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Abstract. Many real-world applications are modeled by Volterra integral–differential equations of the form

utt − Δu +

t∫

α

g(t − s)Δu(s) ds = 0 in Ω × (0, ∞),

where Ω is a bounded domain of RN and g is a memory kernel. Our main concern is with the concept of so-called creation
time, the time α where past history begins. Separately, the cases α = −∞ (history) and α = 0 (null history) were extensively
studied in the literature. However, as far as we know, there is no unified approach with respect to the intermediate case
−∞ < α < 0. Therefore we provide new stability results featuring (i) uniform and general stability when the creation time
α varies over full range (−∞, 0) and (ii) connection between the history and the null history cases by means of a rigorous
backward (α → −∞) and forward (α → 0−) limit analysis.
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1. Introduction

In the present paper, inspired by a model that emerged at the beginning of the twentieth century with
Volterra [37,38] and revisited more recently by Fabrizio, Giorgi and Pata [12], we shall deal with the
following N -dimensional initial-boundary value problem⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

utt − Δu +

t∫

α

g(t − s)Δu(s) ds = 0 in Ω × (0,∞),

u = 0 on ∂Ω × (α,∞),
u(x, t) = u0(x, t), (x, t) ∈ Ω × (α, 0], ut(x, 0) = u1(x), x ∈ Ω,

(1.1)

where Ω ⊂ R
N is a bounded domain with smooth boundary ∂Ω and g is a memory kernel. The parameter

α ≤ 0 is called creation time, see, e.g., [12, Section 2], which means that the past history is assumed to
vanish before the time α. The initial data u0 : Ω × (α, 0] → R are the prescribed finite past history of the
unknown displacement u = u(x, t) and u1 = ∂tu0

∣∣
t=0

.
We note that the Volterra integro-differential equation in (1.1) can be obtained by means of the

Volterra stress–strain constitutive relation

σ(x, t) = G0(x)ε(x, t) +

t∫

α

G
′(x, t − s)ε(x, s) ds, α ≤ 0, (1.2)

where G = G(·, s), s > 0, stands for a symmetric tensor, commonly called nowadays by Boltzmann
function, G0(·) = lims→0 G(·, s), and G

′(·, s) is the relaxation function given by the derivative of G(·, s)
with respect to s, see, e.g., Boltzmann [4,5]. We refer again to [12, Section 2] for more details on the
derivation of viscoelastic constitutive law (1.2) as well as the physical modeling of problem (1.1).

In the history and null history scenarios, namely, formally taking the limit cases α = −∞ and α =
0, particular model (1.1) has been deeply studied in literature. Indeed, we refer to [3,8,10,11,13,15–
18,20,30,33,34,39] for problems involving the backward memory limit α = −∞ and [1,2,6,7,9,21,22,24,
27,28,32,36,39] for models where the forward memory limit α = 0 is invoked. We also quote the books
[14,23,35] where a wide class of viscoelastic problems is addressed in both cases.

On the other hand, when one considers intermediate creation time α ∈ (−∞, 0), as before, we highlight
that the past history must vanish before α, giving the idea of “beginning” time, that is, the principle
(alpha) of the history.

Therefore, under the above statements, our main goal is to analyze intermediate problem (1.1) with
respect to the creation time −∞ < α < 0. Our main results are concerned with existence and uniqueness
of solution, general stability and limit analysis when α → 0− and α → −∞. In what follows, we are going
to clarify the main novelties and contributions of such results.

1.1. The intermediate stability results

In the intermediate instance α ∈ [−∞, 0], for a given solution u of problem (1.1), we define the energy
functional Eα(t) = Eα(u(t), ut(t)), t ≥ 0, as

Eα(t) =
1
2
‖ut(t)‖22 +

1
2

(1 − hα(t)) ‖∇u(t)‖22 +
1
2
(g

α

� ∇u)(t), (1.3)

where, for simplicity, we have used the notation (see also Sect. 3),

hα(t) :=

t−α∫

0

g(s) ds, (g
α

� ∇u)(t) =

t−α∫

0

g(s)‖∇u(t) − ∇u(t − s)‖22 ds, t ≥ 0. (1.4)
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Our first main result (Theorem 3.1) features the exponential and general stabilities with respect to
α-energy defined in (1.3). It is briefly stated as it follows.
Exponential behavior. For any t0 > 0, the energy functional Eα(t) satisfies the exponential-type stability

Eα(t) ≤ Cα(t0)Eα(0) e−γα(t0)t, t > t0 (1.5)

for some structural positive constants Cα(t0) and γα(t0) (explicitly given in (3.5)—Sect. 3), provided that
the memory kernel satisfies

g′(t) ≤ −ξ0 g(t), t > 0, (1.6)

for some constant ξ0 > 0.
As a matter of fact, from computations point of view, exponential stability (1.5) will be a consequence

of a more general stability result, which is obtained under a more generic memory kernel (in a certain
way) than (1.6). More precisely, we have:
A general behavior. Assume that

Kα := sup
τ∈(α,0)

‖∇u0(τ)‖22 < ∞. (1.7)

For any t0 > 0, the energy satisfies the following decay rate

Eα(t) ≤ C̃α(t0)

⎛
⎝Eα(0) +

t∫

0

e
γ̃α(t0)

s∫
0

ξ(τ)dτ
[g(s) − g(s − α)] ds

⎞
⎠ e

−γ̃α(t0)
t∫
0

ξ(s)ds

+ C̃α(t0)

t−α∫

t

g(τ) dτ, (1.8)

for all t > t0, for some positive constants C̃α(t0) = C̃α(t0, Eα(0),Kα) and γ̃α(t0) (explicitly given in
(3.9)–Sect. 3), provided that, for some suitable function ξ : [0,∞) → R

+, the memory kernel satisfies

g′(t) ≤ −ξ(t) g(t), t > 0. (1.9)

Let us give some comments on general decay (1.8) as well as on assumptions (1.7)–(1.9) at this
moment. At first glance, new and explicit decay rate (1.8) may seem mildly strange, but it will be a
natural extension that intermediates, with respect to the creation time α, the energy decay rates related
to the history (α = −∞) and the null history (α = 0) problems, both under assumption (1.9). This
statement will be clearer later, after recalling the stability results to the limit problems. Before doing
so, we first remark that hypothesis (1.9) generalizes, in some direction, the exponential memory kernel
and yields explicit decay rates for (1.1) in the already known situations α = 0 and α = −∞ according
to [20,27] and still in the present intermediate case −∞ < α < 0 as well. We also mention that there
are some other works dealing with more general kernels, see, e.g., [1,2,8,9,19,24,25,29,31–34,36]. For
these latter, the issue falls on the difficult in obtaining explicit stabilities for all cases with respect to the
parameter α, which justifies our choice of assumption (1.9) for the memory kernel in this pioneering article
handling the intermediate case. The drawback of (1.8) is that it is a non-uniform stability (nor optimal)
due to the constant Cα depending on boundedness condition (1.7) and the “tail” given by

∫ t−α

t
g(s) ds.

Nevertheless, (1.5) represents a uniform (exponential) stability that does not depend on (1.7).
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1.2. Regarding the history and null history problems

Let us start by formally considering the forward case α = 0. In this context, the energy functional
E0(t) = E0(u(t), ut(t)), t ≥ 0, corresponding to problem (1.1)α=0, is given by

E0(t) =
1
2
‖ut(t)‖22 +

1
2

⎛
⎝1 −

t∫

0

g(s) ds

⎞
⎠ ‖∇u(t)‖22 +

1
2
(g�∇u)(t), (1.10)

where the notation (g�∇u) is obtained from (1.4) in the formal limit α = 0. In this occasion, the existing
stability results are given as follows.
Exponential stability. It is well-known since near the last decade of the previous century, see, e.g., the
classical references [14,23,35], that: there exist constants C0, γ > 0 such that

E0(t) ≤ C0 E0(0) e−γt, ∀ t > 0, (1.11)

since assumption (1.6) is regarded.
More recently and generally somehow, we also have:

General Stability. As stated in [27,28], both works appearing in the year 2008, one has: there exist
constants C0, γ > 0 such that

E0(t) ≤ C0 E0(0)e
−γ

t∫
0

ξ(s) ds
, ∀ t > 0, (1.12)

once hypothesis (1.9) is taken into account.
In the present paper, under assumption (1.9), we still prove that general stability (1.12) can be

concluded by combining energy perturbation with a previous result proposed by Martinez in 1999 for
dissipative systems, see, e.g., [26, Lemma 1].

On the other hand, in the formal backward limit α = −∞, problem (1.1)α=−∞ is equivalent to a
(viscoelastic) initial-boundary value problem involving the following equations⎧⎪⎪⎨

⎪⎪⎩
utt −

⎛
⎝1 −

∞∫

0

g(s) ds

⎞
⎠ Δu −

∞∫

0

g(s)Δ ηt(s) ds = 0 in Ω × (0,∞),

ηt
t + ηt

s = ut in Ω × (0,∞) × (0,∞),

(1.13)

where the variable η, originally introduced by Dafermos [11], is called relative displacement history. It is
defined as

ηt(·, s) := u(·, t) − u(·, t − s), t ≥ 0, s > 0. (1.14)

We refer to Grasseli and Pata [18] (see Sections 3 and 4 therein) for a detailed study on the one-to-
one correspondence between problems (1.1)α=−∞ and (1.13) with its corresponding initial-boundary
conditions.

In this case, the energy functional associated with (1.13) is defined as

E∞(t) =
1
2
‖ut(t)‖22 +

1
2

⎛
⎝1 −

∞∫

0

g(s) ds

⎞
⎠ ‖∇u(t)‖22 +

1
2

∞∫

0

g(s) ‖∇ηt(s)‖22 ds,

and the exponential stability result in the history case reads exactly like in (1.11), replacing E0(t) by
E∞(t). See also [13,15,30] among others. A more recent and explicit somehow general stability for this
case is proved in [20] and reads as: for some t0 > 0, there exist constants δ0 ∈ (0, 1) and C̃ > 0 depending
on initial data such that

E∞(t) ≤ C̃

⎛
⎝E∞(0) +

t∫

0

g1−δ0(s) ds

⎞
⎠ e

−δ0
t∫
0

ξ(s) ds
+ C̃

∞∫

t

g(s) ds, (1.15)
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for all t > t0, provided that (1.7) holds for α = −∞ and g satisfies (1.9).
As stated above, stability results (1.12) and (1.15) are already known in the literature for their

respective cases. In addition, it is worth pointing out that both decay rates can be reached by formally
proceeding the limits α → 0− and α → −∞ in (1.8), respectively. It means that (1.8) predicts a link
between the two already known results. Actually, in the present work, both stabilities (1.12) and (1.15)
will be achieved as a consequence of a rigorous (forward and backward) limit analysis on new intermediate
general decay (1.8) (resp. (1.5) in the exponential case), not merely replacing α = 0 and α = −∞ therein
roughly. This is the main topic of Sect. 4, as clarified below.

1.3. Organization of the paper and main contributions

Under the previous statements, we are now in position to highlight our main contributions.
#1. In Sect. 2, we present the existence and uniqueness of solution for (1.1) in the intermediate case

α ∈ (−∞, 0), by providing an understanding of how to work with null extension of initial data before
the creation time α. Thus, we extend the methodology employed in [9, Section 4], from the limit
case α = 0 to the intermediate scenario.

#2. In Sect. 3, we state and prove Theorem 3.1. As far as we know, it is the first result that delivers
explicit exponential and general decay rates for the energy corresponding to intermediate problem
(1.1). To do so, we employ a key regularizing procedure as introduced by Guo et al. [21]. Therefore,
we first work with regular solutions and then achieve the desired stability result for the weak solution
through Proposition 3.3.

#3. In Sect. 4, by means of Theorems 4.3 and 4.6, we rigorously analyze the forward (α → 0−) and
backward (α → −∞) limits, for every fixed time t > 0, of the intermediate energy Eα(t), by proving
that it converges to E0(t) and E∞(t) as α → 0− and α → −∞, respectively. Summarizing, for any
t > 0 given, we have the following convergence diagram:

E∞(t) α→−∞←− Eα(t) α→0−−→ E0(t)

As a consequence, known key results (1.12) and (1.15) can be obtained as limit cases from our unified
analysis. See for instance Corollaries 4.4 and 4.7. Hence, we finally conclude that, via Theorems 3.1,
4.3 and 4.6, intermediate general stability (1.8) provides a “bridge” linking the history and null
history stability cases (1.15) and (1.12), as the time creation α varies the range (−∞, 0) from
backward to forward. In particular, all statements also hold true in the exponential setting.

All the precise assumptions and the (above) statements will be carefully formalized in Sects. 2, 3 and
4 in the remaining paper.

2. Existence and uniqueness

Let us start by considering the initial-boundary value problem for the intermediate system with α notation
to the creation time⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

utt − Δu +

t∫

α

g(t − s)Δu(s) ds = 0 in Ω × (0,∞),

u = 0 on ∂Ω × (α,∞),
u(x, t) = u0(x, t), (x, t) ∈ Ω × (α, 0], ut(x, 0) = u1(x), x ∈ Ω.

(2.1)

The well-posedness for (2.1) in the limit situations α = 0 and α = −∞ is very well-known, as stated in
introduction. In this section, the main goal is to clarify that (2.1) is also well posed for any −∞ < α < 0
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as well. Indeed, although problem (2.1) does not generate a linear semigroup for −∞ < α ≤ 0, it is
possible to use the history space setting to explore its solution by considering the null extension of initial
data, namely, by setting the null history u0(·, t) = 0 for all t ∈ (−∞, α]. Such a methodology is already
known for the limit case α = 0 as presented in [9, Section 4]. In what follows, we are going to prove that
a complementary procedure can be done for all −∞ < α < 0.

2.1. The history setting

Let us set u(·, t) = u0(·, t) = 0 for −∞ < t < α. Then, problem (2.1) can be rewritten with α replaced by
−∞, and considering the auxiliary history variable η as defined in (1.14), we can convert problem (2.1)
into the next one:

utt − �Δu −
∞∫

0

g(s)Δηt(s) ds = 0 in Ω × (0,∞), (2.2)

ηt
t + ηt

s = ut in Ω × (0,∞) × (0,∞), (2.3)

with boundary conditions

u = 0 on ∂Ω × [0,∞), η = 0 on ∂Ω × [0,∞) × (0,∞), (2.4)

and initial data

u(x, 0) = ũ0(x), ut(x, 0) = u1(x), η0(x, s) = η0(x, s), x ∈ Ω, s > 0, (2.5)

where we have denoted ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

� := 1 −
∞∫

0

g(s) ds,

ũ0 is the null extension of u0 in (−∞, α),

η0(·, s) :=
{

u0(·), s > −α,
u0(·) − u0(·,−s), 0 < s < −α,

ηt(x, 0) := lim
s→0+

ηt(x, s) = 0, (x, t) ∈ Ω × [0,∞).

(2.6)

Now, in order to solve problem (2.2)–(2.5), we consider the basic assumption on the memory kernel.

Assumption 2.1. Let g ∈ L1(R+) ∩ C1(R+) be a non-increasing positive function such that

g(0) > 0, � = 1 −
∞∫

0

g(s) ds > 0. (2.7)

We define the standard Hilbert spaces

(L2(Ω), ‖ · ‖2, (·, ·)) and (H1
0 (Ω), ‖∇ · ‖2, (∇·,∇·)),

the usual weighted L2
g-space

L2
g(R

+;H1
0 (Ω)) =

⎧⎨
⎩η : (0,∞) → H1

0 (Ω);

∞∫

0

g(s)‖∇η(s)‖22 ds < ∞
⎫⎬
⎭ := Wg,

with inner product and norm

(η, ξ)Wg
=

∞∫

0

g(s)(∇η(s),∇ξ(s)) ds and ‖η‖2Wg
= (η, η)Wg

, ∀ η, ξ ∈ Wg,
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and the Hilbert phase space

H := H1
0 (Ω) × L2(Ω) × Wg, ‖(u, v, η)‖2H = �‖∇u‖22 + ‖v‖22 + ‖η‖2Wg

,

for all (u, v, η) ∈ H. We also denote by λ1 the constant associated to the embedding H1
0 (Ω) ↪→ L2(Ω),

that is,

λ1‖u‖2 ≤ ‖∇u‖2, u ∈ H1
0 (Ω).

Under the above notations and setting U = (u, v, η) with v = ut, history system (2.2)–(2.5) is equivalent
to the following abstract Cauchy problem{ d

dt
U = AU, t > 0,

U(0) = (ũ0, u1, η0) := U0,
(2.8)

where the linear differential operator A : D(A) ⊂ H → H is defined as

A(u, v, η) :=

⎛
⎝v, �Δu +

∞∫

0

g(s)Δ η(s) ds,−ηs + v

⎞
⎠ ,

with domain

D(A) =

⎧⎨
⎩(u, v, η) ∈ H; v ∈ H1

0 (Ω), �u +

∞∫

0

g(s)η(s) ds ∈ H2(Ω), ηs ∈ Wg, η(·, 0) = 0

⎫⎬
⎭ .

Theorem 2.1. [16, Thm. 2.2] Under Assumption 2.1, if U0 ∈ H, then there exists a unique mild solution
U = (u, v, η) ∈ C([0,∞),H) for (2.8) given by U(t) = eAtU0. Moreover, if U0 ∈ D(A), the mild solution
is the regular one U ∈ C([0,∞),D(A)) ∩ C1([0,∞),H).

In other words, problem (2.8) is Hadamard well-posed with respect to mild and strong solutions and,
consequently, system (2.2)–(2.5) so is it.

2.2. Back to the original problem

For U0 = (ũ0, u1, η0) ∈ H, we know that U = (u, v, η) is a mild solution of (2.8) if and only if (u, v)
satisfies the variational problem related to (2.2)–(2.5), see for instance [18, Sect. 4]. In particular, if we
take initial data in the following subspace of H

(ũ0, u1, η0) ∈ {(u, v, η) ∈ H, η(s − α) = u, s > 0} := V,

then we have a one-to-one correspondence between problems (2.8) and (2.1) and, therefore, the first
component u of the vector solution (u, v, η) solves problem (2.1). Indeed, through the notations in (2.6)
and since η can be explicitly expressed by the formula

ηt(s) =

{
u(t) − u(t − s), t > s,

u(t) − ũ0(t − s), t ≤ s,
(2.9)

see again [18, Sect. 4], then

ũ0 = η0(s − α) = ũ0 − ũ0(α − s), ∀ s > 0.

From this we have ũ0 = 0 in (−∞, α). Additionally, from (2.2)–(2.5) along with (2.6) and (2.9), it is not
so difficult to prove that u is a variational solution of problem (2.1).
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Besides, we still observe that the third condition in (2.6) allows us to conclude that u0(·, s), α < s < 0,
belongs to the space

Wg(α, 0) :=

⎧⎨
⎩u : (α, 0) → H1

0 (Ω);

−α∫

0

g(s)‖∇u(−s)‖22 ds < ∞
⎫⎬
⎭ ,

whenever it is taken ũ0 = u0 ∈ H1
0 (Ω) and η0 ∈ Wg = L2

g(R
+;H1

0 (Ω)). Consequently, using again the
explicit formula for η in (2.9), then u belongs to the space

Wg(α, T ) :=

⎧⎨
⎩u : (α, T ) → H1

0 (Ω);

T−α∫

0

g(s)‖∇u(T − s)‖22 ds < ∞
⎫⎬
⎭ ,

for any time T > 0. Hence, we conclude that problem (2.1) has a unique solution (in the weak variational
sense) in the class

(u, ut) ∈ C([0,∞);H1
0 (Ω) × L2(Ω)), with u ∈ Wg(α, T ), ∀ T > 0. (2.10)

Finally, in what concerns regular solutions for (2.1), we notice that the above procedure cannot be
done for any general regular initial data. Indeed, under the requirements in the definitions of the subspace
V and the domain D(A), the one-to-one correspondence between problems (2.1) and (2.8) is only possible
if we consider the null initial position ũ0 = 0, which leads to a particular case of regular solutions to
problem (2.1) related to suitable initial data.

Remark 2.2. Under the above statements, one concludes that problem (2.1) is only well-posed with
respect to variational (weak) solutions in the general setting of initial data. However, regularity of solution
is a very useful attribute to deal with the stability results, which are usually achieved for weak solutions
by density arguments. Thus, some regularizing process is necessary to work with a general regular solution
of (2.1). For instance, one can define a special type of cutoff function as done in [9] (see on pages 33-34
therein) and then consider initial data in a proper subspace. Also, a regularizing procedure as presented
by Guo et al. [21] can be used to approach the stability of variational solutions of (2.1).

3. Stability result

Let us start by recalling that the energy Eα(t) associated with problem (2.1) is given by

Eα(t) =
1
2
‖ut(t)‖22 +

1
2

(1 − hα(t)) ‖∇u(t)‖22 +
1
2
(g

α

� ∇u)(t), t ≥ 0, (3.1)

for any α ∈ (−∞, 0). In order to prove a general stability result for Eα(t), let us consider an additional
assumption on the memory kernel.

Assumption 3.1. The function g fulfills the following linear differential inequality

g′(t) ≤ −ξ(t)g(t), t > 0, (3.2)

for some function ξ : [0,∞) → R
+ satisfying either:

(i) ξ is a constant function, namely, ξ ≡ ξ0 > 0;
(ii) ξ is a non-constant, non-increasing and differentiable function.

The first main stability result of this paper reads as follows:

Theorem 3.1. Let us take on Assumptions 2.1 and 3.1. For any α ∈ (−∞, 0) we have:
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I. Uniform (Exponential) Stability. Let

cα(t) :=
λ2
1

8g(0)�
[
8�hα(t) + 48 + 3[hα(t)]2

]
, (3.3)

where hα(t) is set in (1.4). If we assume condition (3.2)-(i), then for a fixed t0 > 0 the energy
functional Eα(t) decays exponentially

Eα(t) ≤ Cα(t0)Eα(0) e−γα(t0)t, t > t0, (3.4)

where ⎧⎪⎪⎨
⎪⎪⎩

Cα(t0) := 1 +
ξ0

2cα(t0)

(
1
2

+
λ1

�g(0)

)
,

γα(t0) :=
ξ0λ

2
1�

4�g(0)cα(t0) + ξ0(�g(0) + 2λ1)
[hα(t0)]2.

(3.5)

II. A Non-uniform General Stability. Let us assume condition (3.2)-(ii) and suppose that

Kα := sup
τ∈(α,0)

‖∇u0(τ)‖22 < ∞. (3.6)

Let

κα(t0) := cα(t0)
(

4
�
Eα(0) + 2Kα

)
. (3.7)

Then, for a fixed t0 > 0, the energy functional Eα(t) decays as

Eα(t) ≤ C̃α(t0)

⎛
⎝Eα(0) +

t∫

0

e
γ̃α(t0)

s∫
0

ξ(τ)dτ
[g(s) − g(s − α)] ds

⎞
⎠ e

−γ̃α(t0)
t∫
0

ξ(s)ds

+ C̃α(t0)

t−α∫

t

g(τ) dτ, (3.8)

for all t > t0, where⎧⎪⎪⎨
⎪⎪⎩

C̃α(t0) := max
{

κα(t0)
γ̃α(t0)

, 2cα(t0) + ξ(0)
(

1
2

+
λ1

�g(0)

)}
,

γ̃α(t0) :=
ξ(0)λ2

1�

4�g(0)cα(t0) + ξ(0)(�g(0) + 2λ1)
[hα(t0)]2.

(3.9)

Before proving Theorem 3.1, let us first introduce some notations and technical results.

3.1. Functional notations

In order to provide a pattern functional notation to the subsequently technical results, we introduce some
notations and a useful result on the convolution setting.

For any α < 0 and t ≥ 0, we define:

(g
α∗ z)(t) :=

t∫

α

g(t − s)z(s) ds =

t−α∫

0

g(s)z(t − s) ds, (3.10)

(g
α� z)(t) :=

t∫

α

g(t − s)(z(t) − z(s)) ds =

t−α∫

0

g(s)(z(t) − z(t − s)) ds, (3.11)
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(g
α

� z)(t) :=

t∫

α

g(t − s)‖z(t) − z(s)‖22 ds =

t−α∫

0

g(s)‖z(t) − z(t − s)‖22 ds. (3.12)

Under the above notations, we have:

Lemma 3.2. Let us take z ∈
{

u : (α, t) → L2(Ω);
t−α∫
0

g(s)‖u(t − s)‖22 ds < ∞
}

.

(a) If g ∈ L1(R+), then (g
α� z)(t) ∈ L2(Ω) and

‖(g
α� z)(t)‖22 ≤ ‖g‖L1(R+)(g

α

� z)(t), t ≥ 0. (3.13)

(b) If g ∈ C1(R+) and zt(t) ∈ L2(Ω), t ≥ 0, then

((g
α∗ z)(t), zt(t)) =

1
2

d
dt

{
hα(t)‖z(t)‖22 ds − (g

α

� z)(t)
}

+
1
2

g(t − α)‖z(t)‖22 − 1
2
(g′ α

� z)(t). (3.14)

Proof. The proofs of both items are standard. For the sake of the readers we give the main idea to reach
them. Indeed, using (3.11), (3.12) and Hölder’s inequality, we obtain

‖(g
α� z)(t)‖22 ≤

⎛
⎝

t−α∫

0

(g(s))
1
2 (g(s)‖z(t) − z(t − s)‖22)

1
2 ds

⎞
⎠

2

≤ hα(t)(g
α
� z)(t),

from where (a) follows. To arrive at (b), we take the time distributional derivative in the first expression

of (g
α
� z)(t) given in (3.12) and then use (3.10). �

3.2. Auxiliary technical results

Due to the weak regularity of the solution (u, ut) in (2.10), we cannot apply multipliers directly in (2.1).
Thus, in the next computations, we are going to work initially with a smooth sequence defined through
the resolvent operator as regarded in [21, Sect. 3] for a uniqueness purpose. Here, this procedure will lead
to the proof of (3.8) in Theorem 3.1 for such a regularizing sequence and, consequently, to the solution
of (2.1) by means of the important limit properties provided by [21, Prop. 5.1].

Let (u, ut) be the solution of (2.1) given by (2.10), and let us consider the regularizing resolvent
operator Rn := (I − n−1Δ)−1 : H−1(Ω) → H1

0 (Ω), n ∈ N. We also set the smooth sequence un := Rnu
and the corresponding energy functional

En
α(t) =

1
2
‖un

t (t)‖22 +
1
2

(1 − hα(t)) ‖∇un(t)‖22 +
1
2
(g

α

� ∇un)(t), t ≥ 0, (3.15)

where we have used notation (3.12). In this direction, the following result holds true.

Proposition 3.3. Under the above notations, the following statements hold.
• If u ∈ L2(Ω), then ‖un‖2 ≤ ‖u‖2, and un → u in L2(Ω), as n → ∞.
• If u ∈ H1

0 (Ω), then ‖un‖H1
0

≤ ‖u‖H1
0
, and un → u in H1

0 (Ω), as n → ∞.

Proof. Both properties are direct consequences of the definition un = Rnu and Proposition 5.1 in [21]
with ε = 1/n. �

Moreover, we have the following energy identity.
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Lemma 3.4. Under the above notations and Assumption 2.1, then the regularized energy En
α(t) satisfies

the following identity:
d
dt

En
α(t) = −1

2
g(t − α)‖∇un(t)‖22 +

1
2
(g′ α

� ∇un)(t), t > 0. (3.16)

Proof. Firstly, we apply the regularizing resolvent operator Rn on every term of problem (2.1). Then,
taking the multiplier un

t and using identity (3.14), energy identity (3.16) follows readily. �

Let t0 > 0 be fixed. To the next lemma we also set the functionals for t > t0

Φn
1 (t) := (un

t (t), un(t)), (3.17)

Φn
2 (t) := −(un

t (t), (g
α� un)(t)), (3.18)

and the perturbed energy

Fn
α (t) :=

1
2

[
1 +

λ1

2�g(0)

]
En

α(t) +
λ2
1

4g(0)
[hα(t0)]2 Φn

1 (t) +
λ2
1

g(0)
hα(t0)Φn

2 (t). (3.19)

At a first moment, we observe that it is easy to verify the equivalence
1
2
En

α(t) ≤ Fn
α (t) ≤

[
1
2

+
λ1

�g(0)

]
En

α(t), t ≥ t0. (3.20)

Lemma 3.5. Under the above notations and Assumption 2.1, then the regularized perturbed energy Fn
α (t)

satisfies, for a fixed t0 > 0, the following estimate:

d
dt

Fn
α (t) ≤ − λ2

1

4g(0)
[hα(t0)]2En

α(t) + cα(t0) (g
α

� ∇un)(t), t > t0, (3.21)

where hα(t0) and cα(t0) are given in (1.4) and (3.3), respectively.

Proof. First, taking the time derivative of Φn
1 defined in (3.17) and using (2.1) under the action of Rn,

we get
d
dt

Φn
1 (t) = ‖un

t (t)‖22 − (1 − hα(t)) ‖∇un(t)‖22 − ((g
α� ∇un)(t),∇un(t)). (3.22)

From (2.7), applying Young’s inequality and using (3.13), we deduce
d
dt

Φn
1 (t) ≤ −En

α(t) +
3
2
‖un

t (t)‖22 − �

4
‖∇un(t)‖22 +

3
2 �

(g
α

� ∇un)(t). (3.23)

Now, deriving the functional Φn
2 defined in (3.18) and using again (2.1), after acting Rn on it, we

obtain

d
dt

Φn
2 (t) = −hα(t)‖un

t (t)‖22 +
3∑

j=1

Ji(t), (3.24)

where

J1(t) = (1 − hα(t)) (∇un(t), (g
α� ∇un)(t)),

J2(t) = ‖(g
α� ∇un)(t)‖22,

J3(t) = −(un
t (t), (g′ α� un)(t)).

Fixing t0 > 0, we apply Cauchy-Schwarz and Young’s inequalities and use (3.13) to have

|J1(t)| ≤ �

24
hα(t0) ‖∇un(t)‖22 +

6
�
[hα(t0)]−1(g

α

� ∇un)(t),

|J2(t)| ≤ (g
α

� ∇un)(t).
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Moreover, from Cauchy-Schwarz, Young and Poincaré’s inequalities, we infer

|J3(t)| ≤ 1
2
hα(t0)‖un

t (t)‖22 − g(0)
2λ2

1

[hα(t0)]−1(g′ α
� ∇un)(t).

Replacing the estimates for Ji(t), i = 1, 2, 3, in (3.24), we arrive at

d
dt

Φn
2 (t) ≤ −hα(t0)

2
‖un

t (t)‖22 +
�

24
hα(t0)‖∇un(t)‖22

+
[
1 +

6
�
[hα(t0)]−1

]
(g

α

� ∇un)(t)

−g(0)
2λ2

1

[hα(t0)]−1(g′ α

� ∇un)(t), ∀ t ≥ t0. (3.25)

Finally, deriving Fn
α defined in (3.19) and using (3.16), (3.23) and (3.25), we get

d
dt

Fn
α (t) ≤ − λ2

1

4g(0)
[hα(t0)]2En

α(t) − �λ2
1

48g(0)
[hα(t0)]2‖∇un(t)‖22

− λ2
1

8g(0)
[hα(t0)]2‖un

t (t)‖22 + cα(t0)(g
α

� ∇un)(t)

+
λ1

8�g(0)
(g′ α

� ∇un)(t). (3.26)

Then, we conclude from (3.26) that (3.21) holds true. �

Now we prove two auxiliary stability results for the regularized energy En
α(t) set in (3.15).

Proposition 3.6. Under the above notations and Assumptions 3.1-(i), the regularized energy En
α(t) satis-

fies, for a fixed t0 > 0, the following n-decay rate:

En
α(t) ≤ Cα(t0)En

α(0) e−γα(t0)t, t > t0, (3.27)

where Cα(t0) and γα(t0) are given in (3.5).

Proof. From (3.2) with ξ ≡ ξ0 and taking into account (3.16) we have

ξ0 (g
α

� ∇un)(t) ≤ −(g′ α

� ∇un)(t) ≤ −2
d
dt

En(t). (3.28)

Then, combining (3.21) with (3.28), we obtain

ξ0
d
dt

Fn
α (t) ≤ − ξ0λ

2
1

4g(0)
[hα(t0)]2 En

α(t) − 2 cα(t0)
d
dt

En
α(t) (3.29)

where Fn
α is given in (3.19) and cα(t0) > 0 comes from Lemma 3.5. In addition, defining

In
α(t) := 2cα(t0)En

α(t) + ξ0 Fn
α (t), (3.30)

we readily get

2cα(t0)En
α(t) ≤ In

α(t) ≤
[
2cα(t0) + ξ0

(
1
2

+
λ1

�g(0)

)]
En

α(t). (3.31)

Moreover, deriving (3.30) and using (3.29) and (3.31) we have

d
dt

In
α(t) ≤ −γα(t0) In

α(t).

Hence, by the differential Gronwall’s inequality and (3.31), one concludes that (3.27) holds true. �
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Proposition 3.7. Let

κα,n(t0) := cα(t0)

(
4
�
En

α(0) + 2 sup
τ∈(α,0)

‖∇un
0 (τ)‖22

)
(3.32)

Under the above notations and Assumption 3.1-(ii), the regularized energy En
α(t) satisfies, for a fixed

t0 > 0, the following n-decay rate:

En
α(t) ≤ Cα,n(t0)

⎛
⎝En

α(0) +

t∫

0

e
γ̃α(t0)

s∫
0

ξ(τ)dτ
[g(s) − g(s − α)] ds

⎞
⎠ e

−γ̃α(t0)
t∫
0

ξ(s)ds

+Cα,n(t0)

t−α∫

t

g(τ) dτ, (3.33)

where ⎧⎪⎪⎨
⎪⎪⎩

Cα,n(t0) := max
{

κα,n(t0)
γ̃α(t0)

, 2cα(t0) + ξ(0)
(

1
2

+
λ1

�g(0)

)}
,

γα(t0) :=
ξ(0)λ2

1�

4�g(0)cα(t0) + ξ(0)(�g(0) + 2λ1)
[hα(t0)]2.

(3.34)

Proof. First of all, regarding notation (3.12) and applying assumption (3.2), we observe that

ξ(t)

t∫

0

g(s)‖∇un(t) − ∇un(t − s)‖22 ds ≤ −
t∫

0

g′(s)‖∇un(t) − ∇un(t − s)‖22 ds

≤ −2
d
dt

En(t). (3.35)

Then, multiplying both sides of (3.21) by ξ(t) and combining with (3.35), we obtain

ξ(t)
d
dt

Fn
α (t) ≤ − λ2

1

4g(0)
[hα(t0)]2ξ(t)En

α(t) − 2 cα(t0)
d
dt

En
α(t)

+ cα(t0) ξ(t)

t−α∫

t

g(s)‖∇un(t) − ∇un(t − s)‖22 ds, (3.36)

where Fn
α is given in (3.19) and cα(t0) > 0 is given by (3.3). Now, defining

Jn
α (t) := 2cα(t0)En

α(t) + ξ(t)Fn
α (t), (3.37)

we obtain the equivalence

2cα(t0)En
α(t) ≤ Jn

α (t) ≤
[
2cα(t0) + ξ(0)

(
1
2

+
λ1

�g(0)

)]
En

α(t). (3.38)

So, deriving (3.37), using (3.36) and noting that ξ′(t)Fn
α (t) ≤ 0, we have

d
dt

Jn
α (t) ≤ − λ2

1

4g(0)
[hα(t0)]2ξ(t)En

α(t) + cα(t0)ξ(t)

t−α∫

t

g(s)‖∇un(t) − ∇un(t − s)‖22 ds. (3.39)

Now, for s > t, we have

‖∇un(t) − ∇un
0 (t − s)‖22 ≤ 2‖∇un(t)‖22 + 2‖∇un

0 (t − s)‖22 ≤ 4
�
En

α(0) + 2Kα,n,
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where, from Proposition 3.3 and assumption (3.6), one has

Kα,n = sup
τ∈(α,0)

‖∇un
0 (τ)‖22 ≤ sup

τ∈(α,0)

‖∇u0(τ)‖22 = Kα < ∞, ∀n ∈ N. (3.40)

This yields

ξ(t)

t−α∫

t

g(s)‖∇un(t) − ∇un(t − s)‖22ds ≤
(

4
�
En

α(0) + 2Kα,n

)
bα(t), (3.41)

with bα(t) = ξ(t)

t−α∫

t

g(s) ds. Then, using (3.38) and (3.41) in (3.39), it follows that

d
dt

Jn
α (t) + γ̃α(t0) ξ(t)Jn

α (t) ≤ κα,n(t0)bα(t), (3.42)

where we denote

κα,n(t0) := cα(t0)
(

4
�
En

α(0) + 2Kα,n

)
= cα(t0)

(
4
�
En

α(0) + 2 sup
τ∈[α,0]

‖∇un
0 (τ)‖22

)
.

Solving differential inequality (3.42), we arrive at

Jn
α (t) ≤ e

−γ̃α(t0)
t∫
0

ξ(s) ds

⎛
⎝Jn

α (0) + κα,n(t0)

t∫

0

e
γ̃α(t0)

s∫
0

ξ(τ)dτ
bα(s)ds

⎞
⎠ . (3.43)

Also, from assumption (3.2) we get
t∫

0

e
γ̃α(t0)

s∫
0

ξ(τ)dτ
bα(s)ds =

1
γ̃α(t0)

t∫

0

(
e
γ̃α(t0)

s∫
0

ξ(τ)dτ

)′ s−α∫

s

g(τ)dτ ds

≤ 1
γ̃α(t0)

⎛
⎝e

γ̃α(t0)
t∫
0

ξ(τ)dτ
t−α∫

t

g(τ) dτ

⎞
⎠

+
1

γ̃α(t0)

⎛
⎝

t∫

0

e
γ̃α(t0)

s∫
0

ξ(τ)dτ
[g(s) − g(s − α)] ds

⎞
⎠

Thus, we obtain from (3.43) the inequality

Jn
α (t) ≤

⎛
⎝Jn

α (0) +
κα,n(t0)
γ̃α(t0)

t∫

0

e
γ̃α(t0)

s∫
0

ξ(τ)dτ
[g(s) − g(s − α)] ds

⎞
⎠ e

−γ̃α(t0))
t∫
0

ξ(s)ds

+
κα,n(t0)
γ̃α(t0)

t−α∫

t

g(τ) dτ. (3.44)

Using again (3.38) in (3.44) we finally conclude that

En
α(t) ≤ 1

2cα(t0)
Jn

α (t)

≤ 1
2cα(t0)

⎛
⎝Jn

α (0) +
κα,n(t0)
γ̃α(t0)

t∫

0

e
γ̃α(t0)

s∫
0

ξ(τ)dτ
[g(s) − g(s − α)] ds

⎞
⎠ e

−γ̃α(t0)
t∫
0

ξ(s)ds
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+
κα,n(t0)

2cα(t0)γ̃α(t0)

t−α∫

t

g(τ) dτ

≤Cα,n(t0)

⎛
⎝En

α(0) +

t∫

0

e
γ̃α(t0)

s∫
0

ξ(τ)dτ
[g(s) − g(s − α)] ds

⎞
⎠ e

−γ̃α(t0)
t∫
0

ξ(s)ds

+ Cα,n(t0)

t−α∫

t

g(τ) dτ,

which is precisely estimate (3.33) with Cα,n(t0) given in (3.34). �

3.3. Proof of the main result

We finally conclude decay rates (3.4) and (3.8) in Theorem 3.1 by means of Proposition 3.3. Indeed, as a
direct consequence of Proposition 3.3 we obtain that the first two terms of En

α(t) set in (3.15) converge
to the first two terms of Eα(t) defined in (3.1). Moreover, we also claim that

(g
α
� ∇un)(t) =

t−α∫

0

g(s)‖∇un(t) − ∇un(t − s)‖22 ds

−→
t−α∫

0

g(s)‖∇u(t) − ∇u(t − s)‖22 ds, as n → ∞, (3.45)

for any given parameters −∞ < α < 0 and t > α. In fact, defining

Gn
1 (t, s) = ‖∇un(t) − ∇un(t − s)‖2 − ‖∇u(t) − ∇u(t − s)‖2,

Gn
2 (t, s) = ‖∇un(t) − ∇un(t − s)‖2 + ‖∇u(t) − ∇u(t − s)‖2,

then

‖∇un(t) − ∇un(t − s)‖22 − ‖∇u(t) − ∇u(t − s)‖22 = Gn
1 (t, s)Gn

2 (t, s).

Again from Proposition 3.3 we have

|Gn
1 (t, s)| ≤ ‖∇un(t) − ∇u(t)‖2 + ‖∇un(t − s) − ∇u(t − s)‖2 → 0, (3.46)

as n → ∞. On the other hand, using once more Proposition 3.3, we estimate Gn
2 (t, s) as follows

|Gn
2 (t, s)| ≤ 2‖∇u(t)‖2 + 2‖∇u(t − s)‖2, s > 0. (3.47)

Thus, from (3.46)–(3.47) we deduce

g(s)Gn
1 (t, s)Gn

2 (t, s) → 0, as n → ∞, s > 0.

Moreover, there exists a constant C > 0 (which may depend on Eα(0) and Kα) such that

|g(s)Gn
1 (t, s)Gn

2 (t, s)| ≤ Cg(0), s > 0.

From these two latter, desired limit (3.45) can be obtained by the Dominated Convergence Theorem and,
therefore, it holds that

lim
n→∞ En

α(t) = Eα(t), t ≥ 0, (3.48)

with

κα,n(t0) ≤ κα(t0), C̃α,n(t0) ≤ C̃α(t0), (3.49)
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where κα(t0) and C̃α(t0) are given in (3.7) and (3.9), respectively. Hence, from (3.48)–(3.49) we can pass
the limit in (3.27) and (3.33) as n → ∞ to reach (3.4) and (3.8), respectively. This completes the proof
of Theorem 3.1. �

4. Limit analysis

This section is devoted to the precise analysis of general decay (3.8) within the limit situations α → 0−

and α → −∞, for every given time. Although the stability results for (2.1) in the formal (limit) cases
α = 0 and α = −∞ are well-known, as mentioned in introduction, we are going to see that (3.8) provides
a good formulation that allows us to reach; as a consequence, the same (already known) stability results
for history and null history problems (2.1)α=−∞ and (2.1)α=0, respectively, via limit procedures. As a
consequence, the same statement holds true in particular exponential case (3.4).

To organize the notations, we first set the family of negative parameters Λ = {α; α < 0} and, for each
α ∈ Λ, we denote by (uα, uα

t ) the unique weak solution of (2.1) associated with initial data (u0, u1). Also,
we denote the corresponding energy by Eu

α(t) = Eα(uα(t), uα
t (t)) as defined in (3.1) along with notation

(3.12), that is,

Eu
α(t) =

1
2
‖uα

t (t)‖22 +
1
2

(1 − hα(t)) ‖∇uα(t)‖22 +
1
2
(g

α

� ∇uα)(t), t ≥ 0. (4.1)

4.1. Forward memory limit: α → 0−

Let us first consider the classical initial-boundary value problem for the viscoelastic wave equation without
history ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vtt − Δv +

t∫

0

g(t − s)Δv(s) ds = 0 in Ω × (0,∞),

v = 0 on ∂Ω × [0,∞),
v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ Ω,

(4.2)

and its corresponding energy Ev
0 (t) = E0(v(t), vt(t)) given by

Ev
0 (t) =

1
2
‖vt(t)‖22 +

1
2

⎛
⎝1 −

t∫

0

g(s) ds

⎞
⎠ ‖∇v(t)‖22 +

1
2
(g �∇v)(t), t ≥ 0, (4.3)

where the notation (g �∇v)(t) corresponds to (3.12) with α = 0.
The existence and uniqueness result of weak solution to problem (4.2) is very well-known, see for

instance [6,7,9–11,13,14,18]. Roughly speaking, it reads as follows: under Assumption 2.1, if (v0, v1) ∈
H1

0 (Ω) × L2(Ω), then problem (4.2) has a unique weak solution in the class

(v, vt) ∈ C([0,∞);H1
0 (Ω) × L2(Ω)).

Moreover, under additional Assumption 3.1, one proves the next general stability for Ev
0 (t) set in (4.3)

over weak solutions of (4.2).

Theorem 4.1. Under Assumptions 2.1 and 3.1-(ii), then there exist constants C, γ > 0 such that

Ev
0 (t) ≤ C Ev

0 (0)e
−γ

t∫
0

ξ(s) ds
, ∀ t > 0. (4.4)

Proof. See Theorem 3.6 in [27]. See also [28, Theorem 3.5] and [20, Subsection 4.1]. �



ZAMP Unified stability analysis Page 17 of 23   118 

Theorem 4.1 was first proved by Messaoudi in 2008. However, here we are going to prove that it can
be reached as a consequence of a Martinez’s lemma proposed in 1999 to obtain decay rate estimates for
dissipative systems, as readjusted to our case as follows.

Lemma 4.2. [26, Lemma 1] Let E : R+ → R
+ be a non-decreasing function and let φ : [0,+∞) → [0,+∞)

be a strictly increasing C1-function such that

φ(t) → +∞, as t → +∞.

Let us also assume that there exists a constant ω > 0 such that
+∞∫

s

E(t)φ′(t) dt ≤ 1
ω

E(s), ∀ s ≥ 1. (4.5)

Then, there exists a constant C > 0 depending on E(1) such that

E(t) ≤ Ce−ωφ(t), ∀ t ≥ 1.

Sketch of the proof of Theorem 4.1. Taking a closer look at Sect. 3.2 and defining corresponding func-
tionals (3.17)–(3.19) related to Ev

0 (t), then it is proved similarly to (3.20)–(3.21) that

1
2
Ev

0 (t) ≤ F v
0 (t) ≤

[
1
2

+
λ1

�g(0)

]
Ev

0 (t), t ≥ 0, (4.6)

and
d
dt

F v
0 (t) ≤ − λ2

1

4g(0)
[h0(1)]2Ev

0 (t) + c0 (g�∇v)(t), t > 1, (4.7)

for some constant c0 > 0.
Multiplying (4.7) by ξ and integrating the resulting expression on the interval (s, T ), 1 ≤ s < T , we

get

λ2
1

4g(0)
[h0(1)]2

T∫

s

Ev
0 (t)ξ(t) dt ≤ −

T∫

s

d
dt

F v
0 (t)ξ(t) dt + c0

T∫

s

ξ(t)(g�∇v)(t) dt. (4.8)

From (4.8), noting that

d
dt

F0(t)ξ(t) =
d
dt

(F0ξ) (t) − d
dt

ξ(t)F0(t) ≥ d
dt

(F0ξ) (t),

and regarding (3.35) for the couple (vn, Ev
0 ), we deduce

λ2
1

4g(0)
[h0(1)]2

T∫

s

Ev
0 (t)ξ(t) dt ≤ F v

0 (s)ξ(s) − F v
0 (T )ξ(T ) + 2c0

(
Ev

0 (s)ξ(s) − Ev
0 (T )ξ(T )

)
. (4.9)

Thus, using (4.6) and taking T → ∞ in (4.9), we obtain
+∞∫

s

Ev
0 (t)ξ(t) dt ≤ w̃Ev

0 (s), ∀ s ≥ 1, (4.10)

for some constant w̃ > 0, which is (4.5) with E(t) = Ev
0 (t), φ(t) =

t∫
0

ξ(s) ds and ω = 1/w̃. Therefore,

decay rate (4.4), for t ≥ 1, is a direct consequence of (4.10) and Lemma 4.2. Also, it can be easily obtained
on (0, 1), see, e.g., [27,28]. �
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Now, under the above notations, we are in position to prove that general decay rate (4.4) can be
reached as consequence of (3.8) in the forward limit α → 0−, which will be a consequence of our next
second main result.

Theorem 4.3. Let us consider α ∈ Λ, (u0, u1) ∈ Wg(α, 0) × L2(Ω) and suppose that Assumption 2.1 and
(3.6) hold. If uα is the weak solution of (2.1) and v is the weak solution of (4.2) with v0 = u0(0) and
v1 = u1, then for every time t ≥ 0 it holds the following limit

lim
α→0−

Eu
α(t) = Ev

0 (t), (4.11)

where Eu
α(t) and Ev

0 (t) are the energies given in (4.1) and (4.3), respectively.

Proof. Let ṽ0 be the null extension of v0 in (α, 0) and ṽ the unique weak solution of (2.1) associated with
ṽ0. Due to the uniqueness, then it is easy to see that ṽ can be expressed by:

ṽ(·, t) =
{

v(·, t), t ≥ 0,
0, α < t < 0.

Setting vα = uα − ṽ, we observe that vα is the weak solution of (2.1) with initial conditions

vα(x, t) = u0(x, t) − ṽ0(x, t), (x, t) ∈ Ω × (α, 0), vα
t (x, 0) = 0, x ∈ Ω. (4.12)

Integrating (3.16) from 0 to t for the vα,n = Rnvα function, using (2.7), applying Proposition 3.3 and
regarding (3.48) for Ev

α(t) = Eα(vα(t), vα
t (t)), we obtain

Eα(vα(t), vα
t (t)) ≤ Eα(vα(0), vα

t (0)) =

−α∫

0

g(s)‖∇uα(−s) − ∇v0‖22 ds. (4.13)

Now, from (3.6), we note that

‖∇uα(−s) − ∇v0‖22 ≤ 2(Kα + ‖∇v0‖22) → 4‖∇v0‖22, as α → 0−,

and from (4.13) one gets

0 ≤ lim
α→0−

Eα(vα(t), vα
t (t)) ≤ lim

α→0−

⎛
⎝2(Kα + ‖∇v0‖22)

−α∫

0

g(s) ds

⎞
⎠ = 0,

that is,

lim
α→0−

Eα(vα(t), vα
t (t)) = 0. (4.14)

Thus, using (4.14) and recalling that vα = uα − ṽ, we obtain the following convergences when α goes to
0−:

uα(t) −→ ṽ(t) = v(t) in H1
0 (Ω), t ≥ 0, (4.15)

uα
t (t) −→ ṽt(t) = vt(t) in L2(Ω), t ≥ 0, (4.16)

(g
α

� ∇uα)(t) −→ (g
α

� ∇ṽ)(t) in R, (4.17)

We claim that

(g
α

� ∇uα)(t) −→ (g �∇v)(t), t ≥ 0. (4.18)

Indeed, writing

(g �∇v)(t) = (g
α

� ∇ṽ)(t) −
⎛
⎝

−α∫

0

g(t − s) ds

⎞
⎠ ‖∇v(t)‖22,
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we have from (4.17) that

(g
α

� ∇uα)(t) − (g �∇v)(t) =
[
(g

α

� ∇uα)(t) − (g
α

� ∇ṽ)(t)
]

+

⎛
⎝

−α∫

0

g(t − s) ds

⎞
⎠ ‖∇v(t)‖22 −→ 0, as α → 0−,

which shows (4.18). Hence, from (4.15), (4.16) and (4.18), we conclude that limit (4.11) holds true. �

As a promptly consequence of Theorems 3.1 and 4.3, we also conclude stability (4.4) for null history
problem (4.2). More precisely, we have:

Corollary 4.4. Let us take Assumptions 2.1 and 3.1 into account. If u is a weak solution of (4.2), then
for any fixed t0 > 0, the energy Eu

0 (t) satisfies (4.4) (rep. (1.11) for ξ ≡ ξ0 > 0 constant) for all t ≥ t0.

Proof. For every time t ≥ t0, stability (4.4) (rep. (1.11) for ξ ≡ ξ0 > 0 constant) can be directly obtained
by taking the limit when α → 0− in (3.8) (resp. (3.4)) and using (4.11). �

4.2. Backward memory limit: α → −∞

Now, we are going to analyze the convergence of Eu
α(t) set in (4.1) when α → −∞, for every fixed

time. Let us consider the initial-boundary value problem for the viscoelastic wave equation with (infinity)
history ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

wtt − Δw +

t∫

−∞
g(t − s)Δw(s) ds = 0 in Ω × (0,∞),

w = 0 on ∂Ω × R,
w(x, t) = w0(x, t), (x, t) ∈ Ω × (−∞, 0], wt(x, 0) = w1(x), x ∈ Ω,

(4.19)

which is equivalent to the following autonomous problem (see, e.g., [18])⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

wtt −
⎛
⎝1 −

∞∫

0

g(s) ds

⎞
⎠ Δw −

∞∫

0

g(s)Δ ζ(s) ds = 0 in Ω × (0,∞),

ζt + ζs = wt in Ω × (0,∞) × (0,∞),
w = 0 on ∂Ω × [0,∞), ζ = 0 on ∂Ω × [0,∞) × (0,∞),
w(x, 0) = w0(x), wt(x, 0) = w1(x), ζ0(x, s) = ζ0(x, s), x ∈ Ω, s > 0,
ζt(x, 0) = 0 (x, t) ∈ Ω × [0,∞),

(4.20)

by setting the relative displacement history ζt(·, s) := w(·, t) − w(·, t − s), t ≥ 0, s > 0 and taking proper
initial conditions such as ζ0(s) = w0−w0(−s). In this case, the energy Ew

∞(t) = E∞(w(t), wt(t), ζt), t ≥ 0,
associated with problem (4.20) can be denoted by

Ew
∞(t) =

1
2
‖wt(t)‖22 +

1
2

⎛
⎝1 −

∞∫

0

g(s) ds

⎞
⎠ ‖∇w(t)‖22 +

1
2
(g

∞
� ∇w)(t), (4.21)

where the notation (g
∞
� ∇w)(t) corresponds to (3.12) with α = −∞, that is,

(g
∞
� ∇w)(t) =

∞∫

0

g(s)‖∇[w(t) − w(t − s)]‖22 ds =

∞∫

0

g(s)‖∇ζt(s)‖22 ds = ‖ζt‖2Wg
, (4.22)

which coincides with the notation ‖ζt‖M, e.g., in [16,20], with respect to ζ.
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The existence and uniqueness result for (4.20) is stated as in Theorem 2.1, namely, for weak solutions
it reads as follows: under Assumption 2.1, if (w0, w1, ζ0) ∈ H, then system (4.20) has a unique weak
solution in the class

(w,wt, ζ) ∈ C([0,∞);H).

Additionally, under Assumption 3.1 and assuming that

K0 := sup
s<0

‖∇w0(s)‖2 < +∞, (4.23)

one proves the next general stability for Ew
∞(t) set in (4.21) over weak solutions of (4.20).

Theorem 4.5. Under Assumptions 2.1 and 3.1-(ii), and also condition (4.23), then there exist constants
δ0 ∈ (0, 1) and C0 > 0 depending on initial data such that

Ew
∞(t) ≤ C0

⎛
⎝Ew

∞(0) +

t∫

0

g1−δ0(s) ds

⎞
⎠ e

−δ0
t∫
0

ξ(s) ds
+ C0

∞∫

t

g(s) ds, (4.24)

for all t > t0, where t0 is a positive fixed time.

Proof. See Theorem 2.1 in [20]. �
Now, under the above notations for the history case, we are again in position to prove that general

decay rate (4.24) can be achieved as consequence of (3.8) in the backward limit α → −∞, for every given
time. This statement will follow as a consequence of our next third main result.

Theorem 4.6. Let us consider α ∈ Λ, (w0, w1, ζ0) ∈ H and suppose that Assumption 2.1 and (4.23) hold.
If (w, ζ) is the weak solution of (4.20) and uα is the weak solution of (2.1) with u0 = w0

∣∣
(α,0]

and u1 = w1,
then the following limit holds for every time t ≥ 0

lim
α→−∞ Eu

α(t) = Ew
∞(t), (4.25)

where Eu
α(t) and Ew

∞(t) are the energies given in (4.1) and (4.21), respectively.

Proof. We first consider ũ0 the null extension of u0 in (−∞, α]. Then, let (ũα, ηα) be the unique weak
solution of (4.20) associated with initial data (ũ0, w1, ζ̃0), where

ηα,t(s) = ũα(t) − ũα(t − s), ηα,0(s) = ζ̃0(s) = w0 − ũ0(−s), t, s > 0.

Due to the uniqueness of solution for (4.20), it is easy to see that ũα is given by:

ũα(·, t) =
{

uα(·, t), t > α,
0, −∞ < t ≤ α.

Now, we set (wα, ζα) := (ũα − w, ηα − ζ) and observe that (wα, ζα) is a weak solution of (4.20) with
initial data (0, 0, η̃0), where

η̃0(s) = ζ̃0(s) − ζ0(s) =

{
0, s ∈ [0,−α],
w0(−s), s > −α.

Now, similar to (4.13), regarding expressions (4.21)–(4.22) and the above identity for η̃0, we note that
Ewα

∞ (t) = E∞(wα(t), wα
t (t), ζα,t) satisfies

E∞(wα(t), wα
t (t), ζα,t) ≤ E∞(0, 0, η̃0) =

∞∫

−α

g(s)‖∇w0(−s)‖22 ds. (4.26)

Due to boundedness (4.23) we can pass the limit when α → −∞ in (4.26) to get

lim
α→−∞ E∞(wα(t), wα

t (t), ζα,t) = 0. (4.27)
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From (4.27) and using (4.22), we obtain the following convergences when α goes to −∞:

ũα(t) = uα(t) −→ w(t) in H1
0 (Ω), t ≥ 0, (4.28)

ũα
t (t) = uα

t (t) −→ wt(t) in L2(Ω), t ≥ 0, (4.29)

(g
∞
� ∇ũα)(t) −→ (g

∞
� ∇w)(t) in R. (4.30)

We also claim that:

(g
α
� ∇uα)(t) −→ (g

∞
� ∇w)(t), t ≥ 0. (4.31)

In fact, by noting that

(g
α

� ∇uα)(t) − (g
∞
� ∇w)(t) = (g

∞
� ∇ũα)(t) − (g

∞
� ∇w)(t) −

⎛
⎝

∞∫

t−α

g(s) ds

⎞
⎠ ‖∇uα(t)‖22,

then (4.31) is just a direct consequence of (4.28) and (4.30).
Therefore, from (4.28), (4.29) and (4.31), we conclude that limit (4.25) holds true. �

As an immediate consequence of Theorem 3.1 and Theorem 4.6, we are going to conclude general
stability (4.24) as a limit case for the history problem.

Corollary 4.7. Let us take Assumptions 2.1 and 3.1 into account and assume that (4.23) holds. If u is a
weak solution of (4.19), then for any fixed t0 > 0, the energy Eu

∞(t) set in (4.21) satisfies (4.24) (rep.
(1.11) for ξ ≡ ξ0 > 0 constant) for all t > t0.

Proof. We initially observe that
t∫

0

e
γ̃α(t0)

s∫
0

ξ(τ)dτ
[g(s) − g(s − α)] ds −→

t∫

0

e
γ̃α(t0)

s∫
0

ξ(τ)dτ
g(s) ds, (4.32)

as α → −∞, for every fixed time. From (3.2), we have

e

t∫
0

ξ(τ)dτ
g(t) ≤ g(0),

which implies
t∫

0

e
γ̃α(t0)

s∫
0

ξ(τ)dτ
g(s) ds ≤ (g(0))γ̃α(t0)

t∫

0

(g(s))1−γ̃α(t0) ds. (4.33)

Hence, taking the limit when α → −∞ in (3.8) (resp. (3.4))), and using (4.25), (4.32) and (4.33), one
concludes that (4.24) (resp. (1.11) for ξ ≡ ξ0 > 0 constant) is satisfied for all t > t0. �
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