the time variable t 7→ −t in prob-
lem (1.1) turns itself into the same problem unless the damping term, which
is replaced by −k

(
Eα(u, ut)

)
ut instead of k

(
Eα(u, ut)

)
ut in (1.1). For such a

“inverse-time” problem, we can use the same arguments as in Theorems 3.2
and 3.4 for all cases concerning k(·) to prove the well-posedness. Therefore,
it allows us to set Sλ(t) as an evolution C0-group. This remark will be im-
portant for future discussions on full trajectories and invariance properties
of bounded sets in H.

Therefore, in what follows the dynamics of problem (1.1) shall be studied
through its corresponding dynamical system (H, Sλ(t)) originated by (3.20).
We start with the case (k.1) and then we treat the other cases (k.2) and
(k.3) as well.

To deal with computations in the next sections, it is worth keeping in
mind the energy E(t) given in (3.1) and, additionally, we set the notation
ω := 1− cf

σ1
> 0, as well as the following parameters and modified energy

Kλ =
[
Cf |Ω|+

1

σ1ω
∥hλ∥2

]
> 0 and Ẽ(t) = E(t) +Kλ, t ≥ 0. (3.21)

4. Technical results: case (k.1)

In what follows, except in Subsection 4.4, we will continue using the sim-
plified notation uλ := u, by neglecting (whenever there is no confusion) the
index λ ∈ [0, 1].

4.1. Dissipativity and gradient property. The first proposition gives us

lower and upper estimates for Ẽ(t). It reads as follows:

Proposition 4.1. Under the assumptions of Theorem 3.2, there exist con-

stants Cα,q,γ > 0 and C
Ẽ(0)

> 0 such that the modified energy Ẽ(t) satisfies[ q

Cα,q,γ
t+

1[
Ẽ(0)

]q ]− 1
q ≤ Ẽ(t) ≤

[ q

C
Ẽ(0)

(t−1)++
1[

Ẽ(0)
]q ]− 1

q
+8Kλ, (4.1)

for all t > 0, where we use the standard notation s+ := (s+ |s|)/2.

Proof. We initially prove the first inequality of (4.1). Taking the scalar

product in H of (3.4) with ut and using that d
dtẼ(t) = d

dtE(t), we obtain

d

dt
Ẽ(t) = − γ||(u(t), ut(t))||2qHα∥ut(t)∥2, t > 0. (4.2)

Now, using the embedding D(A
1/2
1 ) ↪→ D(A) ↪→ D(Aα), with constant

Cα > 0 to the second one, the expression for Ẽ(t) in (3.21), and also
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(3.10), we get

γ||(u(t), ut(t))||2qHα∥ut(t)∥2 ≤ γC2q
α ||(u(t), ut(t))||2qH∥ut(t)∥2

= γ
[4Cα

ω

]q[
Ẽ(t)

]q[
2Ẽ(t)

]
=

22q+1Cq
αγ

ωq

[
Ẽ(t)

]q+1
.

Returning to (4.2), one sees that

d

dt
Ẽ(t)

[
Ẽ(t)

]−(q+1) ≥ − 22q+1Cq
αγ

ωq
,

or else,

− 1

q

d

dt

[
Ẽ(t)

]−q ≥ − 22q+1Cq
αγ

ωq
. (4.3)

Simply solving this differential inequality, we arrive at

Ẽ(t) ≥
[ 22q+1Cq

αγq

ωq
t+

1[
Ẽ(0)

]q ]− 1
q
,

which proves the first inequality in (4.1) with Cα,q,γ = ωq

22q+1Cq
αγ

> 0.

Now, we are going to prove the second inequality of (4.1). To do so, we
provide some proper estimates and then apply Nakao’s method (cf. [40]).

Again from (3.10), we note that

ω

4
||(u(t), ut(t)||2H ≤ Ẽ(t) ≤ E(t) +K1, t ≥ 0, λ ∈ [0, 1]. (4.4)

We also observe that

γ||(u(t), ut(t)||2qHα∥ut(t)∥2 ≥ γ∥ut(t)∥2q∥ut(t)∥2 = γ∥ut(t)∥2(q+1), (4.5)

and replacing (4.5) in (4.2), we get

d

dt
Ẽ(t) + γ∥ut(t)∥2(q+1) ≤ 0, t > 0, (4.6)

which implies that Ẽ(t) is non-increasing. Also, integrating (4.6) from t to
t+ 1, we obtain

γ

∫ t+1

t
∥ut(s)∥2(q+1) ds ≤ Ẽ(t)− Ẽ(t+ 1) := [D(t) ]2. (4.7)

Using Hölder’s inequality with q
q+1 + 1

q+1 = 1 and (4.7), we infer∫ t+1

t
∥ut(s)∥2ds ≤

[ ∫ t+1

t
1

q+1
q ds

] q
q+1

[ ∫ t+1

t
∥ut(s)∥2(q+1)ds

] 1
q+1
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≤ 1

γ
1

q+1

[D(t) ]
2

q+1 . (4.8)

From the Mean Value Theorem for integrals, there exist t1 ∈ [t, t + 1
4 ] and

t2 ∈ [t+ 3
4 , t+ 1] such that

∥ut(ti)∥2 ≤ 4

∫ t+1

t
∥ut(s)∥2ds ≤

4

γ
1

q+1

[D(t) ]
2

q+1 . (4.9)

On the other hand, taking the scalar product in H of (3.4) with u and
integrating over [t1, t2], we have∫ t2

t1

[
∥A

1
2
1 u(s)∥

2 + κ∥A
1
2u(s)∥2 +

(
f(u(s)), u(s)

)
−
(
hλ, u(s)

) ]
ds

=

∫ t2

t1

∥ut(s)∥2ds+
2∑

i=1

Fi, (4.10)

where

F1 :=
(
ut(t1), u(t1)

)
−
(
ut(t2), u(t2)

)
,

F2 := − γ

∫ t2

t1

||(u(s), ut(s))||2qHα

(
ut(s), u(s)

)
ds.

From assumption (3.3), we have∫ t2

t1

(
f(u(s)), u(s)

)
ds ≥

∫ t2

t1

(
f̂(u(s)), 1

)
ds−

cf
2σ1

∫ t2

t1

∥A
1
2
1 u(s)∥

2ds.

Returning to (4.10) and using that ω = 1− cf
σ1
, we get∫ t2

t1

Ẽ(s) ds+
1

2

∫ t2

t1

[
κ∥A

1
2u(t)∥2 + ω∥A

1
2
1 u(t)∥

2
]
ds

≤ Kλ +
3

2

∫ t2

t1

∥ut(s)∥2ds+
2∑

i=1

Fi. (4.11)

Let us estimate the terms F1 and F2 as follows. First, we note that through
Hölder’s inequality, (4.4), (4.9) and Young’s inequality, we obtain

F1 ≤
2∑

i=1

∥ut(ti)∥∥u(ti)∥ ≤ 1

σ
1
2
1

2∑
i=1

∥ut(ti)∥∥A
1
2
1 u(ti)∥

≤ 8

(ωσ1)
1
2γ

1
2(q+1)

[D(t) ]
1

q+1 sup
t1≤s≤t2

[Ẽ(s)]
1
2
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≤ 128

ωσ1γ
1

q+1

[D(t) ]
2

q+1 +
1

8
sup

t1≤s≤t2

Ẽ(s).

Additionally, using again that D(A1/2) ↪→ D(Aα/2) with embedding constant
Cα, and (3.10), we have

∥(u(t), ut(t))∥2qHα ≤ Cq
α∥(u(t), ut(t))∥

2q
H ≤ 2qCq

α

ωq

[
Ẽ(0)

]q
.

From this, using (4.8), and proceeding as in the estimate for F1, we also get

F2 ≤
γ2qCq

α

ωqσ
1
2
1

[
Ẽ(0)

]q ∫ t2

t1

∥ut(s)∥∥A
1
2
1 u(s)∥ ds

≤ 2qγ
2q+1
2(q+1)Cq

α

ωqσ
1
2
1

[ Ẽ(0) ]q[D(t) ]
1

q+1 sup
t1≤s≤t2

∥A
1
2
1 u(s)∥2

≤ 2q+1γ
2q+1
2(q+1)Cq

α

ωq+1/2σ
1
2
1

[ Ẽ(0) ]q[D(t) ]
1

q+1 sup
t1≤s≤t2

Ẽ
1
2 (s)

≤ 22q+3γ
2q+1
q+1 C2q

α

ω2q+1σ1
[ Ẽ(0) ]2q[D(t) ]

2
q+1 +

1

8
sup

t1≤s≤t2

Ẽ(s).

Regarding again (4.8) and replacing the estimates for Fi, i = 1, 2, in
(4.11), we obtain∫ t2

t1

Ẽ(s) ds ≤ C
Ẽ(0)

[D(t) ]
2

q+1 +
1

4
sup

t1≤s≤t2

Ẽ(s) +Kλ, (4.12)

where we set

C
Ẽ(0)

:=
[ 3

2γ
1

q+1

+
128

ωσ1γ
1

q+1

+
22q+3γ

2q+1
q+1 C2q

α

ω2q+1σ1
[ Ẽ(0) ]2q

]
> 0.

Using once more the Mean Value Theorem for integrals and the fact that

Ẽ(t) is non-increasing, there exists ζ ∈ [t1, t2] such that∫ t2

t1

Ẽ(s) ds = Ẽ(ζ)(t2 − t1) ≥
1

2
Ẽ(t+ 1),

and then

sup
t≤s≤t+1

Ẽ(s) = Ẽ(t) = Ẽ(t+ 1) + [D(t) ]2 ≤ 2

∫ t2

t1

Ẽ(s) ds+ [D(t) ]2.
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Thus, from this and (4.12), we arrive at

sup
t≤s≤t+1

Ẽ(s) ≤ [D(t) ]2 + 2

∫ t2

t1

Ẽ(s)ds

≤ [D(t) ]2 + 2C
Ẽ(0)

[D(t) ]
2

q+1 +
1

2
sup

t≤s≤t+1
Ẽ(s) + 2Kλ,

and since 0 < 2
q+1 ≤ 2, we obtain

sup
t≤s≤t+1

Ẽ(s) ≤ [D(t) ]
2

q+1
[
2[D(t) ]

2q
q+1 + 4C

Ẽ(0)

]
+ 4Kλ. (4.13)

Observing that

2[D(t) ]
2q
q+1 ≤ 2

[
Ẽ(t) + Ẽ(t+ 1)

] q
q+1 ≤ 2

2q+1
q+1

[
Ẽ(0)

] q
q+1 ,

and denoting by

C
Ẽ(0)

:= 2q+1
[
2

2q+1
q+1

[
Ẽ(0)

] q
q+1 + 4C

Ẽ(0)

]q+1
> 0,

and also recalling the definition of [D(t)]2 in (4.7), we obtain from (4.13)
that

sup
t≤s≤t+1

[Ẽ(s)]q+1 ≤ C
Ẽ(0)

[ Ẽ(t)− Ẽ(t+ 1) ] + [8Kλ]
q+1.

Hence, applying [40, Lemma 2.1] with Ẽ = ϕ, C
Ẽ(0)

= C0, and K =

[8Kλ]
q+1, we conclude

Ẽ(t) ≤
[ q

C
Ẽ(0)

(t− 1)+ +
1[

Ẽ(0)
]q ]− 1

q
+ 8Kλ,

which ends the proof of the second inequality in (4.1).
The proof of Proposition 4.1 is therefore complete. □

Remark 4.1. It is worth point out that we always have[ q

Cα,q,γ
t+

1[
Ẽ(0)

]q ]− 1
q ≤

[ q

C
Ẽ(0)

(t− 1)+ +
1[

Ẽ(0)
]q ]− 1

q
, (4.14)

so that it makes sense to express Ẽ(t) between the inequalities in (4.1).
Indeed, from the definitions of Cα,q,γ and C

Ẽ(0)
in the proof of Proposition

4.1, one can easily see that Cα,q,γ ≤ C
Ẽ(0)

, from where one concludes directly

(4.14).

Some prompt consequences of Proposition 4.1 are given below.
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Corollary 4.2 (Dissipativity). Under the assumptions of Proposition 4.1,
the dynamical system (H, Sλ(t)) given by (3.20) is dissipative, that is, it has
a bounded absorbing set B ⊂ H, which is uniformly bounded with respect to
λ ∈ [0, 1]. In particular, there exists a positively invariant bounded absorbing
set.

Proof. From (4.1) and (4.4), we obtain

||(u(t), ut(t))||2H ≤ 4

ω

[ q

C
Ẽ(0)

(t− 1)+ +
1[

Ẽ(0)
]q ]− 1

q
+

32K1

ω
, t > 0,

for all λ ∈ [0, 1]. Thus, given an arbitrary bounded set B ⊂ H and taking
(u0, u1) ∈ B, there exists a time tB > 0 such that

||(u(t), ut(t))||2H ≤ 64K1

ω
, ∀ t ≥ tB. (4.15)

Therefore, B = B
(
0, 8

√
K1
ω

)H
constitutes a bounded absorbing set (uni-

formly with respect to λ ∈ [0, 1]) for (H, Sλ(t)). The construction of a
positively invariant bounded absorbing set is standard. □

Corollary 4.3 (Uniform Global Boundedness). Under the assumptions of
Proposition 4.1, the trajectory solutions of problem (3.4) are globally bounded
in time (uniformly with respect to λ ∈ [0, 1]) for initial data lying in bounded
sets. More precisely, given a bounded set B ⊂ H and initial data (u0, u1) ∈
B, then there exists a constant CB > 0 (depending only on B) such that

||Sλ(t)(u0, u1)||H = ||(u(t), ut(t))||H ≤ CB, ∀ t ≥ 0.

Proof. It is a direct consequence of Corollary 4.2 (see (4.15)) and Theorem
3.2-(i). □

Corollary 4.4 (Gradient Property). Under the assumptions of Proposition
4.1, the dynamical system (H, Sλ(t)) given by (3.20) is gradient, that is, there
exists a strict Lyapunov functional Φλ := Φ for (H, Sλ(t)). Moreover, the
Lyapunov functional Φ is bounded from above on any bounded subset of H
and the set ΦR = {U ∈ H ; Φ(U) ≤ R} is bounded in H for every R > 0.

Proof. Let us define Φ := E. From (3.8) one sees that the mapping

t 7→ E(u(t), ut(t)) = Φ(Sλ(t)U0)

is non-increasing for every U0 := (u0, u1) ∈ H. Additionally, from (3.9) and
(4.5), one gets

Φ(Sλ(t)U0) + γ

∫ t

0
∥ut(τ)∥2(q+1) dτ = Φ(U0), t > 0, (4.16)
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for every U0 ∈ H. From (4.16), it easily concludes that

Φ(Sλ(t)U0) = Φ(U0) ⇒ U0 ∈ Nλ, t > 0,

where Nλ is defined in (5.1). Since we know that

U0 ∈ Nλ ⇔ Sλ(t)(U0) = U0, t > 0,

then Φ is a strict Lyapunov functional for the dynamical system (H, Sλ(t)).
Moreover, from (4.16), we have Φ(Sλ(t)U0) ≤ Φ(U0) and, therefore, it

is trivial to conclude that Φ is bounded from above on bounded subsets
of H. Finally, if Φ(Sλ(t)U0) ≤ R, then in view of (4.4), we obtain that
Sλ(t)U0 = (u(t), ut(t)) satisfies

∥Sλ(t)U0∥2H ≤ 4

ω
(R+K1), t ≥ 0, λ ∈ [0, 1].

Hence, ΦR is a bounded set of H for every R > 0. □

Corollary 4.5 (Polynomial Decay Range). Under the assumptions of Propo-
sition 4.1, and additionally assuming that h ≡ 0 and Cf = 0 in (3.3), then
energy E(t) satisfies[ q

Cα,q,γ
t+

1[
E(0)

]q ]− 1
q ≤ E(t) ≤

[ q

CE(0)
(t− 1)+ +

1[
E(0)

]q ]− 1
q
, (4.17)

for all t > 0.

Proof. It is a promptly consequence of (4.1) with Kλ = 0 and Ẽ(t) = E(t)
in (3.21). □

Remark 4.2. Under the conditions of Corollary 4.5, the homogeneous prob-
lem related (3.4) is polynomially stable with rate 1/q. Moreover, (4.17)
shows that the energy E(t) is squeezed in a polynomial decay range with
optimal rate 1/q in the sense that it cannot be improved (by using (4.17)).
Therefore, under these circumstances, problem (3.4) is never exponential
stable in the homogeneous scenario with respect to mild (weak) solutions.

4.2. The set of stationary solutions.

Lemma 4.6. Under the assumptions of Theorem 3.2, the set

Nλ =
{
(u, 0) ∈ H; κAu+A1u+ f(u) = hλ

}
, λ ∈ [0, 1], (4.18)

is bounded in H, uniformly with respect to λ ∈ [0, 1]. In particular, if h ≡ 0
and Cf = 0 in (3.3), then N0 = {(0, 0)}.
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Proof. The existence of (at least one non-trivial) solution uλ := u for the
equation

κAu+A1u+ f(u) = hλ in H, (4.19)

will be given in the next result. Taking the inner product in H of (4.19)
with u, we have

∥A
1
2
1 u∥

2 + κ∥A
1
2u∥2 = −

(
f(u), u

)
+
(
hλ, u

)
. (4.20)

From assumption (3.3), we have

−
(
f(u), u

)
≤ Cf |Ω|+ cf∥u∥2 ≤ Cf |Ω|+

cf
σ1

∥A
1
2
1 u∥

2.

Also, from Young’s inequality with ω = 1− cf
σ1
> 0, we infer(

hλ, u
)
≤ ω

2
∥A

1
2
1 u∥

2 +
2

σ1ω
∥hλ∥2.

Going back to (4.20), we obtain

ω

2
∥A

1
2
1 u∥

2 + κ∥A
1
2u∥2 ≤ Cf |Ω|+

2

σ1ω
∥hλ∥2, (4.21)

from where one concludes that Nλ is bounded in H, uniformly with respect
to λ ∈ [0, 1]. In particular, if h ≡ 0 and Cf = 0, then (4.21) also implies
that u = 0 and thus N0 is the trivial null set. □

Lemma 4.7. Under the above notations and assumptions of Theorem 3.2,
if Cf > 0 in (3.3) and even if h ≡ 0, then it is possible to show that the set

N0 =
{
(u, 0) ∈ H; κAu+A1u+ f(u) = 0

}
has a nontrivial (weak) solution u ̸= 0 in H. Therefore, it is possible to
conclude that the set N0 (and more generally Nλ) has at least two stationary
solutions.

Proof. Since f(0) = 0, then obviously u = 0 is the trivial solution of

κAu+A1u+ f(u) = 0 in H. (4.22)

In what follows, let us deal with the case of nontrivial weak solution for
u for (4.22). To fix the ideas, we are going to assume, by simplicity, the
following concrete example for f

f(s) = |s|δs− σ|s|rs, σ > 0, 0 < r < δ ≤ p. (4.23)
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The Euler-Lagrange functional If : D(A
1/2
1 ) → R corresponding to (4.22)-

(4.23) is given by

If (u) =
1

2
∥A

1
2
1 u∥

2 +
κ

2
∥A

1
2u∥2 + 1

δ + 2
∥u∥δ+2

δ+2 −
σ

r + 2
∥u∥r+2

r+2.

We claim that for all σ > 0, If is coercive and bounded from below. In

fact, since 0 < r < δ, then from the embedding Lδ ↪→ Lr (with constant
C > 0), we get

If (u) ≥
1

2
∥A

1
2
1 u∥

2 +
1

δ + 2
∥u∥δ+2

δ+2 −
σC

r + 2
∥u∥r+2

δ+2 ≥
1

2
∥A

1
2
1 u∥

2 +D0, (4.24)

where

D0 = inf
τ≥0

{ τ δ+2

δ + 2
− σC

τ r+2

r + 2

}
.

Then, because of (4.24), one has that If is clearly coercive1 and bounded
from below.

On the other hand, by fixing 0 ̸= u ∈ D(A
1/2
1 ), and regarding the embed-

ding chain D(A
1/2
1 ) ↪→ D(A) ↪→ Lδ ↪→ Lr, we observe that there exists a

parameter σ0 > 0 such that If (u) < 0. For such a number σ0, we consider a

minimizing sequence, namely, a sequence (un) ⊂ D(A
1/2
1 ) such that

lim
n→+∞

If (un) = inf
v∈D(A

1
2
1 )

If (v) := ξ.

From the coerciveness of If , we have that (un) is bounded, and passing to

a sub-sequence if necessary, we infer un → u weakly in D(A
1/2
1 ). Due to the

compactness of the embeddings D(A
1/2
1 ) ↪→ Lδ+2 and D(A

1/2
1 ) ↪→ D(A) ↪→

Lr+2 (once r + 2 < δ + 2 ≤ p∗), then

ξ ≤ If (u) ≤ lim inf
n→+∞

If (un) = ξ.

This implies that u is a global minimizer and, therefore, a nontrivial critical
point of If , which in turn corresponds to a weak solution of (4.22) as desired.

□

1Given a Banach space (X, || · ||), we recall that a functional I : X → R is coercive if∥∥un

∥∥ → ∞ implies I
(
un

)
→ ∞.
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4.3. Key estimates with respect to critical parameters α and p∗.
The next result is a generalized version the one presented in [40, Lemma
2.1]. It will be useful in the next key stability inherent to our dynamical
system.

Proposition 4.8 (Nakao’s Generalized Lemma). Let ϕ(t) be a non-negative
continuous and K(t) be a non-negative non-decreasing functions on [0, T ),
T > 1, possibly T = ∞, such that

sup
t⩽s⩽t+1

[ϕ(s)]1+ρ ⩽ C0(ϕ(t)− ϕ(t+ 1)) +K(t), 0 ⩽ t ⩽ T − 1, (4.25)

for some C0 > 0 and ρ ≥ 0. Then, the following estimates hold:

(N.1) For ρ > 0, we have

ϕ(t) ⩽
(
C−1
0 ρ(t−1)++

(
sup

0⩽s⩽1
ϕ(s)

)−ρ)− 1
ρ +

[
K(t)

] 1
ρ+1 , 0 ⩽ t < T, (4.26)

where we consider usual notation s+ := (s+ |s|)/2.
(N.2) For ρ = 0, we have

ϕ(t) ⩽ sup
0⩽s⩽1

ϕ(s)
( C0

1 + C0

)[t]
+K(t), 0 ⩽ t < T, (4.27)

where [s] stands for the largest integer less than or equal to s ≥ 0.

Proof. It follows similar patterns as done in [40, Lemma 2.1] with proper
modifications in what concerns the function K(t), which in [40] is only as-
sumed as a positive constant K(t) := K > 0. Here, we address a more
general class of functions by assuming that K(t) can be a non-decreasing
function, instead of a positive constant only.

For the sake of completeness, we present a detailed proof in Appendix
A.2. □

Remark 4.3. Given a measurable function g : [0, t + 1] → R, t ≥ 0, we
observe that for any a, b ∈ [t, t+1] with a ≤ b, it holds the following estimate∣∣ ∫ b

a
g(s) ds

∣∣ ≤ sup
s∈[0,t+1]

sup
r∈[0,s]

∣∣ ∫ s

r
g(τ) dτ

∣∣. (4.28)

Indeed, to reach it we simply note that it holds the chain of inequalities∣∣ ∫ b

a
g(τ) dτ

∣∣ ≤ sup
s∈[a,t+1]

∣∣ ∫ s

a
g(τ) dτ

∣∣ ≤ sup
s∈[0,t+1]

sup
r∈[0,s]

∣∣ ∫ s

r
g(τ) dτ

∣∣.
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The next result provides a key inequality in the present article. It gives a
suitable estimate encompassing the difference of two trajectory solutions of
(3.4). To its proof, we combine refined and new arguments along with the
above Nakao generalized result and (4.28).

Before stating such a key result, let us remark that by virtue of Corollary
4.3 any trajectory solution is globally bounded in time on bounded sets
(uniformly with respect to λ ∈ [0, 1]). This fact will be highly used in the
next result. Also, in what follows, we will denote by CB > 0 several different
constants depending on a general bounded set B ⊂ H.

Proposition 4.9 (Key Inequality). Under the assumptions of Theorem 3.2,
let us also consider a bounded set B ⊂ H. Given U i = (ui0, u

i
1) ∈ B, i =

1, 2, we denote by Sλ(t)U
i = (ui(t), uit(t)), i = 1, 2, the respective trajectory

solution corresponding to the dynamical system (3.20). Then, there exists a
constant CB > 0 such that

||Sλ(t)U1 − Sλ(t)U
2||2H ≤

[
C−1
B q(t− 1)+ +

(
sup

0≤s≤1
||(w(s), wt(s))||2H

)−q]− 1
q

+ CB sup
0≤s≤t+1

[
∥Aαw(s)∥

2(q+1)
2q+1 + ∥w(s)∥2p+2

] 1
q+1 +

[
Jf (w(t), wt(t))

] 1
q+1 .

(4.29)

for all t > 0 and λ ∈ [0, 1], where we set w = u1−u2, F (w) = f(u1)−f(u2),
and

Jf (w(t), wt(t)) = 2 sup
s∈[0,t+1]

sup
r∈[0,s]

∣∣ ∫ s

r
(F (w(τ)), wt(τ))dτ

∣∣
+ 4q+1 sup

s∈[0,t+1]
sup

r∈[0,s]

∣∣ ∫ s

r
(F (w(τ)), wt(τ))dτ

∣∣q+1
. (4.30)

Proof. Let Sλ(t)U
1 − Sλ(t)U

2 := (w(t), wt(t)). Since we are dealing with
the difference of two trajectory solutions of problem (3.4), then we are going
to borrow some notations used in Theorem 3.4. Indeed, we first note that
(w,wt) is a solution (in the weak and strong sense) of problem (3.13). Also,
the functional Ew defined in (3.14) satisfies

||(w(t), wt(t))||2H ≤ Ew(t) ≤ µκ||(w(t), wt(t))||2H, (4.31)

form some constant µκ := 1 + κµ0 > 0, see (3.16), and the identity

d

dt
Ew(t) + γΠ1(t)∥wt(t)∥2 (4.32)

= −γΠ2(t)
(
u1t (t) + u2t (t), wt(t)

)
+ 2

(
F (w(t)), wt(t)

)
,
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which is essentially (3.15). In what follows, our first goal is to estimate the
right-hand side of (4.32).

First, using that [a2q + b2q] ≥ [a− b]2q, we get

γΠ1(t)∥wt(t)∥2 ≥ γ
[
∥u1t (t)∥2q + ∥u2t (t)∥2q

]
∥wt(t)∥2 ≥

γ

22q
∥wt(t)∥2(q+1).

(4.33)
Now, for q ≥ 1/2, we claim that

−γΠ2(t)
(
u1t (t) + u2t (t), wt(t)

)
≤ CB∥Aαw(t)∥

2(q+1)
2q+1 +

γ

22(q+1)
∥wt(t)∥2q+1,

(4.34)
for some constant CB > 0. Indeed, if ||Sλ(t)U1||Hα = ||Sλ(t)U2||Hα = 0,
there is nothing to do. Let us suppose then ||Sλ(t)U1||Hα+||Sλ(t)U2||Hα > 0.
From the Mean Value Theorem (MVT for short), there exists a number

ξϑ = ϑ||Sλ(t)U1||Hα + (1− ϑ)||Sλ(t)U2||Hα , ϑ ∈ (0, 1),

such that

Π2(t) = 2q

∫ 1

0

∣∣ξϑ∣∣2q−1
dϑ

[
||Sλ(t)U1||Hα − ||Sλ(t)U2||Hα

]
= 2q

∫ 1

0

∣∣ξϑ∣∣2q−1
dϑ

[
∥u1t (t)∥2 − ∥u2t (t)∥2

]
||Sλ(t)U1||Hα + ||Sλ(t)U ||Hα

+ 2q

∫ 1

0

∣∣ξϑ∣∣2q−1
dϑ

[
∥Aαu1(t)∥2 − ∥Aαu2(t)∥2

]
||Sλ(t)U1||Hα + ||Sλ(t)U ||Hα

.

Thus, we can write

−γΠ2(t)
(
u1t (t) + u2t (t), wt(t)

)
= η(t) + χ(t), (4.35)

where

η(t) = −2qγ

∫ 1

0

∣∣ξϑ∣∣2q−1
dϑ

[
∥u1t (t)∥2 − ∥u2t (t)∥2

]2
||Sλ(t)U1||Hα + ||Sλ(t)U ||Hα

χ(t) = −2qγ

∫ 1

0

∣∣ξϑ∣∣2q−1
dϑ

[
∥Aαu1(t)∥2 − ∥Aαu2(t)∥2

]
||Sλ(t)U1||Hα + ||Sλ(t)U ||Hα

(
u1t (t), wt(t)

)
− 2qγ

∫ 1

0

∣∣ξϑ∣∣2q−1
dϑ

[
∥Aαu1(t)∥2 − ∥Aαu2(t)∥2

]
||Sλ(t)U1||Hα + ||Sλ(t)U ||Hα

(
u2t (t), wt(t)

)
.

Using Young inequality with 2q+1
2(q+1) + 1

2(q+1) = 1, the term χ(t) can be

estimated as follows

|χ(t)| ≤ CB

[
||Sλ(t)U1||2Hα + ||Sλ(t)U2||2Hα

]
||Sλ(t)U1||Hα + ||Sλ(t)U ||Hα

∥Aαw(t)∥∥wt(t)∥
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≤ CB∥Aαw(t)∥
2(q+1)
2q+1 +

γ

22(q+1)
∥wt(t)∥2(q+1),

for some constant CB > 0, once 2q − 1 ≥ 0. Noting that η(t) ≤ 0 and
connecting the last estimate in (4.35), we arrive at (4.34).

Thus, collecting (4.33) and (4.34) with (4.32) , we obtain

d

dt
Ew(t) +

γ

22q+1
∥wt(t)∥2(q+1) ≤ CB

[
∥Aαw(t)∥

2(q+1)
2q+1 + 2

(
F (w(t)), wt(t)

) ]
.

(4.36)
Integrating (4.36) from t to t+ 1, we have

γ

22q+1

∫ t+1

t
∥wt(s)∥2(q+1)ds

≤ Ew(t)− Ew(t+ 1) + CB

∫ t+1

t
∥Aαw(s)∥

2(q+1)
2q+1 ds

+ 2
∣∣∣ ∫ t+1

t
(F (w(s)), wt(s))ds

∣∣∣ := [
G(t)

]2
. (4.37)

Now, from Hölder’s inequality with q
q+1 + 1

q+1 = 1 and (4.37), we have∫ t+1

t
∥wt(s)∥2ds ≤

[ ∫ t+1

t
∥wt(s)∥2(q+1)ds

] 1
q+1 ≤ 2

2q+1
q+1

γ
1

q+1

[
G(t)

] 2
q+1 , (4.38)

which implies (from the MVT for Integrals) that there exists t1 ∈ [t, t+ 1
4 ],

t2 ∈ [t+ 3
4 , t+ 1] such that

∥wt(ti)∥2 ≤ 4
[ ∫ t+1

t
∥wt(s)∥2ds

]
≤ 2

4q+3
q+1

γ
1

q+1

[
G(t)

] 2
q+1 . (4.39)

Let us keep the above estimates in mind to apply them properly in the
next computations.

Working on the other hand, we take now the multiplier w in (3.13) and
integrating from t1 to t2, we have∫ t2

t1

Ew(t) ds = 2

∫ t2

t1

∥wt(s)∥2ds+
4∑

i=1

Li, (4.40)

where

L1 = −
∫ t2

t1

(
F (w(s)), w(s)

)
ds,

L2 = −
[ (
wt(t2), w(t2)

)
−
(
wt(t1), w(t1)

) ]
,
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L3 = −γ
2

∫ t2

t1

Π1(s)
(
wt(s), w(s)

)
ds,

L4 = −γ
2

∫ t2

t1

Π2(s)
([
u1t (s) + u2t (s)

]
, w(s)

)
ds.

The terms Li, i = 1, · · · , 4 can be estimated as follows. First, from MVT, the

hypothesis (3.2), Hölder’s inequality and the embedding D(A
1/2
1 ) ↪→ Lp+2,

we have

L1 ≤
∫ t2

t1

( [
f(u1)− f(u2)

]
, w

)
ds

≤ Cf ′

∫ t2

t1

∫
Ω

[
(1 + |u1|+ |u2|)p

]
|w|2dxds

≤ Cf ′

∫ t2

t1

[ ∫
Ω
(1 + |u1|p + |u2|p)

p+2
p
] p
p+2 ∥w(s)∥2p+2ds

≤ CB

∫ t2

t1

∥w(s)∥2p+2ds,

for some constant CB > 0. Also, using now the embedding D(A
1/2
1 ) ↪→ H,

Young’s inequality, (4.38)-(4.39), we get

L2 ≤
1

σ
1
2
1

2∑
i=1

∥wt(ti)∥∥A
1
2
1w(s)∥ ≤ 2

σ
1
2
1

{2 4q+3
2(q+1)

γ
1

2(q+1)

[
G(t)

] 1
q+1

}
sup

t1≤s≤t2

∥A
1
2
1w(s)∥

≤ 2
4q+3
q+1

δσ1γ
1

q+1

[
G(t)

] 2
q+1 + δ sup

t1≤s≤t2

[
Ew(t)

]
,

and

L3≤CB

(∫ t2

t1

∥wt(s)∥ds
)

sup
t1≤s≤t2

∥A
1
2
1w(s)∥ ≤ CB

[
G(t)

] 2
q+1 +δ sup

t1≤s≤t2

[
Ew(t)

]
,

for some constant CB > 0. Third, using Lemma 3.3 and noting D(A
1/2
1 ) ↪→

D(Aα), Lp+2(Ω) ↪→ H, we obtain for q ≥ 1/2 that

L4 ≤ γq

∫ t2

t1

max{||Sλ(s)U1||2Hα , ||Sλ(s)U1||2Hα}2q−1[Ew(t)]
1
2 ∥w(s)∥ds

≤ CB

∫ t2

t1

[Ew(t)]
1
2 ∥w(s)∥ds
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≤ δ sup
t1≤s≤t2

[Ew(s)] + CB

∫ t2

t1

∥w(s)∥2p+2ds,

for some constant CB > 0 and δ > 0.
Replacing the latter estimates for L1, · · · ,L4 in (4.40), we arrive at∫ t2

t1

[
Ew(s)

]
ds ≤ CB

[
G(t)

] 2
q+1 +3δ sup

t1≤s≤t2

[
Ew(s)

]
+ CB

∫ t+1

t
∥w(s)∥2p+2 ds,

for some constant CB > 0. Again from the MVT, there exists τ1 ∈ [t1, t2] ⊂
[t, t+ 1] such that

Ew(τ1) ≤ CB

[
G(t)

] 2
q+1 + 3δ sup

t1≤s≤t2

[
Ew(s)

]
+ CB

∫ t+1

t
∥w(s)∥2p+2ds. (4.41)

Let us also consider τ2 ∈ [t, t+ 1] such that

Ew(τ2) := sup
t≤s≤t+1

[
Ew(s)

]
.

Now, integrating (4.36) over [t, τ2] and over [τ1, t+1], using (4.41) and noting
that

Ew(t) ≤ Ew(t+ 1) +
[
G(t)

]2
,

we obtain

Ew(τ2) ≤ Ew(t) + CB

∫ t+1

t
∥Aαw(s)∥

2(q+1)
2q+1 ds+ 2

∣∣∣ ∫ τ2

t
(F (w(s)), wt(s))ds

∣∣∣
≤ Ew(t+ 1) +

[
G(t)

]2
+ CB

∫ t+1

t
∥Aαw(s)∥

2(q+1)
2q+1 ds

+ 2
∣∣∣ ∫ τ2

t
(F (w(s)), wt(s))ds

∣∣∣
≤ Ew(τ1) +

[
G(t)

]2
+ CB

∫ t+1

t
∥Aαw(s)∥

2(q+1)
2q+1 ds

+ 2
∣∣∣ ∫ t+1

τ1

(F (w(s)), wt(s))ds
∣∣∣+ 2

∣∣∣ ∫ τ2

t
(F (w(s)), wt(s))ds

∣∣∣
≤

[
G(t)

]2
+ CB

[
G(t)

] 2
q+1 + 3δEw(τ2)

+ CB

∫ t+1

t
∥Aαw(s)∥

2(q+1)
2q+1 ds+ CB

∫ t2

t1

∥w(s)∥2p+2 ds

+ 2
∣∣∣ ∫ t+1

τ1

(F (w(s)), wt(s))ds
∣∣∣+ 2

∣∣∣ ∫ τ2

t
(F (w(s)), wt(s))ds

∣∣∣,
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for some constant CB > 0. Choosing δ > 0 small enough, noting that[
G(t)

]q+1 ≤ CB, for some constant CB > 0, and using (4.28), we infer

Ew(τ2) ≤ CB

[
G(t)

] 2
q+1 + CB

∫ t+1

t
∥Aαw(s)∥

2(q+1)
2q+1 ds

+ CB

∫ t+1

t
∥w(s)∥2p+2 ds+ 2

∣∣∣ ∫ t+1

τ1

(F (w(s)), wt(s))ds
∣∣∣

+ 2
∣∣∣ ∫ τ2

t
(F (w(s)), wt(s))ds

∣∣∣
≤ CB

[
G(t)

] 2
q+1 + CB sup

t≤s≤t+1

[
∥Aαw(s)∥

2(q+1)
2q+1 + ∥w(s)∥2p+2

]
+ 4 sup

s∈[0,t+1]
sup

r∈[0,s]

∣∣∣ ∫ s

r
(F (w(τ)), wt(τ))dτ

∣∣∣. (4.42)

In this way, from (4.42), the definition of G(t) in (4.37), and using again
(4.28), we arrive at

sup
t≤s≤t+1

[
Ew(s)

]q+1 ≤ CB

[
Ew(t)− Ew(t+ 1)

]
+Kf (t), (4.43)

where Kf (t) := Kf (w(t), wt(t)) is set by

Kf (t) = 2 sup
s∈[0,t+1]

sup
r∈[0,s]

∣∣∣ ∫ s

r
(F (w(s)), wt(s))ds

∣∣∣
+ 4q+1 sup

s∈[0,t+1]
sup

r∈[0,s]

∣∣∣ ∫ s

r
(F (w(s)), wt(s))ds

∣∣∣q+1

+ CB sup
0≤s≤t+1

[
∥Aαw(s)∥

2(q+1)
2q+1 + ∥w(s)∥2p+2

]
= Jf (t) + CB sup

0≤s≤t+1

[
∥Aαw(s)∥

2(q+1)
2q+1 + ∥w(s)∥2p+2

]
,

and Jf (t) := Jt(w(t), wt(t)) is defined in (4.30). Hence, applying Proposition
4.8 with ϕ := Ew and K = Kf in (4.43), by noting that Kf (t) is a non-
decreasing function, and regarding (4.31), we conclude

Ew(t) ⩽
[
C−1
B q(t− 1)+ +

(
sup

0⩽s⩽1
||(w(s), wt(s))||2H

)−q]− 1
q +

[
Kf (t)

] 1
q+1 .

Finally, since 0 < 1
q+1 < 1, we have |a + b|

1
q+1 ≤ |a|

1
q+1 + |b|

1
q+1 , and then

(4.29) holds true with Jf (t) given in (4.30). □
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Corollary 4.10 (Stabilizability Estimate). Under the same assumptions
and statements of Proposition 4.9, there exists a constant CB > 0 such that

||Sλ(t)U1 − Sλ(t)U
2||2H ≤

[
C−1
B q(t− 1)+ +

(
sup

0≤s≤1
||(w(s), wt(s))||2H

)−q]− 1
q

+ CB sup
0≤s≤t+1

[
∥Aαw(s)∥

2(q+1)
2q+1 + ||w(s)||

2(q+1)
2q+1

p∗
] 1
q+1 . (4.44)

for all t > 0 and λ ∈ [0, 1].

Proof. By means of the condition (3.2), MVT, Hölder’s inequality with
p
p∗ + 1

p∗ + 1
2 = 1, Young’s inequality with 2q+1

2(q+1) + 1
2(q+1) = 1, and the

embedding D(A
1/2
1 ) ↪→ Lp∗ , one can estimate

|
(
F (w(t)), wt(t)

)
| ≤ CB||w(t)||

2(q+1)
2q+1

p∗ +
γ

22(q+1)

∥∥wt(t)
∥∥2(q+1)

, t ≥ 0,

for some constant CB > 0. Therefore, we go back to (4.36) and proceed
verbatim the proof of Proposition 4.9 to conclude (4.44), where we also note
that Lp∗ ↪→ Lp+2. □

Remark 4.4. Although Corollary 4.10 provides a “milder” stabilizability
estimate with respect to Lp∗-norm, it will be useful to reach an estimate for
Kolmogorov’s ε-entropy of the attractor Aλ corresponding to the dynamical
system (H, Sλ(t)) in sub-critical aspects with respect to parameters α and p∗.

The next result is an extended version of some results presented in [32] for
second-order wave problems. We have raised it to our concerns in higher-

order Sobolev spaces on bounded domains, namely, in H = D(A
1
2
1 )×H, but

we notify that its proof follows the same lines as in [32, Section 2]. It will
be helpful in our next result on asymptotic smoothness.

Proposition 4.11. Let f be a function satisfying Assumption 3.1. Let us
also consider

{(
un, unt

)}
be a weakly-star convergent sequence in L∞(

s, T ;H
)

with 0 ≤ s < T . Then

lim
n→∞

lim
m→∞

∫ T

s

(
f
(
un(t)

)
− f

(
um(t)

)
, unt (t)− umt (t)

)
dt = 0. (4.45)

Proof. It is similar to the statements provided in [32, Lemmas 2.1 and 2.2],
but with proper modification on the functional spaces and additional minor
adjustments.

For the sake of the reader, and in order to guarantee, we can do state such
a result in our case, we present the detailed proof in Appendix A.3. □
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4.4. Lipschitz property with respect to index λ. Below, we are going
to prove the λ-Lipschitz property, and therefore continuity, of the following
mapping [0, 1] ∋ λ 7→ Sλ(t)U0 ∈ H, for all given t ≥ 0 and U0 ∈ B, where
B ⊂ H is bounded set. To analyze such a Lipschitz continuity in terms of
the parameter λ, we turn ourselves back to the notation uλ to the solution
of (3.4), that is, to the dynamical system Sλ(t)U0 = (uλ(t), uλt (t)) given in
(3.20).

Proposition 4.12 (λ-Lipschitz Property). Under the assumptions of The-
orem 3.2, let us consider an arbitrary bounded set B ⊂ H and denote by
Sλ(t)U0 = (uλ(t), uλt (t)) the trajectory solution corresponding to initial data
U0 = (u0, u1) ∈ B. Then, for any given index λ0 ∈ [0, 1], there exists a

positive non-decreasing function Q̂(t) = Q̂
(
B, ||h||, t

)
such that

∥Sλ(t)U0 − Sλ0(t)U0∥H ≤ Q̂(t)|λ− λ0|, t ≥ 0. (4.46)

Proof. Let us fix λ0 ∈ [0, 1] and set wλ := uλ − uλ0 . Then, wλ is a solution
(in the weak and strong sense) of the following problem{
wλ
tt+κAw

λ+A1w
λ +

γ

2
Πλ

1w
λ
t +

γ

2
Πλ

2

[
uλt +u

λ0
t

]
+ F (wλ) = hλ−λ0 ,

wλ(0) = 0, wλ
t (0) = 0,

(4.47)

where hereafter we take the advantage of notations and estimates introduced
in the proof of Theorem 3.4, namely, we first set F (wλ) = f(uλ) − f(uλ0)
and

Πλ
i (t) = ∥Sλ(t)U0∥2qHα + (−1)1−i∥Sλ0(t)U0∥2qHα , i = 1, 2.

Taking the multiplier wλ
t in (4.47), we have

1

2

d

dt
Eλ
w(t) +

γ

2
Πλ

1(t)∥wλ
t (t)∥2 = J λ

1 (t) + J λ
2 (t) + (λ− λ0)(h,w

λ
t (t)), (4.48)

where

Eλ
w(t) = ∥wλ

t (t)∥2 + κ∥A
1
2wλ(t)∥2 + ∥A

1
2
1w

λ(t)∥2,
J λ
1 (t) = −

(
F (wλ(t)), wλ

t (t)
)
,

J λ
2 (t) = − γ

2
Πλ

2(t)
(
uλt (t) + uλ0

t (t), wλ
t (t)

)
.

Repeating the same arguments as in (3.16), (3.17), and (3.18), we infer

||Sλ(t)U0−Sλ0(t)U0||2H ≤ Ew(t) ≤ µκ||Sλ(t)U0−Sλ0(t)U0||2H, t ≥ 0, (4.49)

and

|J λ
1 (t)|, |J λ

2 (t)| ≤ CBEλ
w(t), t ≥ 0,
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for some constant CB > 0. Additionally, using Hölder and Young’s inequal-

ities and since D(A
1
2
1 ) ↪→ H, we get

|(λ− λ0)(h,w
λ
t (t))| ≤

1

2
|λ− λ0|2∥h∥2 +

1

2
Eλ
w(t).

Replacing the latter two estimates in (4.48), we have

d

dt
Eλ
w(t) ≤ CBEλ

w(t) + |λ− λ0|2∥h∥2,

for some constant CB > 0, and integrating it on (0, t), we arrive at

Eλ
w(t) ≤ CB

∫ t

0
Eλ
w(s) ds+ t|λ− λ0|2∥h∥2, t > 0.

Therefore, from Gronwall’s inequality and (4.49), we finally conclude that

(4.46) holds true with Q̂(t) := t
1
2 eCBt/2∥h∥. □

5. Long-time dynamics: case (k.1)

Before proceeding with the main results of this article, we notify for
the reader’s guidance that all abstract concepts and results on dynami-
cal systems are reminded in Appendix B, by following e.g. the references
[3, 7, 12, 16, 17, 18, 21, 26, 27, 35, 43, 47].

5.1. Attractors and continuity: cases α ∈ [0, 1) and p∗ ≤ 2n
n−4 . We

initially remark that all results up to now hold for any critical parameters
α ∈ [0, 1] and p∗ ≤ 2n

n−4 . However, due to compactness issues inside this case

(k.1), the next theorem dealing with the existence of a family of attractors
and its continuity will require the subcritical assumption with respect to
to fractional powers α, namely, α ∈ [0, 1), but we still work in the critical
scenario with respect to the source growth exponent p∗ ≤ 2n

n−4 .

Theorem 5.1. Let us take on the same assumptions of Theorem 3.2, with
the additional condition α ∈ [0, 1), and let (H, Sλ(t)) be the dynamical system
given by (3.20). Then. we have

(I.1) Asymptotic Smoothness/Compactness. For every λ ∈ [0, 1],
the dynamical system (H, Sλ(t)) is asymptotically smooth/compact.

(I.2) Family of Attractors. For every λ ∈ [0, 1], the dynamical system
(H, Sλ(t)) possesses a global attractor Aλ ⊂ H, which is compact and
connected.
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(I.3) Geometrical Structure. The family of global attractors {Aλ}λ∈[0,1]
is characterized by the unstable manifold emanating from the set of
stationary solutions, namely, we have Aλ = Mu(Nλ) with

Nλ =
{
(u, 0) ∈ H; κAu+A1u+ f(u) = hλ

}
, λ ∈ [0, 1]. (5.1)

(I.4) Equilibria Set. Every trajectory stabilizes to the set Nλ in the sense
that

lim
t→+∞

dist(Sλ(t)U0,Nλ) = 0, ∀U0 ∈ H.

In particular, the set Nλ := Amin
λ is a global minimal attractor for

every λ ∈ [0, 1].Moreover, any trajectory from Aλ has an upper bound
in terms of Amin

λ , namely,

sup
{
||(u, ut)||H; (u, ut) ∈ Aλ

}
≤ sup

{
||(u, 0)||H; (u, 0) ∈ Amin

λ

}
. (5.2)

(I.5) Non-triviality. The family of minimal attractors {Amin
λ }λ∈[0,1] is

nontrivial. In other words, even if h ≡ 0, the minimal attractor
Amin
λ has at least two stationary solutions for every λ ∈ [0, 1].

(I.6) Triviality. If we additionally suppose that h ≡ 0 and Cf = 0 in
(3.3), the attractor A0 is trivial. More precisely, A0 = {(0, 0)} with
polynomial attraction depending on the exponent q ≥ 1

2 as follows

distH(Sλ(t)B,A0) = sup
U0∈B

∥Sλ(t)U0∥H ≤ CB

[cB + qĉB t]1/2q
, (5.3)

t → ∞, for any initial data U0 lying in bounded sets B ⊂ H, where
CB, cB, ĉB > 0 are constants depending on B.

(I.7) Upper Semicontinuity. The family of global attractors {Aλ}λ∈[0,1]
is upper semicontinuous at any fixed λ0 ∈ [0, 1], that is,

lim
λ→λ0

distH
(
Aλ,Aλ0

)
= 0.

(I.8) Residual Continuity. The family of global attractors {Aλ}λ∈[0,1]
is continuous in a residual2 set I ⊂ [0, 1], that is, for any λ0 ∈ I,

lim
λ→λ0

[
distH

(
Aλ0 ,Aλ

)
+ distH

(
Aλ,Aλ0

)]
= 0.

In particular, the set of continuity points of Aλ is dense in [0, 1].

2Let X be a complete metric space and Y ⊂ X. We recall that Y is residual in X if
X\Y is a countable union of nowhere dense sets.
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Proof. We gather the ingredients coming from Section 4 along with the
abstract results reminded in Appendix B.

(I.1) Let us initially consider a bounded positively invariant set B ⊂ H, take
two trajectory solutions Sλ(t)U

i = (ui(t), uit(t)), i = 1, 2, corresponding to
initial data U i = (ui0, u

i
1) ∈ B, i = 1, 2, and consider any ε > 0.

From the key inequality (4.29), there exists a time large enough T :=
Tλ,B > 0 such that

∥Sλ(T )U1 − Sλ(T )U
2∥H ≤ ε+ ψε,B,T (U

1, U2), (5.4)

where we set ψε,B,T : H×H → R by

ψε,B,T (U
1, U2) : = CB sup

0≤s≤T+1

[
∥Aαu1(s)−Aαu2(s)∥

2(q+1)
2q+1 (5.5)

+ ∥u1(s)− u2(s)∥2p+2

] 1
2(q+1) +

[
Jf (T )

] 1
2(q+1)

for some constant CB > 0 and Jf (t) given in (4.30).
Now, given a sequence of initial data Un = (un0 , u

n
1 ) ∈ B, as before, we

write Sλ(t)U
n = (un(t), unt (t)). Since B is invariant by Sλ(t), t ≥ 0, it

follows that (un(t), unt (t)) are uniformly bounded in H = D(A
1
2
1 ) ×H from

Corollary 4.3. Thus, (un, unt ) is bounded in C([0, T + 1],H).
Below is the precise moment we invoke the assumption α ∈ [0, 1). Indeed,

for such fractional powers and any p∗ ≤ 2n
n−4 , we use the fact that D(A

1
2
1 ) ↪→

D(Aα) and D(A
1
2
1 ) ↪→ Lp+2(Ω) are compact embeddings. Then, by virtue of

[45, Corollary 4] there exists a subsequence, still denoted by (un), such that

(un) converges strongly in C([0, T + 1],D(Aα) ∩ Lp+2(Ω)). (5.6)

Therefore,

lim
n→∞

lim
m→∞

[
∥Aαun(s)−Aαum(s)∥

2(q+1)
2q+1 + ∥un(s)− um(s)∥2p+2

] 1
2(q+1) = 0,

(5.7)
for every s ∈ [0, T + 1]. Additionally, from (5.6) and (4.45), and the expres-
sion for Jf (t) in (4.30), we also have

lim
n→∞

lim
m→∞

Jf (s) = lim
n→∞

lim
m→∞

Jf (u
n(s)− um(s), unt (s)− umt (s)) = 0. (5.8)

Then, from (5.7) and (5.8), we conclude

lim
n→∞

lim
m→∞

ψε,B,T (U
n, Um) = 0, (5.9)

for every sequence Un ∈ B, which proves that ψλ,B,T is a contractive function
on B ×B.
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Therefore, from (5.4) and (5.9), we can apply Theorem B.1 to conclude
that (H, Sλ(t)) is asymptotically smooth. It is also asymptotically compact
in view of Proposition B.2.

(I.2) It follows from Corollary 4.2 and step (I.1), in combination with The-
orem B.3.

(I.3) It follows from Corollary 4.4 along with Theorem B.4.

(I.4) It follows from (I.3), Corollary 4.4, and Theorem B.5. Moreover, the
upper bound (5.2) follows from the first limit in Theorem B.4, Corollary
4.4, and Lemma 4.6, once we have that the Lyapunov function Φ := E
is topologically equivalent to the norm of the phase space H (see also [18,
Remark 7.5.8]).

(I.5) It follows directly from Lemma 4.7.

(I.6) It follows directly from the second part of Lemma 4.6, by applying
Corollary 4.5 for initial data lying in bounded sets B ⊂ H.

(I.7) From Corollary 4.2, the dynamical system (H, Sλ(t)) has a bounded
absorbing set B ⊂ H uniformly bounded with respect to λ ∈ [0, 1]. Thus,
the attractors Aλ ⊂ B are uniformly bounded for all λ ∈ [0, 1]. Additionally,
from Proposition 4.12, we have

lim
λ→λ0

sup
U0∈B

∥Sλ(t)U0 − Sλ0(t)U0∥H = 0, t ≥ t0, (5.10)

for every given t0 ≥ 0. Therefore, employing Theorem B.6, we conclude that
the family {Aλ}λ∈[0,1] is upper semicontinuous at any fixed λ0 ∈ [0, 1].

(I.8) By noting that (5.10) is valid for all t0 > 0 and any bounded set B ⊂ H
(see again Proposition 4.12), then we are under the assumptions of Theorem
B.7. Therefore, the desired conclusion on residual continuity follows. □

5.2. Kolmogorov ε-Entropy: cases α ∈ [0, 1) and p∗ < 2n
n−4 . As ob-

served in Remark 4.4, we are going to appeal to Corollary 4.10 in order to
reach an estimate for the Kolmogorov’s ε-entropy of the attractor Aλ cor-
responding to the dynamical system (H, Sλ(t)). For this reason (see the
“weaker” stabilizability inequality (4.44)), we must employ the subcritical
case with respect to parameters α and p∗. Our second main result reads as
follows.

Theorem 5.2 (Kolmogorov ε-Entropy). Let us consider the assumptions
of Theorem 5.1, with the additional condition p < 4

n−4 in Assumption 3.1.
Then, there exists 0 < ε0 < 1 such that for all ε ≤ ε0 < 1, the Kolmogorov
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ε−entropy Hε(Aλ) of the existing global attractor Aλ, λ ∈ [0, 1], satisfies the
following estimate for arbitrary δ ∈ (0, 1)

Hε(Aλ) ≤
2

1− δ

∫ ε0

ε

lnm
(
g−1
δ (s), z(s)

)
s

ds+H
gδ

(
ε0
)(Aλ), (5.11)

where gδ(s) =
1+δ
2 s and z(s) = 1

2(δs)
2(q+1), 0 < s < ε0, and

m(r, a) = sup{m(B, a); B ⊆ Aλ, diamB ≤ 2r},
with m(B, a) being the maximal number of elements uBj ∈ B such that, for

any a > 0, we have ϱ
(
Sλ(T

⋆)uBj , Sλ(T
⋆)uBi

)
> a, i ̸= j, i, j = 1, . . . ,m(B, a),

for T ⋆ > 0 large enough, and ϱ is a pseudometric on H.

Proof. Let us consider two trajectory solutions Sλ(t)U
i = (ui(t), uit(t)), i =

1, 2, corresponding to initial data U i = (ui0, u
i
1) ∈ Aλ, i = 1, 2, λ ∈ [0, 1],

and still denote w := u1 − u2. Since Aλ is compact (and then bounded) and
invariant Sλ(t)Aλ = Aλ, then Sλ(t)U

i ∈ Aλ for all t > 0. Additionally, from
Corollary 4.10, there exists a time T ⋆ := T ⋆(Aλ) > 0 such that

||Sλ(T ⋆)U1 − Sλ(T
⋆)U2||H (5.12)

≤ 1

2
∥U1 − U2∥H +

[
CAλ

sup
0≤s≤T ⋆+1

(
∥Aαw(s)∥+ ∥w(s)∥p∗

)] 1
2(q+1) ,

for some constant CAλ
> 0 and all U1, U2 ∈ Aλ, where (by virtue of Corollary

4.3 and the identity 2(q+1)
2q+1 = 1 + 1

2q+1), we have used

∥Aαw(s)∥
2(q+1)
2q+1 +||w(s)||

2(q+1)
2q+1

p∗ ≤ CAλ

(
∥Aαw(s)∥+||w(s)||p∗

)
, s ≥ 0. (5.13)

Moreover, from Theorem 3.4, there exists a constant L⋆ > 0 such that

||Sλ(T ⋆)U1 − Sλ(T
⋆)U2||H ≤ L⋆∥U1 − U2∥H, ∀U1, U2 ∈ Aλ. (5.14)

Therefore, one can see from (5.12)-(5.14) that assumptions 1 to 4 of Theorem
B.8 are fulfilled with

M := Aλ, V := Sλ(T
⋆), g(s) =

1

2
s, h(s) := s

1
2(q+1) , ϱ1 ≡ 0, (5.15)

ϱ2(Sλ(T
⋆)U1, Sλ(T

⋆)U2) := CAλ
sup

0≤s≤T ⋆+1

(
∥Aαw(s)∥+ ∥w(s)∥p∗

)
.

It is worth mentioning that due to the compactness embedding D(A
1
2
1 ) ↪→

D(Aα) ∩ Lp∗ , then ϱ := ϱ2 is a compact seminorm3 on D(A
1
2
1 ), and item 4

3We recall that a seminorm nX(·) defined on a Banach space X is compact if whenever
a sequence xj → 0 weakly in X one has nX(xj) → 0.
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of Theorem B.8 follows by a standard argument, see e.g. [16, p. 55] for a
generic proof of this fact.

Hence, the estimate for the Kolmogorov ε-entropy Hε(Aλ) provided in
(5.11) follows from the conclusion of Theorem B.8. □

Remark 5.1. As final information in this subsection, we note that both The-
orems 5.1 and 5.2 remain unchanged when we neglect the potential energy
in the damping coefficient Eα(u, ut) given in (1.2). In this case the equation
in (3.4) reduces to the particular one with nonlinear averaged damping

utt + κAu+A1u+ γ∥ut∥2qut + f(u) = hλ, t > 0, λ ∈ [0, 1].

Therefore, all results in the present section provide a generalization of the
ones in [49, 50] when one considers a constant coefficient of extensibility κ.
Additionally, the same happens if one takes a slightly more general situation
with respect to κ(·) as a nonlocal function under suitable properties like in
[29, 30, 49, 50].

5.3. Attempts for finite dimensionality. Below, we try to clarify how
hard (if not impossible) is to achieve the finiteness of the fractal dimension

(dimf
HAλ) of the attractors Aλ, λ ∈ [0, 1], corresponding to the dynamical

system (H, Sλ(t)) defined in (3.20) in case (k.1). A first attempt is trying
to invoke Theorem B.9. In this way, in view of notations in (5.15), we can
rewrite (5.12) as

∥V U1 − V U2∥H ≤ 1

2
∥U1 − U2∥H +

[
ϱ(V U1, V U2)

] 1
2(q+1) . (5.16)

Therefore, all hypotheses of Theorem B.9 are satisfied except for item (ii)
that requires the linearity of function h(s) = s0s. Indeed, this fact is im-

possible in our case since h(s) = s
1

2(q+1) for q ≥ 1
2 . The only chance to

achieve (5.16) with linear function h(s) is to consider the particular (and
already known) case q = 0. But this latter especial case reduces the damp-
ing term in (3.4) to the linear one γut, γ > 0, which in turn is a particular
case of (k.2) in what concerns function k(·). For such a case, we show later

that dimf
HAλ <∞, the regularity of any trajectory from the attractors and

(generalized) fractal exponential attractors.
Going back to this “worse” case (k.1), another attempt in trying to

achieve (5.16) (or else (5.12) which comes from Corollary 4.10) with a proper
power concerning its last term is to regard perturbed energy computations
instead of Nakao’s method as in the proof of Proposition 4.9 and Corollary
4.10. In such a way, the following result can be proved.



Dynamics of a class of extensible beams 723

Proposition 5.3. Under the same assumptions and statements of Proposi-
tion 4.9, and given any ϵ > 0, there exist constants cB, CB > 0 depending
on B such that

||Sλ(t)U1 − Sλ(t)U
2||2H ≤ CB

∥∥U1 − U2
∥∥2
He

−cBt + ϵ2

+ CB

∫ t

0
e−cB(t−s)

(
∥Aαw(s)∥

2(q+1)
2q+1 + ||w(s)||

2(q+1)
2q+1

p∗

)
ds, (5.17)

for every t > 0, where we still denote w = u1 − u2.

Proof. The proof relies on energy perturbation and similar technical esti-
mates as used in the proof of Proposition 4.9 and Corollary 4.10, along with
proper Young’s inequality. Thus, it will be omitted. □

Hence, as a consequence of (5.17) on B := Aλ, and using again (5.13), we
arrive at

∥Sλ(T ⋆)U1−Sλ(T ⋆)U2∥H ≤ 1

2
∥U1−U2∥H+ ϵ+

[
ϱ(Sλ(T

⋆)U1, Sλ(T
⋆)U2)

] 1
2 ,

(5.18)
for some time T ⋆ := T ⋆(Aλ) > 0 large enough, some compact seminorm ϱ,
and any ϵ > 0. Nonetheless, (5.18) is not enough to achieve the finiteness of

the fractal dimension dimf
HAλ by means of Theorem B.9.

The above approaches (5.16) and (5.18) for studying the dimensionality of
the attractors Aλ raise similar issues as presented in [16] in terms of (more)
general stabilizability estimates. Indeed, this is the exact moment where
we explore the difficulty imposed by function k(s) = γsq for any q ≥ 1

2
in case (k.1) because under this structure the character of the functions

h(s) = s
1

2(q+1) and h(s) = s
1
2 present in the lower order terms (LOT)

LOT
(
U1, U2

)
:= ϱ(Sλ(T

⋆)U1, Sλ(T
⋆)U2)

are determined from the behavior of the nonlinear damping term

k
(
Eα(u, ut)

)
ut = γ

[
Eα(u, ut)

]q
ut, q ≥ 1

2
, (5.19)

with Eα(u, ut) being set in (1.2). Moreover, due to the computations in
the proof of Proposition 4.9 (see (4.33)-(4.35)) it seems that the nonlocal
nonlinear damping term (5.19) does not even provide a suitable coercivity
property as usual for nonlinear damping like D(ut), where D : R → R is a
real function with growth exponent q, namely,

(D(s)−D(r))(s− r) ≥ cq|s− r|q+2, ∀ s, r ∈ R, q ≥ 0, (5.20)
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or

(D(s)−D(r))(s− r) ≥ cq
(
|s|q + |r|q

)
|s− r|2, ∀ s, r ∈ R, q ≥ 0, (5.21)

or else, for any given ϵ > 0, there exists a constant Cϵ > 0 such that

Cϵ(D(s)−D(r))(s− r) ≥ |s− r|2 − ϵ, ∀ s, r ∈ R. (5.22)

It is worth mentioning that the above assumptions (5.20)-(5.22) have been
extensively regarded in the literature in what concerns long-time dynamics
of hyperbolic-type second-order evolution problems with nonlinear damping,
see for instance the works [2, 11, 13, 14, 15, 17, 18, 19, 20, 24, 30, 33, 36, 40,
42, 46] where (at least) some of them do play an important role in finding the
asymptotic smoothness of the corresponding nonlinear infinite-dimensional
dynamical system.

Although conditions (5.20)-(5.22) have shown to be very effective in build-
ing the existence of compact global attractors, the picture is much more
delicate when one deals with respect to regularity and especially finite-
dimensionality of such global attractors. Indeed, among the above-mentioned
works with nonlinear damping, those that proved the finiteness of fractal (or
Hausdorff) dimension strongly used more hypotheses onD and its derivatives
D′, D′′, see for instance [14, Theorem 1.4], [15, Theorem 1.5], [17, Theorem
5.8], [18, Theorem 9.2.6], [19, Assumption 3 and Theorem 3.5], [30, Propo-
sition 4 and Theorem 3.2], [32, Theorems 3.1 and 3.2], [36, Theorem 8], and
[42, Theorem 1.1], just to quote a few. Nonetheless, such damping control-
ling by means of its derivative does not seem to be applicable to the nonlinear
damping (5.19) due to its nonlocal structure. This is similar to the nonlocal
damping addressed in [2], where the author involves differential operators in
space and covers a wide class of average nonlocal damping. Therefore, we
conclude that (5.19) represents a generalization of the linear damping in a
different way of the existing literature with respect to the nonlinear damping
terms D(ut).

In conclusion, to our best knowledge, there is no keen theory to conclude
the finiteness of the fractal (or at least Hausdorff) dimension for problems
with non-local damping like (5.19) where the behavior of lower order terms
are determined, in general, by the possibly degenerate function k(s) = γsq

over the linear energy coefficient Eα(u, ut). A way of circumvent this situa-
tion is when k is bounded from below but such a case is covered by the case
(k.2) to be analyzed next.
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6. Long-time dynamics: case (k.2)

As we are going to show below, this case is much more touchable in the
sense that it provides the finiteness and regularity of the global attractor
Aλ ⊂ H, λ ∈ [0, 1], related to the dynamical system (H, Sλ(t)) given by
(3.20) in case (k.2). Moreover, in this case, we also prove the existence of
(generalized) fractal exponential attractors Aexp

λ ⊂ H. Such statements are
due to the positiveness of function k(·) in case (k.2), which allows us to
control the behavior of the nonlocal damping (especially at the origin) and
this makes this case “smoother” than the previous one.

We also note that due to the structure of damping in case (k.2), we will
be able to work with critical parameters α ∈ [0, 1] and p∗ ≤ 2n

n−4 for obtain-
ing technical estimates and the computations rely on similar techniques as
previously used in the literature, see e.g. [10, 17, 25, 29, 30].

In this case, the essential technical results proved in Section 4 can be
refined as follows.

Proposition 6.1 (Dissipativity). Under the assumptions of Theorem 3.1
with k(·) given in case (k.2), there exist positive constants c = c

Ẽ(0)
, C =

C
Ẽ(0)

(which may depend on initial data) such that Ẽ(t) given in (3.21)

satisfies

Ẽ(t) ≤ CẼ(0)e−c t + 8Kλ, t > 0. (6.1)

In particular, the dynamical system (H, Sλ(t)) given by (3.20) is dissipa-
tive, say with (positively invariant) bounded absorbing set B ⊂ H, which is
uniformly bounded with respect to λ ∈ [0, 1].

Proof. Since k(·) is a C1-function on [0,∞) such that k(s) > 0, s ≥ 0, then
the proof follows exactly the same lines as in [30, Proposition 1]. □

Additionally, Corollaries 4.3 to 4.5 can be adapted to this case as well.
Also, and much more important, the following stability inequality can be
reached.

Proposition 6.2 (Stabilizability Estimate). Under the assumptions of The-
orem 3.1 with k(·) given in case (k.2), let us consider a bounded set B ⊂ H
with initial data U i = (ui0, u

i
1) ∈ B, i = 1, 2. Still denoting by Sλ(t)U

i =
(ui(t), uit(t)), i = 1, 2, the corresponding dynamical system (3.20), then there
exist constants cB, CB > 0 (depending on B) such that

||Sλ(t)U1 − Sλ(t)U
2||2H ≤ CBe

−cBt||U1 − U2||2H

+ CB

∫ t

0
e−cB(t−s)

(
∥Aαw(s)∥2 + ||w(s)||2p+2

)
ds, (6.2)
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for all t > 0 and λ ∈ [0, 1], where w = u1 − u2.

Proof. The proof is analogous to [29, Proposition 1] with help of similar
arguments as in [10, Lemma 4.9] to handle critical exponent. □

The motivation for getting (6.2) with respect to critical growth exponent p
came from the results in [17, Proposition 4.13] and [25, Lemma 7.1]. Finally,
we also note that Proposition 4.12 can be proved in this case in a very similar
way. Therefore, we are able to state our main results in the present section
as follows.

6.1. Attractors, continuity, finite dimensionality, and regularity:
cases α ∈ [0, 1) and p∗ ≤ 2n

n−4 . As in Subsection 5.1, the above technical

estimates in the present case hold for any critical parameters α ∈ [0, 1]
and p∗ ≤ 2n

n−4 , but due to the compactness issues involving the parameter

α (which comes now from (6.2)), we must work in the subcritical case with
respect to it. Nonetheless, nothing changes with respect to the source growth
exponent p∗ ≤ 2n

n−4 .

Theorem 6.3. Let us take on the same assumptions of Theorem 3.1 with
k(·) given in case (k.2). We additionally assume that α ∈ [0, 1). Then, the
dynamical system (H, Sλ(t)) set in (3.20) has the following properties:

(J.1) Quasi-Stability. The dynamical system (H, Sλ(t)) is asymptotically
quasi-stable on any positively invariant bounded set B ⊂ H, for every
λ ∈ [0, 1]. In particular, it is asymptotically smooth/compact.

(J.2) Family of Attractors. For every λ ∈ [0, 1], the dynamical system
(H, Sλ(t)) possesses a global attractor Aλ ⊂ H, which is compact and
connected.

(J.3) Geometrical Structure. The family of global attractors {Aλ}λ∈[0,1]
is characterized by the unstable manifold emanating from the set of
stationary solutions, namely, we have Aλ = Mu(Nλ) with

Nλ =
{
(u, 0) ∈ H; κAu+A1u+ f(u) = hλ

}
, λ ∈ [0, 1].

(J.4) Equilibria Set. Every trajectory stabilizes to the set Nλ in the sense
that

lim
t→+∞

dist(Sλ(t)U0,Nλ) = 0, ∀U0 ∈ H.

In particular, the set Nλ := Amin
λ is a global minimal attractor for

every λ ∈ [0, 1].Moreover, any trajectory from Aλ has an upper bound
in terms of Amin

λ , namely,

sup
{
||(u, ut)||H; (u, ut) ∈ Aλ

}
≤ sup

{
||(u, 0)||H; (u, 0) ∈ Amin

λ

}
.
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(J.5) Non-triviality. The family of minimal attractors {Amin
λ }λ∈[0,1] is

nontrivial. In other words, even if h ≡ 0, the minimal attractor
Amin
λ has at least two stationary solutions for every λ ∈ [0, 1].

(J.6) Triviality. If we additionally suppose that h ≡ 0 and Cf = 0 in
(3.3), the attractor A0 = {(0, 0)} is trivial with exponential attraction
as follows

distH(Sλ(t)B,A0) = sup
U0∈B

∥Sλ(t)U0∥H ≤ CBe
−cBt, t→ ∞,

for any initial data U0 ∈ B ⊂ H, where CB, cB > 0 are constants
depending on B.

(J.7) Upper Semicontinuity. The family of global attractors {Aλ}λ∈[0,1]
is upper semicontinuous at any fixed λ0 ∈ [0, 1], that is,

lim
λ→λ0

distH
(
Aλ,Aλ0

)
= 0.

(J.8) Residual Continuity. The family of global attractors {Aλ}λ∈[0,1]
is continuous in a residual set J ⊂ [0, 1], that is, for any λ0 ∈ J ,

lim
λ→λ0

[
distH

(
Aλ0 ,Aλ

)
+ distH

(
Aλ,Aλ0

)]
= 0.

In particular, the set of continuity points of Aλ is dense in [0, 1].
(J.9) Finite Dimensionality. The compact global attractor Aλ has finite

fractal dimension

dimf
H
(
Aλ

)
<∞, λ ∈ [0, 1].

(J.10) Regularity. Any trajectory Γ = {(u(t);ut(t)); t ∈ R} ⊂ Aλ has the
following regularity

(ut, utt) ∈ L∞(R;H). (6.3)

Moreover, there exists a constant R > 0 such that

sup
Γ⊂Aλ

sup
t∈R

∥(ut(t), utt(t))∥2H ≤ R2. (6.4)

(J.11) Generalized Fractal Exponential Attractor. The dynamical
system (H, Sλ(t)) possesses a generalized fractal exponential attrac-

tor Aexp
λ with finite fractal dimension

(
dimf

H−s

(
Aexp
λ

)
< ∞

)
in the

extended space

H−s := D
(
A

(1−s)/2
1

)
×D

(
A

−s/2
1

)
, 0 < s ≤ 1. (6.5)
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Proof. The proof is a consequence of Propositions 6.1 and 6.2 in combi-
nation with the abstract results reminded in Appendix B. It follows anal-
ogously to Theorem 5.1 except for the item (J.1) and the further items
(J.9)-(J.11).

(J.1) Let us consider a bounded positively invariant set B ⊂ H and two
trajectory solutions Sλ(t)U

i = (ui(t), uit(t)), i = 1, 2, with initial data U i =
(ui0, u

i
1) ∈ B, i = 1, 2.

Now, in view of the stabilizability estimate (6.2) we have

||Sλ(t)U1−Sλ(t)U2||2H
≤ a1(t)||U1 − U2||2H + a2(t) sup

0<s<t

[
n(u1(s)− u2(s))

]2
, (6.6)

where

a1(t) := CBe
−cBt, a2(t) := CB

∫ t

0
e−cB(t−s) ds, t > 0,

and

n(u) := ∥Aαu∥2 + ∥u∥2p+2 = ∥u∥D(Aα)∩Lp+2

is a compact seminorm once here the embedding D(A
1
2
1 ) ↪→ D(Aα) ∩ Lp∗ is

compact.
From (3.12) and (6.6) one can see that the dynamical system (H, Sλ(t))

satisfies the required conditions (B.5)-(B.8) with

X := D(A
1
2
1 ), Y := H, Z := {0},

a(t) := Q(t), b(t) := a1(t), c(t) := a2(t).
(6.7)

Therefore, (H, Sλ(t)) is asymptotically quasi-stable on B ⊂ H. In particular,
by Proposition B.11 it is also asymptotically smooth.

(J.2)-(J.8) It follows verbatim the same arguments as in (I.2)-(I.8).

(J.9)-(J.10) From the first items (J.1) and (J.2), (H, Sλ(t)) is asymptoti-
cally quasi-stable on the global attractor Aλ ⊂ H for every λ ∈ [0, 1]. Thus,

from Theorem B.12 one gets dimf
H
(
Aλ

)
< ∞ as desired. Moreover, since

a∞ = supt∈R+ a2(t) <∞, then the properties (6.3)-(6.4) follows from Theo-
rem B.13.

(J.11) From Proposition 6.1 and item (J.1), the dynamical system (H, Sλ(t))
is asymptotically quasi-stable on the positively invariant bounded absorbing
set B. In what follows, for any U0 ∈ B, we are going to prove that mapping

t 7→ Sλ(t)U0 := (u(t), ut(t)) (6.8)
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is Hölder continuous in H−s in (6.5) for any 0 < s ≤ 1. Let us start with
s = 1. From the well-posedness result, one can infer (ut, utt) ∈ L∞

loc (H−1).
Thus, by taking U0 ∈ B, T > 0, and any t1, t2 ∈ [0, T ], we get

∥Sλ(t2)U0 − Sλ(t1)U0∥H−1 ≤
∫ t2

t1

∥∥ d
ds

(u(s), ut(s))
∥∥
H−1ds

≤
( ∫ T

0

∥∥(ut(s), utt(s))∥∥2H−1ds
) 1

2 |t2 − t1|
1
2 ≤ CB,T |t2 − t1|

1
2 ,

that is, t 7→ S(t)U0 is Hölder continuous in H−1. Besides, for 0 < s < 1, one
has from the above case and interpolation theorem that

∥Sλ(t2)U0 − Sλ(t1)U0∥H−s ≤ Cs,B,T |t2 − t1|s/2, t1, t2 ∈ [0, T ],

for some constant Cs,B,T > 0, which proves the Hölder continuity in H−s.
Hence, from Theorem B.14 the dynamical system (H, Sλ(t)) has a gener-

alized fractal exponential attractor Aexp
λ with finite fractal dimension in H−s

for 0 < s ≤ 1, that is,

dimf
H−s

(
Aexp
λ

)
<∞, 0 < s ≤ 1.

This completes the proof of Theorem 6.3. □

Although Theorem 6.3 - (J.11) provides the existence of a generalized
fractal exponential attractor whose fractal dimension is finite in the extended
space H−s, 0 < s ≤ 1, one sees from its proof that the same methodology
cannot be extended to the lower limit case s = 0, say in H0 = H. However,
among all possibilities for the function k(·) in case (k.2), in the constant
scenario we are supposed to reach exponential attractors, that is, with finite
fractal dimensional in H. But even so, the above approach seems to be not
applicable and to circumvent the difficulty in obtaining the Hölder continuity
of the mapping (6.8) inH, we are going to replace it by a Lipschitz continuous
property on a suitable space. This is exactly the goal of the next section.

6.2. A special case: constant k(·) and p∗ < 2n
n−4 . It is worth pointing

out that case (k.2) covers the class of constant functions k(s) = γ > 0 for all
s ≥ 0, which in turn reflects to the case (k.1) with q = 0 in (3.4). However, in
this very special case of linear damping γut and commutative patterns A =

A
1
2
1 (see (2.13)), we can go further. Indeed, in the next result, we prove that

the dynamical system (H, Sλ(t)) has a time-dependent exponential attractor
Aexp
λ =

{
Aexp
λ (t); t ∈ R

}
⊂ H for every λ ∈ [0, 1], whose sections Aexp

λ (t)
have finite fractal dimension in H for all t ∈ R. This provides, in particular,

the existence of an exponential attractor Ãexp
λ for the dynamical system
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(H, Sλ(t)). To this purpose, we shall work with the decomposition method
motivated by the works [7, 8, 21, 22, 23, 39, 47].

For k ≡ γ > 0 and requiring the case (2.13), then problem (1.1) turns into{
utt + κA

1
2
1 u+A1u+ γut + f(u) = hλ, t > 0,

(u(0), ut(0)) = (u0, u1) := U0.
(6.9)

As in (3.20), we still denote by (H, Sλ(t)) the dynamical system associated
with (6.9) in case (k.2) under the assumption of constant function k(·).
Moreover, for each λ ∈ [0, 1] we split the semigroup Sλ(t) = S1

λ(t) + S2
λ(t)

with S1
λ(t), S

2
λ(t), t ≥ 0, given as follows.

Let us consider the evolution operator

S1
λ(t) : H → H, S1

λ(t)U0 := (v(t), vt(t)), (6.10)

where v the solution of the linear problem{
vtt + κA

1
2
1 v +A1v + γ vt = hλ, t > 0,

(v(0), vt(0)) = U0.
(6.11)

Then, we set S2
λ(t) : H → H as

S2
λ(t)U0 = Sλ(t)U0 − S1

λ(t)U0 := (z(t), zt(t)), (6.12)

where z solves the following problem{
ztt + κA

1
2
1 z +A1z + γ zt = −f(u), t > 0,

(z(0), zt(0)) = (0, 0).
(6.13)

Proposition 6.4. Under the above setting (6.9)-(6.13), let us consider a
bounded set B ⊂ H with initial data U1

0 , U
2
0 ∈ B. Then, there exist constants

cB, CB > 0 (depending on B) such that

∥S1
λ(t)U

1
0 − S1

λ(t)U
2
0 ∥H ≤ CBe

−cBt∥U1
0 − U2

0 ∥H, t > 0. (6.14)

Proof. Since the difference S1
λ(t)U

1
0 − S1

λ(t)U
2
0 := (ṽ(t), ṽt(t)) satisfies the

homogeneous linear problem related to (6.11){
ṽtt + κA

1
2
1 ṽ +A1ṽ + γ ṽt = 0, t > 0,

(ṽ(0), ṽt(0)) = U1
0 − U2

0 ,

then the proof is a particular case of Proposition 6.2 neglecting the precom-
pact component. □
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Proposition 6.5. Under the above setting (6.9)-(6.13), let us also consider
Assumption 3.1 with subcritical exponent p < 4

n−4 . Then, there exists a
Banach space W such that the embedding H ↪→ W is compact and

∥S2
λ(t)U

1
0 − S2

λ(t)U
2
0 ∥H ≤ Q̂(t)∥U1

0 − U2
0 ∥W , t > 0, (6.15)

for all U1
0 , U

2
0 ∈ H, where Q̃(t) = Q̃(∥U1

0 ∥H, ∥U2
0 ∥H, t) a positive non-

decreasing function.

Proof. Given U i
0 = (ui0, u

i
1) ∈ H and denoting S2

λ(t)U
i
0 = (zi(t), zit(t)),

i = 1, 2, then the function z = z1 − z2 satisfies

ztt + κA
1
2
1 z +A1z + γ zt = f(u2)− f(u1), (z(0), zt(0)) = (0, 0). (6.16)

Taking the multiplier zt in (6.16), we have

1

2

d

dt
Ez(t) = −γ∥zt(t)∥22 + (f(u2(t))− f(u1(t)), zt(t)), (6.17)

where

Ez(t) = ∥zt(t)∥2 + κ∥A1/4
1 z(t)∥2 + ∥A

1
2
1 z(t)∥

2, t ≥ 0.

Let us estimate the second term on the right-hand side of (6.17) as follows.
We first claim that there exists a power s ∈ (0, 2) such that

∥f(z)− f(w)∥ ≤ Cf (1 + ∥z∥pp∗ + ∥w∥pp∗)∥A
s/4
1 z −A

s/4
1 w∥, (6.18)

z, w ∈ D(A
1
2
1 ), for some constant Cf > 0. Indeed, Given z, w ∈ D(A

1
2
1 ) ↪→

Lp∗(Ω), from Assumption 3.1 and Hölder’s inequality with p
p+1 + 1

p+1 = 1,
we get

∥f(z)− f(w)∥2 =
∫
Ω

( ∫ 1

0
f ′(θz + (1− θ)w)(z − w) dθ

)2
dx

≤ Cf ′

∫
Ω

(
1 + |z|2p + |w|2p

)
|z − w|2 dx

≤ Cf ′
(
|Ω|+ ∥z∥2pp∗ + ∥w∥2pp∗

)
∥z − w∥2p∗ .

Also, since p < 4
n−4 , then s := n

2 − n
p∗ satisfies 0 < s < 2 < n

2 , that is, the

number s satisfies the conditions of [1, Theorem 5.1.5], and thus

D(A
1
2
1 ) ↪→ D(A

s/4
1 ) ↪→ Hs(Ω) ↪→ Lp∗(Ω),

from where it follows (6.18) for some constant Cf > 0. Now, using Cauchy-
Schwarz’s inequality and (6.18), we obtain

(f(u2(t))− f(u1(t)), zt(t)) ≤ C0∥As/4
1 (u1 − u2)(t)∥[Ez(t)]

1
2 , (6.19)
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for some constant C0 = C0(∥U1
0 ∥H, ∥U2

0 ∥H) > 0. Replacing (6.19) in (6.17)
arrive at

1

2

d

dt
Ez(t) ≤ −γEz(t) + C0∥As/4

1 (u1 − u2)(t)∥[Ez(t)]
1
2 . (6.20)

From (6.20) and regarding [44, Lemma 4.1] with ϕ := Ez set on [0, t], and
also taking into account that Ez(0) = 0, we have

[Ez(t)]
1
2 ≤ C0

∫ t

0
∥As/4

1 (u1 − u2)(τ)∥ dτ, (6.21)

for some constant C0 > 0 depending on initial data.
On the other hand, by setting u := u1 − u2, then the function ũ :=

A
(s−2)/4
1 u fulfills the problem{
ũtt + κA

1
2
1 ũ+A1ũ+ γ ũt = A

(s−2)/4
1 (f(u2)− f(u1)), t > 0,

(ũ(0), ũt(0)) = (A
(s−2)/4
1 u0, A

(s−2)/4
1 u1).

(6.22)

Taking the multiplier ũt in (6.22), and integrating the resulting expression
on (0, τ), τ ∈ (0, t), we get

1

2
Gu(τ) ≤

1

2
Gu(0) +

∫ τ

0
(A

(s−2)/4
1 (f(u2(r))− f(u1(r))), ũt(r))dr, (6.23)

where

Gu(t) = ∥A(s−2)/4
1 ut(t)∥2 + κ∥A(s−1)/4

1 u(t)∥2 + ∥As/4
1 u(t)∥2.

From Cauchy-Schwarz’s inequality, since L2(Ω) ↪→ D(A
(s−2)/4
1 ), and using

again (6.18), we infer∣∣ ∫ τ

0
(A

(s−2)/4
1 (f(u2(r))− f(u1(r))), ũt(r))dr

∣∣ ≤ C0

∫ τ

0
Gu(r)dr,

for some constant C0 = C0(∥U1
0 ∥H, ∥U2

0 ∥H) > 0. Plugging the last estimate
in (6.23),

1

2
Gu(τ) ≤

1

2
Gu(0) + C0

∫ τ

0
Gu(r)dr,

and from Gronwall’s inequality, we obtain

Gu(τ) ≤ eC0τGu(0), (6.24)

for some C0 = C0(∥U1
0 ∥H, ∥U2

0 ∥H) > 0. Combining the estimates (6.21) and
(6.24), we finally conclude

∥S2
λ(t)U

1
0 − S2

λ(t)U
2
0 ∥H = ∥(z(t), zt(t))∥H ≤ [Ez(t)]

1
2
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≤ C0

∫ t

0
[Gu(τ)]

1
2 dτ ≤ teC0t[Gu(0)]

1
2 ≤ CteC0t∥U1

0 − U2
0 ∥W ,

for some constant C > 0 and C0 = C0(∥U1
0 ∥H, ∥U2

0 ∥H) > 0, where we set

W := D(A
s/4
1 )×D(A

(s−2)/4
1 ).

Therefore, once the embedding H ↪→ W is compact, the estimate (6.15)

follows by taking Q̃(t) = CteC0t. □

We are now in a position to state the result dealing with exponential
attractor for the dynamical system (H, Sλ(t)) corresponding to (6.9).

Theorem 6.6 (Exponential Attractor). Let us assume that the assump-
tions of Proposition 6.5 holds. Then, the dynamical system (H, Sλ(t)) has
a time-dependent exponential attractor Aexp

λ =
{
Aexp
λ (t)

}
t∈R, for every λ ∈

[0, 1], whose sections Aexp
λ (t) have finite fractal dimension in H for all t ∈ R,

that is,

dimf
H
(
Aexp
λ (t)

)
<∞, t ∈ R.

In particular, there exists a time T ⋆ > 0 such that

Ãexp
λ :=

⋃
t∈[T ⋆,2T ⋆]

Sλ(t)A
exp
λ ,

is an exponential attractor for (H, Sλ(t)), where Aexp
λ denotes the exponential

attractor for the corresponding discrete semigroup {Sλ(nT ⋆)}n∈N.

Proof. In order to employ Theorem B.15, we note that the next conditions
are verified.

(S1) From Proposition 6.1, the dynamical system (H, Sλ(t)) possesses a
bounded (uniformly with respect to λ ∈ [0, 1]) absorbing set B ⊂ H.

(S2) From Proposition 6.4, there exist a time T ⋆ > 0 and a constant
a := aT ⋆,B <

1
2 such that S1

λ(t) satisfies the contraction on B

∥S1
λ(T

⋆)U1
0 − S1

λ(T
⋆)U2

0 ∥H ≤ a∥U1
0 − U2

0 ∥H, U1
0 , U

2
0 ∈ B.

(S3) From Proposition 6.5, there exists a constant given by b = Q̂(T ⋆) > 0
such that S2

λ(t) satisfies the smoothing condition on B
∥S2

λ(T
⋆)U1

0 − S2
λ(T

⋆)U2
0 ∥H ≤ b∥U1

0 − U2
0 ∥W , U1

0 , U
2
0 ∈ B,

where H ↪→ W is compactly embedded.
(S4) From Theorem 3.1 (see (3.12)), the semigroup Sλ(t) is Lipschitz on

B with constant Lt = Q(t) > 0, that is,

∥Sλ(t)U1
0 − Sλ(t)U

2
0 ∥H ≤ Lt∥U1

0 − U2
0 ∥H, U1

0 , U
2
0 ∈ B, t ≥ 0.
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Therefore, by means of Theorem B.15 and Remark B.1, the conclusion of
Theorem 6.6 is ensured. □

7. Long-time dynamics: case (k.3)

We have finally arrived at the critical case with respect to power α = 1.
In this case, by virtue of (2.12), the k-function argument E1(u, ut) set in
(1.2) can be written as

E1(u, ut) = ∥Au∥2 + ∥ut∥2 = ∥A
1
2
1 u∥

2 + ∥ut∥2, (7.1)

from where one sees why we lose compactness of the damping coefficient in

phase space H = D(A
1
2
1 )×H. Therefore, this case motivated us to keep the

closedness property in the definition of global attractors instead of compact-
ness, because here the system has a degenerate damping coefficient (in the
H-topology) without control in a neighborhood of origin and, consequently,
a noncompact global attractor comes into play.

To deal with problem in this case, let us consider problem (1.1) with
critical power α = 1 and vanishing functions f = h = 0. In this way, (1.1)
with notation (7.1) can be expressed as follows{

utt + κAu+A1u+ k
(
∥A

1
2
1 u∥

2 + ∥ut∥2
)
ut = 0,

u(0) = u0, ut(0) = u1,
(7.2)

where we notice that in case (k.3), we assume that k(·) is a bounded Lips-
chitz function on [0,∞) such that k ≡ 0 on [0, 1] and k(s) is strictly increasing
for s > 1.

Also, the energy functional E(t) := E
(
u(t), ut(t)

)
set in (3.1) boils down

to the following

E(t) =
1

2

[
∥ut(t)∥2 + ∥A

1
2
1 u(t)∥

2 + κ∥A
1
2u(t)∥2

]
, (7.3)

and satisfies the relation

E(t) +

∫ t

0
k
(
||(u(τ), ut(τ))||2H

)∥∥ut(τ)∥∥2dτ = E(0), t > 0. (7.4)

It is worth mentioning that, under the above conditions in the setting
of problem (7.2), the dynamical system related to both cases (k.1) and
(k.2) possesses a trivial attractor, see Theorem 5.1-(I.6) and Theorem 6.3-
(J.6). Nonetheless, in the present case, even under this particular scenario
concerning the source f and external force h, we are going to show below
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that the dynamical system corresponding to problem (7.2) has a nontrivial
noncompact global attractor.

7.1. A noncompact attractor: the critical case α = 1. Since the crit-
ical problem (7.2) arises independently of the parameter λ ∈ [0, 1], then
we denote by (H, S(t)) the dynamical system associated with (7.2). We
also remind from Subsection 3.2 that {S(t)}t∈R can be seen as an evolution
C0-group.

Here, our main result concerning the dynamical system (H, S(t)) reads as
follows.

Theorem 7.1 (Noncompact Global Attractor). Under the setting of
problem (7.2) with function k(·) in case (k.3), the corresponding dynamical
system (H, S(t)) has the following global attractor

Aκ =
{(
u0, u1

)
∈ H;

∥∥u1∥∥2 + ∥∥A1/2
1 u0

∥∥2 + κ∥A
1
2u0∥2 ≤ 1

}
, (7.5)

for κ > 0 (possibly zero) small enough.

Proof. The proof will be done in two steps by appealing to the definition
of the global attractor.

Step 1. Fully Invariance. We start by noting that the linear problem

utt + κAu+A1u = 0, u(0) = u0, ut(0) = u1, (7.6)

has a unique solution (u(t), ut(t)) such that the energy set in (7.3) satisfies

E(u(t), ut(t)) = E(u0, u1), t ∈ R.

From this, since k(s) = 0 for s ∈ [0, 1], and uniqueness of the solution, it
is easy to verify that Aκ is a fully invariant set with respect to S(t) and,
consequently, H\Aκ so is it. Moreover, from the energy identity, it is also
easy to check that the set BR,κ := BR given by

BR =
{
(u0, u1) ∈ H; ∥u1∥2 + ∥A1/2

1 u0∥2 + κ∥A
1
2u0∥2 ≤ R2

}
is forward invariant with respect to S(t) for every R > 1.

Step 2. Uniform Attracting. Given any bounded set B ⊂ H, there
exists R > 1 such that B ⊂ BR. Hence, below, we only need to verify that
S(t)BR goes to Aκ uniformly with respect to BR, for every R > 1.

Let us consider U0 = (u0, u1) ∈ BR, R > 1, and S(t)U0 =
(
u(t), ut(t)

)
the

corresponding semigroup solution. There are only two possibilities U0 ∈ Aκ

or else U0 ∈ BR\Aκ. If U0 ∈ Aκ, then S(t)U0 ∈ S(t)Aκ = Aκ, and the
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conclusion follows trivially. Thus, in what follows, we take U0 ∈ BR\Aκ. We
first claim that

lim
t→+∞

[
2E(S(t)U0)

]
= 1. (7.7)

Indeed, let us suppose that it does not hold. Thus, due to the invariance of
H\Aκ and since the mapping t 7→ 2E(S(t)U0) is non-increasing, there exists
R0 > 1 such that

2E(S(t)U0) ≥ R0, t > 0, and lim
t→+∞

[
2E(S(t)U0)

]
= R0. (7.8)

Now, we remember (analogously to (3.16)) that

||S(t)U0||2H ≤ 2E(S(t)U0) ≤ (1 + κµ0)||S(t)U0||2H, (7.9)

and taking κ > 0 small enough (or possibly zero) so that κ < R0−1
µ0

, then

Rκ := R0
1+κµ0

> 1. From (7.8)-(7.9) one sees that
∥∥S(t)U0

∥∥2
H ≥ Rκ > 1 for

all t ≥ 0, and from the assumption on k(·) in the range (1,∞), we infer

k
(∥∥S(t)U0

∥∥2
H
)
≥ k(Rκ) := k0 > 0 for all t ≥ 0. (7.10)

Going back to problem (7.2), taking the multiplier ut, and using (7.10), we
get

d

dt
E(S(t)U0) + 2k0

∥∥ut(t)∥∥2 ≤ 0, t > 0. (7.11)

Using (7.11) and since k1 = sup{k(s); s ≥ 1} < ∞, then problem (7.2)
behaves like in case (k.2) and similar to Proposition 6.1 (see [29, Remark 7]
for more details) one shows that there exists a constant c > 0 (which may
depend on U0 and k0) such that

E(S(t)U0) ≤ 3E(U0)e
−c t, t > 0,

whenever 2E(S(t)U0) ≥ R0 > 1, which is a contraction to (7.8). Therefore,
(7.7) holds true and is uniform with respect to U0 ∈ BR\Aκ. Additionally,

lim
t→+∞

[
2E(S(t)U0)

] 1
2 = 1, U0 ∈ BR\Aκ.

Finally, for every U0 ∈ BR\Aκ, we observe that

dist
(
S(t)U0,Aκ

)
≤

∥∥S(t)U0 −
S(t)U0

[2E(S(t)U0)]
1
2

∥∥
H

=

∥∥S(t)U0

∥∥
H
[
[2E(S(t)U0)]

1
2 − 1

]
[2E(S(t)U0)]

1
2

≤
[
[2E(S(t)U0)]

1
2 − 1

]
,
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where in the last inequality, we use (7.9), from where one concludes

lim
t→+∞

distH
(
S(t)(BR\Aκ),Aκ

)
= lim

t→+∞

[
sup

U0∈BR\Aκ

dist
(
S(t)U0,Aκ

)]
= 0.

This completes the proof that the bounded closed set Aκ given in (7.5)
uniformly attracts BR for any R > 1, and bounded subsets B ⊂ H as well.

Therefore, Aκ is a global attractor for the dynamical system (H, S(t))
generated by problem (7.2). □

Corollary 7.2. Under the hypotheses of Theorem 7.1, the dynamical sys-
tem (S(t),H) associated with problem (7.2) does not have a compact global
attractor.

Proof. It is directly a consequence of the uniqueness of a global attractor.
□

Corollary 7.3. Under the hypotheses of Theorem 7.1 with κ = 0, then the
closed ball

B0 =
{(
u0, u1

)
∈ H;

∥∥u1∥∥2 + ∥∥A1/2
1 u0

∥∥2 ≤ 1
}

is the global attractor for (S(t),H).

Remark 7.1. The result stated in Corollary 7.3 corresponds to the one
approached [12, Proposition 5.3.9]. Additionally, we note that in this limit
case κ = 0, one can relax the assumption of k(·) on the interval [0, 1], for
instance with arbitrary behavior on [0, 1] instead vanishing on it, see [12,
Subsect. 5.3.3].

Appendix A. Auxiliary proofs

A.1. Completion of the proof of Theorem 3.2. By using Assumption
3.1, we prove now that operator M : H → H defined in (3.7) is a locally
Lipschitz continuous operator on H.

In fact, let us consider R > 0 and U = (u, v), Ũ = (ũ, ṽ) ∈ H such that

||U ||H, ||Ũ ||H ≤ R. From definition (3.7) and the H-norm, we have

||M(U)−M(Ũ) ||H
=

∥∥κ[Au−Aũ] + γ
[
||U ||2qHαv − ||Ũ ||2qHα ṽ

]
− [f(u)− f(ũ)]

∥∥
≤ κ∥U − Ũ∥H + γ

∥∥||U ||2qHαv − ||Ũ ||2qHα ṽ
∥∥︸ ︷︷ ︸

I1

+ ∥f(u)− f(ũ)∥︸ ︷︷ ︸
I2

. (A.1)
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In what follows, we are going to estimate the terms I1 and I2 above. To
estimate the term I1, we first note that

||U ||2qHαv − ||Ũ ||2qHα ṽ

=
1

2

[
||U ||2qHα + ||Ũ ||2qHα

]
[v − ṽ] +

1

2

[
||U ||2qHα − ||Ũ ||2qHα

]
[v + ṽ]. (A.2)

Using that D(A
1
2
1 ) ⊆ D(A) ⊆ D(Aα) and ∥A

1
2
1 u∥2 = ∥Au∥ for u ∈ D(A

1
2
1 ),

we can estimate the first term of the sum in (A.2) as follows

1

2

∥∥[||U ||2qHα + ||Ũ ||2qHα

]
[v − ṽ]

∥∥ ≤ CR∥v − ṽ∥ ≤ CR||U − Ũ ||H.

We emphasize again that this is the precise moment where the assumption
q ≥ 1/2 is crucial in our computations. Indeed, once we have 2q ≥ 1, then
we can use Lemma 3.3 to obtain

1

2

∥∥[||U ||2qHα − ||Ũ ||2qHα

]
[v + ṽ]

∥∥
≤ qmax

{
||U ||Hα , ||Ũ ||Hα

}2q−1∥v + ṽ |||U − Ũ ||Hα ≤ CR||U − Ũ ||H
for some CR > 0. Therefore, collecting the last two estimates, we deduce

from (A.2) that I1 ≤ CR||U − Ũ ||H. Lastly, we are going to estimate the
term I2. Using Mean Value Theorem, conditions (3.2), Hölder’s inequality

with p
p+1 + 1

p+1 = 1 and the embedding D(A
1
2
1 ) ↪→ Lp∗(Ω), we have

I2 ≤ 22pCf ′
[
|Ω|+ ∥u∥p

∗

p∗ + ∥ũ∥p
∗

p∗
] p
p∗ ∥u− ũ∥p∗

≤ 22pCf ′C|Ω|
[
|Ω|+ Cp∗

|Ω|
(
∥A

1
2
1 u∥

p∗ + ∥A
1
2
1 ũ∥

p∗
)] p

p∗ ∥A
1
2
1 u−A

1
2
1 ũ∥

≤ CR||U − Ũ ||H.

replacing I1 and I2 in (A.1), we obtain

||M(U)−M(Ũ) ||H ≤ CR||U − Ũ ||H,

for some CR > 0, which proves the desired. □

A.2. Proof of Proposition 4.8. Proof of (N.1). In this case, under the
assumptions of Proposition 4.8, we are going to prove the inequality (4.26).
Indeed, we first observe that it holds true for 0 ≤ t ≤ 1. Then, let us prove
it for t > 1. Setting the function

β(t) :=
(
C−1
0 ρ(t− 1)+ +

(
sup

0⩽s⩽1
ϕ(s)

)−ρ)−1/ρ
, t ≥ 0,
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we initially claim that the following property holds: if for some t ≥ 0, the
inequality holds

ϕ(t) ⩽ β(t) + [K(t)]1/(ρ+1), (A.3)

then the next inequality holds as well

ϕ(t+ 1) ⩽ β(t+ 1) + [K(t+ 1)]1/(ρ+1). (A.4)

Indeed, let us suppose that (A.4) does not hold, that is

ϕ(t+ 1) > β(t+ 1) + [K(t+ 1)]1/(ρ+1). (A.5)

Now, if ϕ(t) ⩽ [K(t)]1/(ρ+1), then (A.5) and (A.3) imply

ϕ(t+ 1) > [K(t+ 1)]1/(ρ+1) ≥ [K(t)]1/(ρ+1) > ϕ(t),

where we have used that K(t) is non-increasing. Thus, from (4.25), we
obtain

ϕ(t+ 1) < [K(t+ 1)]1/(ρ+1),

which is a contradiction with (A.5). Thus, we can infer that

ϕ(t) > [K(t)]1/(ρ+1)

and, consequently,{
φ(t) := ϕ(t)− [K(t)]1/(ρ+1) > 0,

φ(t+ 1) := ϕ(t+ 1)− [K(t+ 1)]1/(ρ+1) > 0.

From this, one sees

[φ(t)]ρ+1 +K(t) ⩽
(
φ(t) + [K(t)]1/(ρ+1)

)ρ+1
= [ϕ(t)]1+ρ, (A.6)

and using again (4.25), one gets

[φ(t)]1+ρ ⩽ C0(φ(t)− φ(t+ 1)). (A.7)

We additionally set ψ(t) := φ−ρ(t) and ψ(t + 1) := φ−ρ(t + 1). Then, a
straightforward integral computation along with (A.7) lead to

ψ(t+ 1)− ψ(t) = −
∫ 1

0

d

dτ
(τφ(t) + (1− τ)φ(t+ 1))−ρdτ

= ρ

∫ 1

0
(τφ(t) + (1− τ)φ(t+ 1))−(1+ρ)dτ(φ(t)− φ(t+ 1))

⩾ ρφ−(1+ρ)(t)(φ(t)− φ(t+ 1)) ⩾ ρC−1
0 .

Thus, we have

φ−ρ(t+ 1) = ψ(t+ 1) ⩾ ψ(t) + ρC−1
0 = φ−ρ(t) + ρC−1

0 ,
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that is,

φ(t+ 1) ≤
(
φ−ρ(t) + ρC−1

0

)−1/ρ
, (A.8)

From (A.8) and (A.3), we finally arrive at

ϕ(t+ 1) = φ(t+ 1) + [K(t+ 1)]1/(ρ+1)

⩽
(
φ−ρ(t) + ρC−1

0

)−1/ρ
+ [K(t+ 1)]1/(ρ+1)

⩽
(
ρC−1

0 (t− 1)+ + sup
0⩽s⩽1

[ϕ(s)]−ρ + ρC−1
0

)−1/ρ
+ [K(t+ 1)]1/(ρ+1)

⩽ β(t+ 1) + [K(t+ 1)]1/(ρ+1),

which contradicts (A.5). This concludes the proof of our initially assertion.
To conclude the proof, we note that for any t > 1 real, we can write

t = n + r with n ∈ N and 0 ≤ r < 1. From the beginning, (A.3) holds true
for 0 ≤ r < 1 and from (A.4),

ϕ(r + 1) ⩽ β(r + 1) + [K(r + 1)]1/(ρ+1).

Using this assertion n times, we infer

ϕ(t) = ϕ(r + n) ⩽ β(r + n) + [K(r + n)]1/(ρ+1) = β(t) + [K(t)]1/(ρ+1),

as desired. This concludes the proof of (4.26).

Proof of (N.2). To the proof of (4.27), we initially set

β(t) := sup
0⩽s⩽1

ϕ(s)
( C0

1 + C0

)[t]
, t ≥ 0,

and proceed verbatim as in the first case. □

A.3. Proof of Proposition 4.11. From the hypothesis of Proposition 4.11,
one sees {

un → u weakly-star in L∞(
s, T ;D(A

1
2
1 )
)
,

unt → ut weakly-star in L∞(s, T ;H),
(A.9)

and from the Aubin-Lions compactness theorem (see e.g. Simon [45]), we
also have

un → u strongly in C([s, T ];H). (A.10)

Additionally, by using Lemma 8.1 in Lions and Magenes [38] (see on p. 275

therein), (A.9) also implies that un is bounded in Cs

(
s, T ;D(A

1
2
1 )
)
, and then

un(t) is bounded in D(A
1
2
1 ) for all t ∈ [s, T ]. From this and (A.10), one gets

un(t) → u(t) weakly in D(A
1
2
1 ), s ≤ t ≤ T, (A.11)
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and due to the compact embedding theorem, we infer

f̂
(
un(t)

)
→ f̂(u(t)) strongly in L1(Ω), s ≤ t ≤ T. (A.12)

where we notice that f̂(u) =
∫ u
0 f(τ)dτ . Also, from (A.9), assumptions on f

and again (A.10), we have(
f
(
un

)
, unt

)
→

(
f(u), ut

)
strongly in L1(s, T ). (A.13)

Now, regarding

∂

∂t

∫
Ω
f̂
(
un(x, t)

)
dx =

(
f
(
un(t)

)
, unt (t)

)
,

we get∫ t

s

(
f(un(τ)), unt (τ)

)
dτ =

∫
Ω
f̂(un(x, t))dx−

∫
Ω
f̂(un(s, x))dx.

From this identity (which also holds true for u) and from the limits (A.12)-
(A.13), we finally arrive at

lim
n→∞

lim
m→∞

∫ T

s

(
f
(
un(t)

)
− f

(
um(t)

)
, unt (t)− umt (t)

)
dt

= lim
n→∞

∫
Ω
f̂
(
un(x, T )

)
dx+ lim

m→∞

∫
Ω
f̂
(
um(x, T )

)
dx

− lim
n→∞

∫
Ω
f̂
(
un(x, s)

)
dx− lim

m→∞

∫
Ω
f̂
(
um(x, s)

)
dx

− lim
n→∞

lim
n→∞

∫ T

s

∫
Ω
f
(
un(t, x)

)
umt (x, t)dxdt

− lim
n→∞

lim
n→∞

∫ T

s

∫
Ω
f
(
um(x, t)

)
unt (x, t)dxdt

= 2

∫
Ω
f(u(x, T ))dx− 2

∫
Ω
f(u(x, s))dx− 2

∫ T

s

(
f(u(t)), ut(t)

)
dxdt

= 0,

which proves the desired in (4.45). □

Appendix B. Auxiliary facts on dynamical systems

The concepts and results on dynamical systems reminded below can be
found e.g. in [3, 7, 12, 16, 17, 18, 21, 26, 27, 35, 43, 47]. Hereafter, (H,St)
stands for a dynamical system consisting of a C0-semigroup St, t ≥ 0, defined
on a Banach space (H, ∥ · ∥).
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• The dynamical system (H,St) is said to be dissipative if it possesses
a bounded absorbing set, that is, a bounded set B ⊂ H such that for any
bounded set B ⊂ H there exists tB ≥ 0 satisfying StB ⊂ B, ∀ t ≥ tB.

• One says that (H,St) is asymptotically smooth if for any bounded posi-
tively invariant set B ⊂ H (StB ⊆ B for all t ≥ 0), there exists a compact
set M ⊂ B such that

lim
t→+∞

distH(StB,M) = 0, (B.1)

where distH(·, ·) stands for the Hausdorff semidistance4 in H.
•
(
H,St

)
is said to be asymptotically compact if and only if there exists

an attracting compact set M, that is, for any bounded set B one has that
(B.1) holds.

• A global attractor for (H,St) is a bounded closed set A ⊂ H which is
fully invariant and uniformly attracting, that is, StA = A for all t ≥ 0 and
for every bounded subset B ⊂ H,

lim
t→+∞

distH(StB,A) = 0.

• A global minimal attractor for (H,St) is a bounded closed set Amin ⊂ H
which is positively invariant (StAmin ⊆ Amin) and attracts uniformly every
point, that is,

lim
t→+∞

dist(StU0,Amin) = 0, for any U0 ∈ H,

and Amin has no proper subsets possessing these two properties.
• The unstable manifold emanating from a set N, denoted by Mu(N), is

a set of H such that for each U0 ∈ Mu(N) there exists a full trajectory
Γ = {U(t); t ∈ R} satisfying

U(0) = U0 and lim
t→−∞

dist(U(t),N) = 0.

• The dynamical system (H,St) is said to be gradient if and only if there
exists a strict Lyapunov functional on H, that is, there exists a continuous
functional Φ(z) such that the function t 7→ Φ(Stz) is nonincreasing for any
z ∈ H, and the equation Φ(Stz) = Φ(z) for all t > 0 and some z ∈ H implies
that Stz = z for all t > 0.

4The Hausdorff semidistance of two non-empty subsets A,B ⊂ H is given by

distH(A,B) := sup
x∈A

dist(x,B) = sup
x∈A

inf
y∈B

∥x− y∥.
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• The Kolmogorov ε−entropy Hε(M) of a compact set M ⊂ H is given by

Hε(M) = lnN(M, ε), ε > 0, (B.2)

where N(M, ε) is the minimal number of closed sets of the diameter not
greater than 2ε which cover the compact M. The fractal dimension dimf M

of M is defined by the formula

dimf
HM = lim sup

ε→0

Hε(M)

ln(1/ε)
.

• A compact set Aexp ⊂ H is said to be a fractal exponential attractor
of the dynamical system (H,St) if Aexp is a positively invariant set of finite
fractal dimension and for every bounded set B ⊂ H there exist positive
constants tB, CB and σB such that

distH(StB,Aexp) ≤ CB e
−σB(t−tB), t ≥ tB.

If the exponential attractor has finite fractal dimension in some extended

space H̃ ⊇ H, one calls this exponentially attracting set as a generalized
fractal exponential attractor.

The first results below deal with the existence and characterization of
global attractors. To their statements, we follow more closely the works
[17, 18].

Theorem B.1 ([17, Proposition 2.10]). Assume that for any bounded posi-
tively invariant set B ⊂ H and for any ε > 0, there exists T = T (ε,B) such
that

∥Stz1 − Stz2∥ ≤ ε+ ϕT (z1, z2), ∀ z1, z2 ∈ B,

where ϕT : B ×B → R satisfies

lim inf
n→∞

lim inf
m→∞

ϕT (zn, zm) = 0, (B.3)

for any sequence (zn) in B. Then (H,St) is an asymptotically smooth dy-
namical system.

Proposition B.2 ([18, Proposition 7.1.4]). Let
(
H,St

)
be a dissipative dy-

namical system. Then,
(
H,St

)
is asymptotically compact if and only if(

H,St
)
is asymptotically smooth.

Theorem B.3 ([17, Theorem 2.3]). Let
(
H,St

)
be a dissipative dynamical

system. Then
(
H,St

)
possesses a compact global attractor A if and only if(

H,St
)
is asymptotically smooth.
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Theorem B.4 ([17, Theorem 2.28]). Let N be the set of stationary points5

of (H,St) and assume that (H,St) possesses a compact global attractor A. If
there exists a strict Lyapunov functional on A, then A = Mu(N). Moreover,
the global attractor A consists of full trajectories Γ = {U(t) : t ∈ R} such
that

lim
t→−∞

dist(U(t),N) = 0 and lim
t→+∞

dist(U(t),N) = 0.

Theorem B.5 ([18, Theorem 7.5.10]). Assume that a gradient dynamical
system (H,St) possesses a compact global attractor A. Then for any z ∈ H,
we have

lim
t→+∞

dist(Stz,N) = 0,

that is, any trajectory stabilizes to the set N of stationary points. In partic-
ular, Amin = N.

In the next results, we deal with a family of attractors {Aλ}λ∈Λ ⊂ H.6

To their statements, we follow the references [27, 43]. We first remind the
concepts of upper semicontinuity and (residual) continuity as follows.

• The family of attractors {Aλ}λ∈Λ is upper semicontinuous at the
point λ0 if and only if

lim
λ→λ0

distH
(
Aλ,Aλ0

)
= 0,

where, as above, distH(·, ·) stands for the Hausdorff semidistance in
H.

• The family of attractors {Aλ}λ∈Λ is continuous at the point λ0 when

lim
λ→λ0

[
distH

(
Aλ0 ,Aλ

)
+ distH

(
Aλ,Aλ0

)]
= 0.

Theorem B.6 ([43, Theorem 10.16]). Let {Sλ
t }λ∈Λ be a family of semigroups

on H possessing global attractors Aλ for λ ∈ Λ. Let us additionally assume:

(a) the attractors Aλ are uniformly bounded, i.e., there exists a bounded
set B0 ⊂ H such that Aλ ⊂ B0, for all λ ∈ Λ;

(b) there exists t0 ≥ 0 such that

lim
λ→λ0

sup
z∈B0

||Sλ
t z − Sλ0

t || = 0, ∀ t ≥ t0.

Then, the family of attractors {Aλ}λ∈Λ is upper semicontinuous at the point
λ0.

5N =
{
v ∈ H : Stv = v for all t ≥ 0

}
.

6Here, Λ stands for complete metric space.
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Theorem B.7 ([27, Theorem 5.2]). Let {Sλ
t }λ∈Λ be a family of semigroups

on H. Let us additionally suppose:

(a) Sλ
t has a global attractor Aλ for every λ ∈ Λ;

(b) there is a bounded subset B ⊂ H such that Aλ ⊂ B for every λ ∈ Λ;
(c) for t > 0, Sλ

t x is continuous in λ, uniformly for x in bounded subsets
of X.

Then, the family Aλ is continuous in λ for all λ0 in a residual subset of
Λ. In particular, the set of continuity points of Aλ is dense in Λ.

The next result deals with an estimate for Kolmogorov’s ε-entropy Hε(M)
of a compact set M ⊂ H, where now (H, ∥ · ∥) means a Hilbert space. For
its proof, we refer to [16].

Theorem B.8 ([16, Theorem 4.2]). Let H be a separable Hilbert space and
M be a bounded closed set in H. Assume that there exists a mapping V :
M 7→ H such that:

1. M ⊆ VM;
2. V is Lipschitz on M, that is, there exists L > 0 such that∥∥V z1 − V z2

∥∥ ≤ L
∥∥z1 − z2

∥∥, z1, z2 ∈ M;

3. There exist pseudometrics ϱ1 and ϱ2 on H such that∥∥V z1 − V z2
∥∥ ≤ g

(∥∥z1 − z2
∥∥)+ h

([
ϱ1
(
z1, z2

)2
+ ϱ2

(
V z1, V z2

)2]1/2)
for all z1, z2 ∈ M, where g, h : R+ → R+ are continuous non-
decreasing functions such that

g(0) = 0, g(s) < s, s > 0, s− g(s) is nondecreasing,

and the function h(s) is strictly increasing in the interval
[
0, s0

]
for

some s0 > 0 with h(0) = 0.
4. For any q > 0 and for any closed bounded set B ⊂ M the maximal

number m(B, q) of elements xBj ∈ B such

ϱ1
(
xBj , x

B
i

)2
+ ϱ2

(
V xBj , V x

B
i

)2
> q2, i ̸= j, i, j = 1, . . . ,m(B, q),

is finite.

Then M is a compact set and there exists 0 < ε0 < 1 such that for all
ε ≤ ε0 < 1, Kolmogorov’s ε-entropy Hε(M) admits the following estimate

Hε(M) ≤
∫ ε0

ε

lnm
(
g−1
δ (s), q(s)

)
s− gδ(s)

ds+H
g0
(
ε0
)(M),



746 E.H. Gomes Tavares, M.A. Jorge Silva, V. Narciso, and A. Vicente

where gδ(s) = 1−δ
2 g(2s) + δs with arbitrary δ ∈ (0, 1), the function q(s) is

defined by the formula

q(s) =
1

2
h−1{δ[2s− g(2s)]}, 0 < s < ε0,

and

m(r, q) = sup{m(B, q) : B ⊆M,diamB ≤ 2r}.

Theorem B.9 ([16, Theorem 4.5]). Under the hypotheses of Theorem B.8
with

(i) lims→0
g(s)
s = g0 < 1;

(ii) h(s) being a linear function (h(s) = h0 · s);
(iii) ϱi := ni, i = 1, 2, being a precompact seminorm on H (item 4 can be

neglected).

Then M is a compact set in H with finite fractal dimension
(
dimf

HM <∞
)
.

Proof. See also [17, Theorem 2.15], [18, Theorem 7.3.3], or [12, Theorem
3.1.15] for slightly new versions of this result. □

Below we recall the notion on quasi-stable dynamical systems by follow-
ing [12, 18] and then some results on regularity, finite dimensionality, and
exponential attractors.

• The dynamical system (H,St) is said to be quasi-stable on a set B ⊂ H
(at time t∗) if there exist time t∗ > 0, a Banach space Z, a globally Lipschitz
mapping V : B 7→ Z, and a compact seminorm nZ(·) on the space Z, such
that ∥∥St∗z1 − St∗z2

∥∥ ≤ q ·
∥∥z1 − z2

∥∥+ nH
(
V z1 − V z2

)
, (B.4)

for every z1, z2 ∈ B with 0 ≤ q < 1. Here, the space Z, the operator V, the
seminorm nZ , and the time moment t∗ may depend on B.

• Let H be decomposed as H = X × Y × Z where X,Y, Z are reflexive
Banach spaces with X compactly embedded in Y, and endowed with the
usual norm. Additionally, let the dynamical system (H,St) be given by an
evolution operator like

Stz = (u(t), ut(t), ζ(t)), z = (u0, u1, ζ0) ∈ H, (B.5)

where the functions u and ζ possess the properties

u ∈ C(R+;X) ∩ C1(R+;Y ), ζ ∈ C(R+;Z). (B.6)

Under this structure, one says that (H,St) is asymptotically quasi-stable on a
set B ⊂ H if there exist a compact seminorm nX(·) onX, non-negative scalar
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functions a(t) and c(t) locally bounded in [0,∞), and a function b ∈ L1(R+)
with lim

t→∞
b(t) = 0, such that

∥Stz1 − Stz2∥2 ≤ a(t)∥z1 − z2∥2, (B.7)

and

∥Stz1 − Stz2∥2 ≤ b(t)∥z1 − z2∥2 + c(t) sup
0<s<t

[
nX(u1(s)− u2(s))

]2
, (B.8)

for any z1, z2 ∈ B, where we denote Stzi =
(
ui(t), ut,i(t), ζi(t)

)
, i = 1, 2.

The next result shows that the quasi-stability notion generalizes the con-
cept of asymptotically quasi-stability for structural systems like (B.5)-(B.6).
To avoid repetitions, whenever we (only) state below that (H,St) is asymp-
totically quasi-stable, it is implicit that (H,St) is given by (B.5)-(B.6).

Proposition B.10 ([12, Proposition 3.4.17]). If (H,St) is asymptotically
quasi-stable on some set B ⊂ H, then it is quasi-stable on B at every time
T > 0 such that b(T ) < 1.

The following result is a direct consequence of [12, Proposition 3.4.3 and
Corollary 3.4.4] and [18, Proposition 7.9.4 and Corollary 7.9.5].

Proposition B.11. Let us assume that the dynamical system (H,St) is dis-
sipative and (asymptotically) quasi-stable on every bounded forward invari-
ant set B ⊂ H. Then,

(
H,St

)
is asymptotically smooth and, consequently, it

possesses a compact global attractor A ⊂ H.

Theorem B.12. Let us assume that the dynamical system (H,St) possesses
a compact global attractor A and is (asymptotically) quasi-stable on A at

some point t∗ > 0. Then, A has finite fractal dimension dimf
HA <∞.

Proof. See [18, Theorem 7.9.6] for asymptotically quasi-stable systems and
[12, Theorem 3.4.5] for more general quasi-stable systems. □

For asymptotically quasi-stable systems one can reach the following reg-
ularity of trajectories from the attractor.

Theorem B.13 ([18], Theorem. 7.9.8). Let us assume that (H,St) satis-
fies the structure (B.5)-(B.6), possesses a compact global attractor A and
is asymptotically quasi-stable on A. Additionally if (B.8) holds with c(t)
satisfying c∞ = supt∈R+ c(t) <∞, then any full trajectory

Γ = {(u(t), ut(t), ζ(t)); t ∈ R} ⊂ A

enjoys the following regularity properties

ut ∈ L∞(R;X) ∩ C(R, Y ), utt ∈ L∞(R;Y ), ζt ∈ L∞(R;Z).
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Besides, there exists a constant R > 0 such that

sup
Γ⊂A

sup
t∈R

(
∥ut(t)∥2X + ∥utt(t)∥2Y + ∥ζt(t)∥2Z

)
≤ R2,

where R depends on the constant c∞, on the seminorm nX(·), and on the
embedding X ↪→ Y .

Generalized fractal exponential attractors can be also reached for quasi-
stable and asymptotic quasi-stable systems as follows. The next version can
be found in [18, Theorem 7.9.9]. See also [12, Theorem 3.4.7].

Theorem B.14. Let us assume that the dynamical system (H,St) is dis-
sipative and asymptotically quasi-stable on some bounded absorbing set B.

In addition, let us suppose that there exists a space H̃ ⊇ H such that map-

ping t 7→ Stz is Hölder continuous in H̃ for each z ∈ B, that is, there exist
0 < σ ≤ 1 and CB,T > 0 (T > 0 given) such that

∥St2z − St1z∥H̃ ≤ CB,T |t2 − t1|σ, t1, t2 ∈ [0, T ], z ∈ B. (B.9)

Then, (H,St) possesses a generalized fractal exponential attractor Aexp whose

dimension is finite in the space H̃ (dimf

H̃
Aexp <∞).

In Theorem B.14, unless H̃ = H, we can only guarantee the finite fractal

dimension in an extended phase space H̃. Thus, to achieve such finiteness
of fractal dimensional in H, one must prove (B.9) in H, which sometimes
seems to be a hard task. Therefore, in order to present a tangible result with

exponential attractor whose fractal dimensional is finite in H (dimf
HAexp <

∞), we finally remind an useful result by following [7, 8], which relies on the
construction of time-dependent exponential attractors Aexp = {Aexp(t); t ∈
R} for (continuous) dynamical systems (H,St) under suitable decomposition
and Lipschitz properties. For previous results on the subject, we also refer
to [21, 22, 23, 39, 47]. The next concept and result are based on the more
recent construction developed in [7, Section 4].

• The family Aexp =
{
Aexp(t); t ∈ R

}
is called a time-dependent expo-

nential attractor for (H,St) if there exists 0 < a < ∞ such that Aexp(t) =
Aexp(a+ t) for all t ∈ R, and

(i) the subsets Aexp(t) ⊂ H are non-empty and compact in H for all t ∈ R;
(ii) the family is positively semi-invariant, that is

StAexp(s) ⊂ Aexp(t+ s), ∀ t ≥ 0, s ∈ R;

(iii) the fractal dimension of the sets Aexp(t), t ∈ R, is uniformly bounded;
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(iv) the family attracts exponentially all bounded subsets of H uniformly,
that is, there exists a positive constant ω > 0 such that for any bounded
subset B ⊂ H

lim
τ→∞

sup
t∈[0,a]

eωτ distH(SτB,Aexp(t)) = 0.

Theorem B.15 ([7, Theorem 4.4]). Let us assume that the dynamical system
(H,St) can be split into St = S1

t +S
2
t : H → H and let W be another normed

space with compact embedding (H, ∥ · ∥H) ↪→
(
W, ∥ · ∥W

)
. Let us additionally

suppose the following conditions:

(S1) (H,St) is dissipative, that is, it has a bounded absorbing set B ⊂ H;
(S2) there exist a constant 0 ≤ c1 <

1
2 and a time T > 0 such that S1

t

satisfies the contraction property on B

∥S1
T z1 − S1

T z2∥H ≤ c1∥z1 − z2∥H , z1, z2 ∈ B;

(S3) there exists a constant c2 > 0 such that S2
t satisfies smoothing prop-

erty within B at time T > 0

∥S2
T z1 − S2

T z2∥H ≤ c2∥z1 − z2∥W , z1, z2 ∈ B;

(S4) there exists a time T0 ≥ 0 such that St is Lipschitz on B for t ≥ T0,
that is, for some constant Lt > 0 it holds

∥Stz1 − Stz2∥H ≤ Lt∥z1 − z2∥H , z1, z2 ∈ B, t ≥ T0.

Then, (H,St) possesses a time-dependent exponential attractor

Aexp =
{
Aexp(t); t ∈ R

}
,

whose sections are compact subsets of H with finite fractal dimension in H,
that is,

dimf
H

(
Aexp(t)

)
<∞, ∀ t ∈ R.

Remark B.1. Finally, according to [7, Remark 6], under the assumptions of
Theorem B.15 one can construct an exponential attractor for the dynamical
system (H,St). Indeed, to this end it is enough to consider (in general) the
union

Ãexp :=
⋃

t∈[T,2T ]

StA
d
exp,

where Ad
exp denotes the exponential attractor for the corresponding discrete

semigroup {SnT }n∈N.
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Linéaires, Dunod Gauthier-Villars,” Paris, 1969.

[38] J. L. Lions and E. Magenes, “Nonhomogeneous Boundary Value Problems and Ap-
plications,” vol. I, Springer-Verlag, Berlin, 1972.

[39] A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in
bounded and unbounded domains, Handbook of Differential Equations: Evolutionary
Equations, vol. 4, Elsevier, Amsterdam, 2008, pp. 103-200.

[40] M. Nakao, Global attractors for wave equations with nonlinear dissipative terms, J.
Differential Equations, 227 (2006), 204-229.

[41] A. Pazy, “Semigroups of Linear Operators and Applications to Partial Differential
Equations,” vol. 44, Springer-Verland, 1983.
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