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Abstract
We present a complete characterization of the (uniform) exponential stabilization for
a class of viscoelastic models under small delay perturbations. The main ingredient
under consideration is the notion of admissible kernels.While in the standard literature
it is mostly common to request a exponential/general kernel as a sufficient condition
for the exponential/general stability of the whole viscoelastic system under study, here
our objective is to employ the much more general concept of admissible kernels and
prove that it is not only sufficient but also a necessary assumption for exponential
stability in linear viscoelasticity under small delay perturbations.
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1 Introduction

1.1 TheModel

Let 〈H , ‖ · ‖, (·, ·)〉 be a Hilbert space and let A : D(A) ⊂ H → H be a strictly
positive self-adjoint densely defined operator. Let us study the following second-order
integro-differential problem with delay

∂t t z + A

(
z −

∫ ∞

0
g(s)z(t − s) ds

)
+ μ∂t z(t − τ) = 0, t > 0, (1.1)

suplemented by the initial data

z(t) = z0(t), t ∈ (−∞, 0], ∂t z
∣∣
t=0 = z1, ∂t z(t − τ) = z2(t − τ), t ∈ (0, τ ).

(1.2)

Here, τ > 0 is the time lag, μ ∈ R is the delay coefficient, and g is the so-called
memory kernel.

As usual, for long-memory and delay problems it is introduced an equivalent
autonomous system which is, indeed, the object of study.
Displacement history.We initially follow Dafermos [3, 4], where the idea of displace-
ment history was introduced. Denoting by

ζ t (s) := z(t) − z(t − s), t ≥ 0, s > 0,

it is easy to verify (formally) that

⎧⎪⎪⎨
⎪⎪⎩

∂tζ
t (s) = −∂sζ

t (s) + ∂t z(t), t, s > 0,

ζ t (0) := lim
s→0

ζ t (s) = 0, t > 0,

ζ 0(s) = z0(0) − z0(−s), s > 0.

(1.3)

Treating the supplementary system (1.3) as a Cauchy problem and calling V :=
D(A1/2), it can be studied rigorously in the memory space

M :=
{
ζ : R+ → V ;

∫ ∞

0
g(s)‖A1/2ζ(s)‖2 ds < ∞

}
,

endowed with inner product

(ζ, ξ)M =
∫ ∞

0
g(s)(A1/2ζ(s), A1/2ξ(s)) ds.

Indeed, Grasselli and Pata [8] obtained several useful results with respect to (1.3) by
showing that L : D(L) ⊂ M → M defined by

D(L) := {ζ ∈ M, Lζ ∈ M and ζ(0) = 0}, Lζ := −∂sζ,
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is the infinitesimal generator of a right-translation semigroup given by

[R(t)ζ ](s) :=
{

ζ(s − t), s > t,

0, 0 < s ≤ t .
(1.4)

In addition, they used (1.4) to extract an explicit formula for ζ , namely

ζ t (s) =
{

ζ 0(s − t) + z(t) − z0(0), s > t,

z(t) − z(t − s), 0 < s ≤ t .
(1.5)

To do so, they assumed the following general assumption on the memory kernel g.

Assumption 1.1 The kernel g : R
+ → [0,∞) is absolutely continuous, non-

increasing and summable, with total mass

� :=
∫ ∞

0
g(s) ds ∈ (0, 1). (1.6)

We remark that, under the scenario of Assumption 1.1, g has possibly a singularity
at s = 0 and g′ exists almost everywhere with g′(s) ≤ 0 for almost every s > 0.
Delay term. With respect to the delay term, we follow the lines of Nicaise and Pignotti
[11], and introduce the variable

v(t, p) := ∂t z(t − τ p), p ∈ (0, 1), (1.7)

which formally fulfils the following advection-type equation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tv(t, p) + τ∂pv(t, p) = 0, t > 0, p ∈ (0, 1),

v(t, 0) = ∂t z(t), t > 0,

v(t, 1) = ∂t z(t − τ), t > 0,

v(0, p) = z2(−τ p), 0 < p < 1.

(1.8)

We still stress that, relying on the characteristic method (cf. [5, Section 3.2]), one
can conclude that the unique solution of (1.8) is given by (1.7).

Therefore, from (1.3) and (1.8), in combination with (1.1)–(1.2), and setting

ω := 1 − � > 0,

we are led to the following equivalent autonomous problem

⎧⎪⎪⎨
⎪⎪⎩

∂t t z + A

(
ωz +

∫ ∞

0
g(s)ζ(s) ds

)
+ μv(1) = 0, t > 0,

∂tζ = Lζ + ∂t z, t > 0,

τ∂tv = −∂pv, t > 0.

(1.9)
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with corresponding initial data

⎧⎪⎨
⎪⎩
z(0) = z0 := z0(0), ∂t z(0) = z1,

ζ 0(s) = ζ0(s) := z0(0) − z0(−s), s > 0,

v(0, p) = v0(p) := z2(−τ p), 0 < p < 1,

(1.10)

and compatibility conditions

ζ t (0) = 0, v(t, 0) = ∂t z(t), t > 0. (1.11)

Before describing our main result concerning the characterization of stability for
(1.9)–(1.11), we emphasize the notion of admissible kernels and then summarize some
recent achievements on related models.

1.2 State of the Art: Admissible Kernels

Let g be a memory kernel satisfying Assumption 1.1. The most common type of
exponential kernels that can be found in the literature are those satisfying: there exists
δ > 0 such that

g′(s) ≤ −δg(s), (1.12)

for almost every s > 0. Inequality (1.12) was used in several works to control an
integral term arising from the dissipation. Specifically, we have

∫ ∞

0
g′(s)‖A1/2ζ(s)‖2 ds ≤ −δ‖ζ‖2M, ∀ ζ ∈ M. (1.13)

We still note that (1.12) is equivalent to

g(t + s) ≤ e−δt g(s),

for every t > 0 and for almost every s > 0. This fact motivates us to consider a large
class of memory kernels as in Chepyzhov and Pata [2] by requiring that: there exist
δ > 0 and c ≥ 1 such that g satisfies

g(t + s) ≤ ce−δt g(s), (1.14)

for every t > 0 and for almost every s > 0.
Additionally, from the physical point of view, condition (1.12) is still too restrictive

when compared with (1.14) for c > 1. Indeed, as pointed out in [6, 13–15], we quote

“Under the assumption (1.12), g does not have flat zones or even horizontal
inflection points, when it should be conceivably true that exponential stability
should be preserved if, say, we consider a kernel which is equal to a decreasing
exponential, except on a small set. On the other hand, if c > 1, then the gap
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between the (1.14) and (1.12) is huge since every compactly supported kernel
and some kernels with small flat zones, satisfy (1.14), but not (1.12).”

Now, performing a simple integration in (1.14) we obtain the following inequality

∫ ∞

s
g(y) dy ≤ c

δ
g(s), ∀ s > 0,

which in turn motivates the construction of a new class of kernels as defined below.

Definition 1.1 (Admissible Kernel) A function g : R+ → [0,∞) is an admissible
kernel if there exists 	 > 0 such that

∫ ∞

s
g(y) dy ≤ 	 g(s), ∀ s > 0. (1.15)

Thus, by definition, condition (1.15) is more general than (1.14). However, if
Assumption 1.1 holds true, then both conditions (1.15) and (1.14) are equivalent,
as one can see in [6, Remark 2.3].

The previous discussion can be summarized in Figure 1 below.

1.3 A Brief Literature Overview

No delay perturbation: μ = 0. In this situation, problem (1.9) falls into the purely
dissipative system

⎧⎨
⎩

∂t t z + A

(
ωz +

∫ ∞

0
g(s)ζ(s) ds

)
= 0, t > 0,

∂tζ = Lζ + ∂t z, t > 0,
(1.16)

which was studied by several authors for what concerns well-posedness and stability
results. In particular, we are interested in the study of how the flatness of g influences
the exponential stability of the C0-semigroup of contractions S0(t) associated with

Fig. 1 Comparison diagram for conditions (1.12), (1.14) and (1.15)
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(1.16). We recall that a semigroup T (t) : X → X is exponentially stable in a Banach
space X , if there exist M ≥ 1 and γ > 0 such that

‖T (t)x‖X ≤ Me−γ t‖x‖X , ∀ x ∈ X . (1.17)

For the linear viscoelastic problem (1.16) without delay (μ = 0), we highlight
the following useful results in (uniform) exponential stability (1.17). For the sake of
reading and similarity to what we are interested in the present work, we omit results
on general decays that are not uniform, although there are interesting cases in the
literature.

Regarding the pioneering work by Chepyzhov and Pata [2], we summarize the
following results therein:

R1. the semigroup R(t) set in (1.4) is exponentially stable on M iff the pointwise
inequality (1.14) holds true;

R2. if S0(t) associated with (1.16) is exponentially stable on V × H × M, then the
semigroup R(t) set in (1.4) is exponentially stable on M. Consequently, (1.14)
remains true by R1.

Additionally, in Pata [13] it is shown that if the kernel g is not “too flat”, then
(1.14) implies the exponential stability of S0(t), which provides the converse of R2.
Mathematically speaking:

R3. If the rate of flatness (see (3.4) for its definition) of the kernel g is less than 1/2,
then (1.14) is a sufficient condition to obtain the exponential stability of S0(t).

Concrete examples of kernels generating stability, uniform stability, and even insta-
bility for S0(t) can be found in Pata [14]. Furthermore, in Pata [15] semigroup tools
are invoked to extend the result of [13] up to kernels with flatness rate higher than or
equal to 1/2, by allowing kernels almost totally flat in the study of stability in linear
viscoelasticity with no delay term involved.
The role of delay perturbation:μ = 0.Now, going back to (1.9)–(1.11),wefirst remark
that it does not generate a dissipative semigroup Sμ(t) promptly. So, to overcome this
small difficulty, we cite the work by Guesmia [9], where the well-posedness of (1.9)–
(1.11) is considered for the first time. In addition, it is proved the following stability
result therein:

R4. Under the assumption (1.12), the corresponding energy functional decays expo-
nentially provided that the delay is sufficiently small (depending onmemory kernel
g and structural constants).

This result R4 corresponds to claim that the associated C0-semigroup Sμ(t) is expo-
nentially stable for small delays. Also, in Alabau-Boussouira et al. [1] an alternative
method has been applied to conclude, roughly speaking, that the stability result R4
still holds true under the classical condition (1.12). In general, the assumption (1.12)
along with the fact g(0) > 0 (which avoids singularity at the origin of the memory
kernel) have been mostly assumed in the previous stability analysis when dealing with
viscoelasticmodels (with orwithout delay), as one can see in [10, 12, 17, 18]. Nonethe-
less, as pointed out above, such condition is too restrictive and is usually regarded as a
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sufficient condition to prove the exponential stability of the corresponding (semigroup)
solution, which can be summed up in the next diagram:

Assumption (1.12) ⇒ Exp. Stab. of Sμ(t) (1.18)

provide that 0 < |μ| < μ0 for some μ0 > 0.

1.4 Our Main Result and Organization

From the above exposition, our main goal in this work is to find out that admissible
kernels are enough to ensure the converse of (1.18) for small delay perturbations.
Obviously, if g = 0 then problem (1.9)–(1.11) is not damped and also blows up due
to the presence of delay perturbations (cf. Nicaise and Pignotti [11]). Therefore, one
sees the importance of the dissipativity provided by the memory kernel g and our
main result (Theorem 3.1) provides the sufficient condition (Assumption (1.14)) to
reach the uniform stability for (1.9)–(1.11). Though this is the relevant implication,
for the sake of completeness, we still consider the converse of Theorem 3.1 which
ends this work with a full characterization of the asymptotic behavior for solutions of
(1.9)–(1.11) by means of admissible kernels, still including small delay perturbations
(Theorem 3.8). Consequently, we prove the following equivalence:

Assumption (1.14) ⇔ Exp. Stab. of R(t) ⇔ Exp. Stab. of Sμ(t), μ = 0

provided that 0 < |μ| < μ0 for some μ0 > 0.
The remainingwork is organized as follows. In Sect. 2 we introduce the preliminary

tools in linear semigroup theory. In Sect. 3we state and prove ourmain stability results.

2 Semigroup Framework

Our goal in this short section is just to prepare the semigroup framework to deal with
the subsequently stability result for (1.9)–(1.11).

Denoting by

D := L2(0, 1; H) =
{
v : (0, 1) → H ,

∫ 1

0
‖v(p)‖2 dp < ∞

}

endowed with the norm

‖v‖2D =
∫ 1

0
‖v(p)‖2 dp,

we first observe that the asymptotic behavior of solutions for (1.9)–(1.11) will be done
in the Hilbert space

Hμ := V × H × M × D
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equipped with the norm

‖(z, w, ζ, v)‖2Hμ
= ω‖A1/2z‖2 + ‖w‖2 + ‖ζ‖2M + τ |μ|‖v‖2D.

The existence and uniqueness of solution for (1.9)–(1.11) is sketched as follows.
Calling by w = ∂t z and Z = (z, w, ζ, v)T , for each μ ∈ R, we rewrite (1.9)–(1.11)
as the abstract IVP

{
∂t Z = BμZ , t > 0,

Z(0) = Z0,
(2.1)

where Z0 := (z0, z1, ζ0, v0)T and Bμ : D(Bμ) ⊂ Hμ → Hμ is given by

D(Bμ) =
{
(z, w, ζ, v)T ∈ V × V × D(L) × D,

ωz + Ig(ζ ) ∈ D(A), ∂pv ∈ D, v(0) = w
}

with

BμZ =

⎡
⎢⎢⎣

w

−A
[
ωz + Ig(ζ )

] − μv(1)
Lζ + ∂t z
− 1

τ
∂pv

⎤
⎥⎥⎦ ,

and

Ig(ζ ) :=
∫ ∞

0
g(s)ζ t (s), ζ ∈ M.

Under the Assumption 1.1 and still assuming

λ1/2‖z‖ ≤ ‖A1/2z‖, ∀ z ∈ D(A1/2), (2.2)

for some λ > 0, then proceeding similar to [9], and invoking the classical abstract
results of [19], one can show that for each μ ∈ R\{0}, the operator Bμ is an infinites-
imal generator of a C0-semigroup Sμ(t) in Hμ. Consequently, it holds the following
statements:

• If Z0 ∈ Hμ, then (2.1) has a unique mild solution Z(t) = Sμ(t)Z0 in the class

Z ∈ C([0,+∞);Hμ).

• If Z0 ∈ D(Bμ), then (2.1) has a unique classical solution in the class

Z ∈ C([0,+∞); D(Bμ)) ∩ C1([0,+∞);Hμ).
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• The solution fulfills the energy inequality

d

dt
‖Z(t)‖2Hμ

≤
∫ ∞

0
g′(s)‖A1/2ζ t (s)‖2 ds + 2|μ|‖∂t z(t)‖2, t > 0. (2.3)

From now on, the semigroup generated by (2.1), and hence related to problem
(1.9)–(1.11), is always regarded as

Sμ(t) = eBμt , t ≥ 0, (2.4)

whose characterization of the exponential behavior will be concluded in the next
section.

Remark 2.1 Actually, the study of existence and long-time behaviour of the semigroup
Sμ(t) can be done considering a class of admissible kernels containing a finite number
of jumps or an infinite increasing sequence of jumps [6, Remark 2.1].

3 Main Stability Result

We are in position to state the main result of the paper.

Theorem 3.1 Let us assume Assumption 1.1 and that Rg < 1
2 . If g is an admissible

kernel in the sense of Definition 1.1, then there exists a constant μ0 > 0, independent
of μ, such that Sμ(t) = eBμt given in (2.4) is exponentially stable on Hμ, for every
0 < |μ| < μ0.

To prove Theorem 3.1, we are going to introduce some auxiliary tools and technical
results to be developed in the next two subsections. Then, the completion of the
proof is done right after, as well as its converse which gives the promised exponential
characterization result.

3.1 Functional Notations

In what follows, we provide the necessary notations to set the functionals over the
solutions of (1.9)–(1.11), namely, those coming from the semigroup solution (2.4) for
any μ ∈ R\{0}. The next concepts were firstly introduced by Pata [13] to deal with
case μ = 0 in (1.9).

Let ε > 0 be given. To simplify the notations, we shall always denote by Cε all
(different) positive constants depending on ε as well as by C all (different) other
generic positive constants.

Let E be a mensurable set of R+. The probability measure of E associated to g is
defined by

ĝ(E) := 1

�

∫
E
g(s) ds.
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For any κ > 0, we consider the disjoint decomposition R
+ = Mκ ∪ Pκ where

Mκ = {
s ∈ R

+, κg′(s) + g(s) ≤ 0
}
, Pκ = {

s ∈ R
+, κg′(s) + g(s) > 0

} ∪ O

and O is the null set where g′ is not defined. Then, we may write

Ig = I
Pκ
g + I

Mκ
g (3.1)

where

I
Pκ
g (ζ ) :=

∫
Pκ

g(s)ζ t (s) ds, I
Mκ
g (ζ ) :=

∫
Mκ

g(s)ζ t (s) ds,

and, for every ζ ∈ M, we have

‖ζ‖2M =
∫
Pκ

g(s)‖A1/2ζ(s)‖2 ds +
∫
Mκ

g(s)‖A1/2ζ(s)‖2 ds =: Pκ(ζ ) + Mκ(ζ ).

(3.2)

A straightforward application of Hölder’s inequality yields the estimates

‖IPκ
g (A1/2ζ )‖2 ≤ �ĝ(Pκ)Pκ(ζ ), ‖IMκ

g (A1/2ζ )‖2 ≤ �ĝ(Mκ)Mκ(ζ ), ∀ ζ ∈ M.

(3.3)

Now, we define the flatness set of g as

Fg := {s ∈ R
+, g(s) > 0 and g′(s) = 0},

and the flatness rate of g as

Rg := ĝ(Fg). (3.4)

As pointed in [15], the sets Pκ are decreasingly nested with

⋂
κ>0

Pκ = Fg ∪ O

and, consequently,

lim
κ→+∞ ĝ(Pκ) = Rg. (3.5)

To deal with the possible singularity at s = 0, we observe that for any ε ∈ (0, 1),
there exist sε > 0 such that

∫ sε

0
g(s) ds ≤ �ε

2
. (3.6)
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Then, we set the truncated kernel gε : R+ → R
+ by

gε(s) := g(sε)χ(0,sε](s) + g(s)χ(sε,∞)(s),

which satisfies

gε(s) = [g(sε) − g(s)]χ(0,sε] + g(s) ≤ g(s), s > 0. (3.7)

Under the above statements,we set the followinghelpful functionals�i : Hμ → R,
i = 1, 2, 3, 4, as

�1(z, w, ζ, v) := (w, z),

�2(z, w, ζ, v) := −1

�

(
w, Igε (ζ )

)
,

�3(z, w, ζ, v) :=
∫ ∞

0

(∫ ∞

s
g(y)χPκ (y) dy

)
‖A1/2ζ(s) − A1/2z‖2 ds,

�4(z, w, ζ, v) := τ

∫ 1

0
e−2τ p‖v(t, p)‖2 dp,

which are object of study in the sequel.

3.2 Technical Estimates

We start by exploring the strength of admissible kernels.

Lemma 3.2 If g is an admissible kernel, then there exists a0 > 0, independent of μ,
such that

3∑
i=1

|�i (z, w, ζ, v)| ≤ a0‖(z, w, ζ, v)‖2Hμ
, (3.8)

for every (z, w, ζ, v) ∈ Hμ.

Proof It is a direct consequence of Cauchy-Schwarz and Young’s inequalities com-
bined with (1.15). ��

Let Z0 = (z0, w0, ζ0, v0) ∈ D(Bμ) and Z(t) = Sμ(t)Z0 = (z(t), ∂t z(t), ζ t , v(t)) ∈
D(Bμ). Since D(Bμ) is dense inHμ, we emphasize that all results below remain valid
for Z0 ∈ Hμ.

Lemma 3.3 Along the solutions, the functional �1 satisfies the following inequality

d

dt
�1(Z(t)) ≤ ‖∂t z(t)‖2 − ω(1 − ε)‖A1/2z(t)‖2 + CεMκ(ζ t )

−(A1/2z(t), IPκ
g (A1/2ζ t )) − μ(v(t, 1), z(t)),

for every ε > 0.
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Proof Using (1.9)1, we have

d

dt
�1(Z(t)) = ‖∂t z(t)‖2 − ω‖A1/2z(t)‖2

−
(
A1/2z(t), Ig(A

1/2ζ t )
)

− μ(z(t), v(t, 1)).

On the other hand, from (3.1), (3.2) and (3.3), we infer

− (
A1/2z(t), Ig(A

1/2ζ t )
) = −

(
A1/2z(t), IMκ

g (A1/2ζ t )
)

−
(
A1/2z(t), IPκ

g (A1/2ζ t )
)

≤ ‖A1/2z(t)‖‖IMκ
g (A1/2ζ t )‖ −

(
A1/2z(t), IPκ

g (A1/2ζ t )
)

≤ ωε‖A1/2z(t)‖2 + CεMκ (ζ t ) −
(
A1/2z(t), IPκ

g (A1/2ζ t )
)

.

Combining the above estimates, the result follows. ��
Lemma 3.4 For every ε > 0, the functional �2 fulfills the inequality

d

dt
�2(Z(t)) ≤ − (1 − ε) ‖∂t z(t)‖2 + 2ωε1/2‖A1/2z(t)‖2

+
[
(1 + ε1/2)ĝ(Pκ) + ωε1/2

]
Pκ(ζ t )

+CεMκ(ζ t ) + g(sε)

2ελ�2

(∫ ∞

0
−g′(s)‖A1/2ζ t (s)‖2 ds

)

+ω

�
(A1/2z(t), IPκ

g (A1/2ζ t )) + μ

�
(v(t, 1), Ig(ζ

t ))

Proof Taking the derivative of �2(Z(t)) and using (1.9)1, we get

d

dt
�2(Z(t)) =

4∑
i=1

�i (Z(t)) + μ

�
(v(t, 1), Ig(ζ

t )), (3.9)

where,

�1(Z(t)) := −1

�

(∫ ∞

0
gε(s) ds

)
‖∂t z(t)‖2,

�2(Z(t)) := −1

�

(
∂t z(t), Igε (Lζ t )

)
,

�3(Z(t)) := ω

�

(
A1/2z(t), Igε (A

1/2ζ t )
)

,

�4(Z(t)) := 1

�

(
Ig(A

1/2ζ t ), Igε (A
1/2ζ t )

)
.

Let us give a proper estimate for the right side of (3.9). Indeed, we can write

�1(Z(t)) = − sε
�
g(sε)‖∂t z(t)‖2 + 1

�

(∫ sε

0
g(s) ds

)
‖∂t z(t)‖2 − ‖∂t z(t)‖2.
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From (3.6), we obtain

�1(Z(t)) ≤ −
(
1 − ε

2

)
‖∂t z(t)‖2.

Now, by definition of gε we infer

�2(Z(t)) = −g(sε)

�

∫ sε

0

(
∂t z(t),Lζ t (s)

)
ds − 1

�

∫ ∞

sε
g(s)

(
∂t z(t),Lζ t (s)

)
ds.

Since ζ t ∈ D(L), we can use the same arguments from [8] to get

�2(Z(t)) = 1

�

∫ ∞

sε
−g′(s)

(
∂t z(t), ζ

t (s)
)
ds.

Thus, from Hölder’s inequality and (2.2) we have

�2(Z(t)) ≤ 1

�
‖∂t z(t)‖

(∫ ∞

sε
−g′(s)‖ζ t (s)‖ ds

)

≤ ε

2
‖∂t z(t)‖2 + 1

2ελ�2

(∫ ∞

sε
−g′(s)‖A1/2ζ t (s)‖ ds

)2

= ε

2
‖∂t z(t)‖2 + g(sε)

2ελ�2

(∫ ∞

0
−g′(s)‖A1/2ζ t (s)‖2 ds

)
.

To estimate �3(Z(t)), we use (3.7) to write

�3(Z(t)) = �3,1(Z(t)) + �3,2(Z(t)) + ω

�
(A1/2z(t), IPκ

g (A1/2ζ t )), (3.10)

where,

�3,1(Z(t)) = −ω

�

∫ sε

0
[g(s) − g(sε)](A1/2z(t), A1/2ζ t (s)) ds,

�3,2(Z(t)) = ω

�
(A1/2z(t), IMκ

g (A1/2ζ t )).

Using again (3.6) and taking into account that g is nondecreasing, we obtain

∣∣�3,1(Z(t))
∣∣ ≤ ω

�

(∫ sε

0
g(s)‖A1/2ζ t (s)‖ ds

)
‖A1/2z(t)‖

≤ ω

�

(∫ sε

0
g(s) ds

)1/2

‖ζ t‖M‖A1/2z(t)‖

≤ ωε1/2‖A1/2z(t)‖2 + ωε1/2

8�
Pκ(ζ t ) + ωε1/2

8�
Mκ(ζ t ).

123



   27 Page 14 of 20 Applied Mathematics & Optimization            (2023) 87:27 

From (3.3), we can estimate �3,2(Z(t)) by

∣∣�3,2(Z(t))
∣∣ ≤ ω

�
‖A1/2z(t)‖‖IMκ

g (A1/2ζ t )‖
≤ ω

�
�1/2‖A1/2z(t)‖[Mκ(ζ t )]1/2

≤ ωε‖A1/2z(t)‖2 + ω

4�ε
Mκ(ζ t ).

Replacing the above estimates in (3.10) we arrive at

�3(Z(t)) ≤ 2ωε1/2‖A1/2z(t)‖2 + ωε1/2

8�
Pκ(ζ t ) + CεMκ(ζ t )

+ω

�
(A1/2z(t), IPκ

g (A1/2ζ t )).

To estimate the term �4(Z(t)), we use (3.1), (3.3) and (3.7) to get

�4(Z(t)) ≤ 1

�

(∫ ∞

0
g(s)‖A1/2ζ t (s)‖ ds

)2

≤ ĝ(Pκ)Pκ(ζ t ) + 2[ĝ(Pκ)Pκ(ζ t )Mκ(ζ t )]1/2 + Mκ(ζ t )

≤ (1 + ε1/2)ĝ(Pκ)Pκ(ζ t ) +
(
1 + ε1/2

ε1/2

)
Mκ(ζ t ).

Plugging the above estimates in (3.9), we conclude the desire estimate. ��
Lemma 3.5 Along the solutions, the functional �3 satisfies the following equality

d

dt
�3(Z(t)) = −Pκ(ζ t ) + 2(A1/2z(t), IPκ

g (A1/2ζ t )).

Proof Differentiating �3(Z(t)) and using (1.9)2, we get

d

dt
�3(Z(t)) = −

∫ ∞

0

(∫ ∞

s
g(y)χPκ (y) dy

)
d

ds
‖A1/2ζ t (s)‖2 ds

+2
∫ ∞

0

(∫ ∞

s
g(y)χPκ (y) dy

)
d

ds

(
A1/2ζ t (s), A1/2z(t)

)
ds.

Hence, integrating by parts and taking into account that ζ t ∈ D(L), we obtain the
desire result. ��
Lemma 3.6 Along the solutions, the functional �4 fulfills the inequality

d

dt
�4(Z(t)) ≤ −2τe−2τ‖v(t)‖2D + ‖∂t z(t)‖2 − e−2τ‖v(t, 1)‖2.
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Proof Taking the derivative of �4(Z(t)) and using (1.9)3, we get

d

dt
�4(Z(t)) = −2τ

∫ 1

0
e−2τ p‖v(t, p)‖2 dp + ‖∂t z(t)‖2 − e−2τ‖v(t, 1)‖2

≤ −2τe−2τ‖v(t)‖2D + ‖∂t z(t)‖2 − e−2τ‖v(t, 1)‖2.

��

For the next lemma, we previously stress that if g is an admissible kernel such that
Rg < 1

2 , then from (3.5) we can pick κ0 > 0 large enough such that ĝ(Pκ0) < 1
2 .

Lemma 3.7 Let g be an admissible kernel such that Rg < 1
2 and, for every n > 0, we

set

ϒn(Z(t)) = n‖Z(t)‖2Hμ
+ α0�1(Z(t)) + �2(Z(t)) + 1

2

(ω

�
+ α0

)
�3(Z(t))

+β0 e−2τ

8
�4(Z(t)),

where we denote

α0 := 1

2
+ ĝ(Pκ0) ∈ (1/2, 1), β0 := 1 − α0 ∈ (0, 1/2).

Then, there exist b0 > 0 and ε0 > 0, independent of |μ|, such that

∣∣∣ϒn(Z(t)) − n‖Z(t)‖2Hμ

∣∣∣ ≤
(

β0 e−2τ

8|μ| + b0

)
‖Z(t)‖2Hμ

, (3.11)

and

d

dt
ϒn(Z(t)) ≤ −

[
5

8
β0 e

−2τ − n|μ|
]

‖∂t z(t)‖2 − β0 e−2τ

4
τ‖v(t)‖2D

−
[
β0 e−4τ

8
− |μ|

ω�λ1/2

] (
ω‖A1/2z(t)‖2 + Pκ0(ζ

t ) + ‖v(t, 1)‖2
)

+ |μ|
ω�λ1/2

Mκ0(ζ
t ) − [

n − Cε0

] (∫ ∞

0
−g′(s)‖A1/2ζ t (s)‖2 ds

)
.

(3.12)

Proof First, we observe that (3.11) holds from (3.8) with

b0 = a0 max
{ω

�
+ α0, 1

}
> 0.
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Next, combining Lemma 3.3, Lemma 3.4, Lemma 3.5, Lemma 3.6 and taking into
account that

Mκ0(ζ
t ) ≤ κ0

(∫ ∞

0
−g′(s)‖A1/2ζ t (s)‖2 ds

)
, t > 0, (3.13)

we have

d

dt
ϒn(Z(t)) ≤ −

[
7

8
β0 e

−2τ −
(
ε1/2 + n|μ|

)]
‖∂t z(t)‖2

−
[
α0 − ε1/2 (3 − β0)

]
ω‖A1/2z(t)‖2

−
[

ω

2�
+ β0

2
− ε1/2

(
ĝ(Pκ0) + ω

)]
Pκ0(ζ

t )

−β0 e−4τ

4
τ‖v(t)‖2D − β0 e−4τ

8
‖v(t, 1)‖2

− [n − Cε]

(∫ ∞

0
−g′(s)‖A1/2ζ t (s)‖2 ds

)

+2ω

�
(A1/2z(t), I

Pκ0
g (A1/2ζ t ))

−μ(v(t, 1), α0z(t)) + μ

�
(v(t, 1), Ig(ζ

t )), (3.14)

for every ε ∈ (0, 1). Let us estimate the two last terms of (3.14). Indeed, using (3.3)
we obtain

2ω

�

∣∣∣(A1/2z(t), I
Pκ0
g (A1/2ζ t ))

∣∣∣ ≤ 2ωĝ(Pκ0)‖A1/2z(t)‖2 + ω

2�
Pκ0(ζ

t ).

The last term can be estimate by

−μ(v(t, 1), α0z(t)) + μ

�
(v(t, 1), Ig(ζ

t ))

≤ |μ|
ω�λ1/2

[
‖v(t, 1)‖2 + ω‖A1/2z(t)‖2 + ‖ζ t‖2M

]
.

Plugging the above estimates in (3.14) and using that e−4τ < 1, we arrive at

d

dt
ϒn(Z(t)) ≤ −

[
7

8
β0e

−2τ −
(
ε1/2 + n|μ|

)]
‖∂t z(t)‖2

−
[
β0 e−4τ

2
− ε1/2 (3 − β0) − |μ|

ω�λ1/2

]
ω‖A1/2z(t)‖2

−
[
β0 e−4τ

2
− ε1/2

(
ĝ(Pκ0) + ω

)]
Pκ0(ζ

t ) + |μ|
ω�λ1/2

‖ζ t‖2M

−β0 e−4τ

4
τ‖v(t)‖2D −

[
β0 e−4τ

8
− |μ|

ω�λ1/2

]
‖v(t, 1)‖2
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− [n − Cε]

(∫ ∞

0
−g′(s)‖A1/2ζ t (s)‖2 ds

)
, (3.15)

for every ε ∈ (0, 1). At this point, we choose

ε0 := β2
0 e

−16τ

16(3 − β0)2
∈ (0, 1).

Since

ε
1/2
0 <

β0 e−4τ

4(3 − β0)
<

β0 e−4τ

4
min

{
e2τ ,

1

ĝ(Pκ0) + ω

}
,

we conclude (3.12) from (3.15). ��

3.3 Proof of Theorem 3.1 (Completion)

Let μ0 > 0 defined by

μ0 := β0 e
−2τ min

{
3

8b0
,
ω�λ1/2e−2τ

16
,

4κ0Cε0

β0e−4τ + 8κ0Cε0

}
,

where b0 > and Cε0 > 0 are given by Lemma 3.7. From the choice of μ0, we observe
that

max

{
β0 e−2τ

8|μ| + b0,
β0 e−4τ

8κ0
+ Ĉ

}
<

β0 e−2τ

2|μ| .

Then, we can take n0 > 0 satisfying

max

{
β0 e−2τ

8|μ| + b0,
β0 e−4τ

8κ0
+ Ĉ

}
< n0 <

β0 e−2τ

2|μ| .

For this choice of n0, we deduce from (3.11) and (3.12) that ϒn0(Z(t)) > 0 and

d

dt
ϒn0(Z(t)) ≤ −

[
β0 e−4τ

8
− |μ|

ω�λ1/2

]

×
(
‖∂t z(t)‖2 + ω‖A1/2z(t)‖2 + Pκ0(ζ

t ) + τ‖v(t)‖2D
)

+ |μ|
ω�λ1/2

Mκ0(ζ
t ) − β0 e−4τ

8κ0

(∫ ∞

0
−g′(s)‖A1/2ζ t (s)‖2 ds

)
,

(3.16)
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for every t > 0. Combining (3.13) and (3.16) and noting that

β0 e−4τ

8
− |μ|

ω�λ1/2
>

β0 e−4τ

16
,

we arrive at

d

dt
ϒn0(Z(t)) ≤ −β0 e−4τ

16
‖Sμ(t)Z0‖2Hμ

. (3.17)

Let T > 0 be fixed. Integrating (3.17) in (0, T ) and noting that ϒn0(Z(T )) > 0, we
have

0 ≤
∫ T

0
‖Sμ(t)Z0‖2Hμ

dt ≤ 16 e4τ

β0
ϒn0(Z0) < +∞. (3.18)

Since the right side of (3.18) does not depend on T > 0 we get

∫ ∞

0
‖Sμ(t)Z0‖2Hμ

< +∞, ∀ Z0 ∈ Hμ.

Hence, applying [16, Theorem 4.1] wiht p = 2, we conclude that Sμ(t) is exponen-
tially stable inHμ, for 0 < |μ| < μ0. ��

3.4 Final Remark: Exponential Characterization

Actually, it is possible to characterize the uniform (exponential) stability for (1.9)–
(1.11) in terms of admissible kernels (see (1.15)), the solution semigroup Sμ(t) = eBμt

given in (2.4), and right-translation semigroup R(t) = eLt set in (1.4). It reads as
follows:

Theorem 3.8 Let us assume Assumption 1.1 and that Rg < 1
2 . Then, the following

assertions are equivalent:

(I) g is an admissible kernel in the sense of Definition 1.1;
(II) there exists a constant μ0 > 0, independent of μ, such that Sμ(t) = eBμt given

in (2.4) is exponentially stable onHμ, for every 0 < |μ| < μ0;
(III) the right-translation semigroup R(t) = eLt set in (1.4) is exponentially stable

on M.

Therefore, if it holds one of these conditions, all of them hold and the solution Z(t) =
Sμ(t)Z0 of (2.1) satisfies

‖Z(t)‖Hμ
≤ C‖Z0‖Hμ

e−� t , t ≥ 0,

for some structural positive constants C,�.

Proof Theorem 3.1 ensures that (I)�⇒ (II). The proof of (II)�⇒ (III) is similar to [2,
Theorem 3.2] but using the semigroup S(μ0/2)(t) instead of S0(t). The last implication
((III) �⇒ (I)) follows exactly the same arguments as in [2, Theorem 3.3]. ��
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