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Abstract. We analyze the stability properties of a linear thermoelastic Tim-

oshenko-Gurtin-Pipkin system with thermal coupling acting on both the shear

force and the bending moment. Under either the mixed Dirichlet-Neumann or
else the full Dirichlet boundary conditions, we show that the associated solu-

tion semigroup in the history space framework of Dafermos is exponentially

stable independently of the values of the structural parameters of the model.

1. Introduction.

1.1. The model. The vibrations of a Timoshenko beam of length L > 0 are de-
scribed by the linear evolution PDE system [27, 28]{

ρ1ϕtt − Sx = 0,

ρ2ψtt −Mx + S = 0,

where ϕ = ϕ(x, t) and ψ = ψ(x, t) are functions of the space-time variable (x, t) ∈
(0, L) × (0,∞) and represent the vertical displacement and the rotation angle of
the cross-section of the beam, respectively. The constants ρ1, ρ2 > 0 are physical
parameters of the model, while S and M stand for the shear force and the bend-
ing moment, respectively. When the beam is subject to an unknown temperature
distribution, one may assume that S and M satisfy the constitutive laws (see [2]){

S = k(ϕx + ψ)− γθ,
M = bψx − σξ,
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where θ = θ(x, t) and ξ = ξ(x, t) represent the temperature (deviations from a
constant reference temperature) along the longitudinal and vertical directions, re-
spectively, and k, b, γ, σ > 0 are further physical parameters. To complete the
picture, we need to consider two additional equations describing the evolution of θ
and ξ. Here, we employ the Gurtin-Pipkin thermal laws [18]

ρ3θt −$1

∫ ∞
0

g(s)θxx(t− s)ds+ γ(ϕx + ψ)t = 0,

ρ4ξt −$2

∫ ∞
0

h(s)ξxx(t− s)ds+ σψxt = 0,

(1)

where ρ3, ρ4, $1, $2 > 0 are physical parameters and the convolutions kernels
g, h : [0,∞) → [0,∞) are convex integrable functions of unit total mass, whose
precise properties will be specified later. The values of θ and ξ for negative times
are regarded as initial data of the problem. Accordingly, we end up with the follow-
ing thermoelastic Timoshenko-Gurtin-Pipkin beam system with thermal coupling
acting on both the shear force and the bending moment

ρ1ϕtt − k(ϕx + ψ)x + γθx = 0,

ρ2ψtt − bψxx + k(ϕx + ψ)− γθ + σξx = 0,

ρ3θt −$1

∫ ∞
0

g(s)θxx(t− s)ds+ γ(ϕx + ψ)t = 0,

ρ4ξt −$2

∫ ∞
0

h(s)ξxx(t− s)ds+ σψxt = 0,

(2)

complemented with the initial conditions
ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = Φ0(x),
ψ(x, 0) = ψ0(x), ψt(x, 0) = Ψ0(x),

θ(x, 0) = θ0(x), θ(x,−s)|s>0 = p0(x, s),
ξ(x, 0) = ξ0(x), ξ(x,−s)|s>0 = q0(x, s),

(3)

where ϕ0,Φ0, ψ0,Ψ0, θ0, p0, ξ0, q0 are prescribed data. We consider either the mixed
Dirichlet-Neumann boundary conditions

ϕ(0, t) = ϕ(L, t) = ψx(0, t) = ψx(L, t) = θx(0, t) = θx(L, t) = ξ(0, t) = ξ(L, t) = 0,
(4)

or else the full Dirichlet boundary conditions

ϕ(0, t) = ϕ(L, t) = ψ(0, t) = ψ(L, t) = θ(0, t) = θ(L, t) = ξ(0, t) = ξ(L, t) = 0. (5)

As detailed in the sequel, the treatment of the boundary conditions (5) is harder
than (4) and constitutes one of the main challenges of the article.

The aim of the present paper is to study the asymptotic properties of the solution
semigroup S(t) associated with (2)-(5) in the history space framework of Dafermos
[11]. Before describing our main results, we briefly summarize some recent achieve-
ments on related models where different thermal laws have been employed.

1.2. The Fourier law. When the Gurtin-Pipkin laws (1) are replaced by the clas-
sical Fourier ones {

ρ3θt −$1θxx + γ(ϕx + ψ)t = 0,

ρ4ξt −$2ξxx + σψxt = 0,
(6)

we obtain the so-called Timoshenko-Fourier system with full thermal coupling,
whose stability properties have been recently studied in [2]. In that paper, for
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a wide range of boundary conditions including (4) and (5), it is shown that the
associated solution semigroup is exponentially stable independently of the values of
the structural parameters of the model. The main reason why no constraints on the
coefficients are needed to get exponential stability lies in the fact that the system
is fully damped, i.e. all the variables in play are effectively damped via the thermal
dissipation. Instead, when the system is only partially damped (i.e. the effects of
either θ or else ξ are neglected) exponential stability occurs only within the equal
wave speed assumption ρ1b = ρ2k (see [1, 6, 22]).

1.3. The Cattaneo law. As is well-known, the Fourier heat conduction law has
a parabolic character and predicts that thermal signals propagate with an infinite
speed (see e.g. [8]). In order to correct this unphysical phenomenon, several alterna-
tive theories have been proposed. One of them is due to Cattaneo [7] and consists in
introducing a (small) thermal relaxation parameter allowing to make the resulting
equation hyperbolic. Considering the Cattaneo law in our model means replacing
(1) with 

ρ3θt + qx + γ(ϕx + ψ)t = 0,

τqt + q +$1θx = 0,

ρ4ξt + px + σψxt = 0,

ςpt + p+$2ξx = 0,

(7)

where q = q(x, t) and p = p(x, t) are the so-called heat-flux variables and τ, ς > 0
represent the aforementioned thermal relaxation parameters. Note that the system
above reduces to (6) in the limit situation when τ = ς = 0. The stability properties
of the resulting Timoshenko-Cattaneo model with full thermal coupling have been
recently analyzed in [15], where it is proved that the associated solution semigroup is
exponentially stable independently of the values of the structural parameters. As in
the Fourier case, this happens because the system is fully damped, and indeed when
the effects of either θ or else ξ are neglected exponential stability holds only within
appropriate conditions that somehow generalize the equal wave speed assumption
(see [26]).

1.4. Our results. As our main result, we show that the semigroup S(t) associated
with (2)-(5) is exponentially stable independently of the values of the structural
parameters of the model. Since the Cattaneo law can be seen as the particular
instance of the Gurtin-Pipkin one corresponding to the choices

g(s) =
1

τ
e−

s
τ and h(s) =

1

ς
e−

s
ς ,

the exponential stability of the Timoshenko-Cattaneo system follows as a special
case (see the final Section 5 for more details). Even more so, the Timoshenko-
Fourier system can be recovered from the Timoshenko-Gurtin-Pipkin one through
a proper singular limit procedure, where the kernels g and h collapse into the Dirac
mass at zero (see again Section 5 for more details).

As in the Fourier and the Cattaneo cases, the fact that system (2) is fully damped
allows us to achieve the exponential stability without any restriction on the struc-
tural parameters of the model, contrarily to what happens in the partially damped
situation where appropriate stability conditions are needed (see [14]). Still, the
main challenge encountered in our analysis is connected to the treatment of the
full Dirichlet boundary conditions (5) which produce some “pointwise” boundary
terms in the estimates. Such terms have been handled in [2] by means of a general
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observability inequality recently established in [3, 21], combined with some localized
estimates obtained by means of appropriate cut-off functions. This method heavily
relies on the regularization of the temperature variables provided by the parabolic-
ity of the heat equation, and thus cannot be applied to (2)-(5) due to the hyperbolic
character of the Gurtin-Pipkin thermal law. Hence, specific observability-type in-
equalities are needed to treat our problem.

1.5. Plan of the paper. In the forthcoming Section 2 we introduce the functional
setting and the notation, while in the subsequent Section 3 we deal with the ex-
istence of the solution semigroup S(t). In Section 4 we state and prove the main
result of the article. The final Section 5 is devoted to some concluding remarks.

2. Functional setting and notation. We denote by R+ = (0,∞) the positive
half-line and by iR the imaginary axis in the complex plane. The symbols L2, H1, H1

0

and H2 denote the standard (complex) Lebesgue and Sobolev spaces on (0, L), while
〈·, ·〉 denotes the standard inner product on L2, with associated norm ‖ · ‖. We also
introduce the spaces

L2
∗ =

{
f ∈ L2 :

∫ L

0

f(x)dx = 0
}

and H1
∗ = H1 ∩ L2

∗,

the latter equipped with the gradient norm. Concerning the convolution kernels g
and h, we suppose that for s ≥ 0

g(s) =

∫ ∞
s

µ(r)dr, h(s) =

∫ ∞
s

ν(r)dr,

where the so-called memory kernels µ, ν : R+ → [0,∞) are non-increasing abso-
lutely continuous functions, possibly unbounded near zero. Note that µ and ν are
integrable with total mass g(0) and h(0), respectively, and that are differentiable
almost everywhere with non-positive derivative. They are also required to satisfy
the conditions

µ′(s) + δ1 µ(s) ≤ 0, (8)

ν′(s) + δ2 ν(s) ≤ 0, (9)

for some δ1, δ2 > 0 and almost every s > 0. Next, we introduce the so-called
memory spaces

M =

{
L2
µ(R+;H1

∗ ) (b.c. (4))

L2
µ(R+;H1

0 ) (b.c. (5))
and N = L2

ν(R+;H1
0 )

endowed with the inner products

〈η1, η2〉M =

∫ ∞
0

µ(s)〈η1x(s), η2x(s)〉ds, 〈ζ1, ζ2〉N =

∫ ∞
0

ν(s)〈ζ1x(s), ζ2x(s)〉ds.

The induced norms will be denoted by ‖ · ‖M and ‖ · ‖N , respectively. Finally, we
define the state space

H =

{
H1

0 × L2 ×H1
∗ × L2

∗ × L2
∗ ×M× L2 ×N (b.c. (4))

H1
0 × L2 ×H1

0 × L2 × L2 ×M× L2 ×N (b.c. (5))

equipped with the inner product

〈U, Ũ〉H = k〈ϕx + ψ, ϕ̃x + ψ̃〉+ ρ1〈Φ, Φ̃〉+ b〈ψx, ψ̃x〉+ ρ2〈Ψ, Ψ̃〉

+ ρ3〈θ, θ̃〉+$1〈η, η̃〉M + ρ4〈ξ, ξ̃〉+$2〈ζ, ζ̃〉N
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for every U = (ϕ,Φ, ψ,Ψ, θ, η, ξ, ζ) and Ũ = (ϕ̃, Φ̃, ψ̃, Ψ̃, θ̃, η̃, ξ̃, ζ̃) belonging to H.
The induced norm, equivalent to the standard product norm, will be denoted by
‖ · ‖H and reads

‖U‖2H = k‖ϕx + ψ‖2 + ρ1‖Φ‖2 + b‖ψx‖2 + ρ2‖Ψ‖2

+ ρ3‖θ‖2 +$1‖η‖2M + ρ4‖ξ‖2 +$2‖ζ‖N .

A word of warning. Along the paper, we will make use of the Young, Hölder
and Poincaré inequalities without explicit mention. We will also tacitly employ the
equivalence between the norm ‖ · ‖H and the standard product norm on the space H.

3. The semigroup. Let us consider the infinitesimal generator T of the right-
translation semigroup on M, that is, the linear operator

Tη = −η′ with domain D(T ) =
{
η ∈M : η′ ∈M and lim

s→0
‖ηx(s)‖ = 0

}
,

where η′ is the weak derivative with respect to s ∈ R+. We will also consider the
infinitesimal generator of the right-translation semigroup on N , denoted again by
T and defined in exactly the same way. Calling for every η, ζ ∈ D(T )

Γ[η] =

∫ ∞
0

−µ′(s)‖ηx(s)‖2ds and Γ[ζ] =

∫ ∞
0

−ν′(s)‖ζx(s)‖2ds,

we have the equalities (see e.g. [17])

Re 〈Tη, η〉M = −1

2
Γ[η] ≤ 0, (10)

Re 〈Tζ, ζ〉N = −1

2
Γ[ζ] ≤ 0. (11)

Next, in the same spirit of [11], we define for s > 0 the auxiliary variables

ηt(x, s) =

∫ s

0

θ(x, t− r)dr and ζt(x, s) =

∫ s

0

ξ(x, t− r)dr.

Note that within the mixed Dirichlet-Neumann boundary conditions (4) the vari-
ables η and ζ satisfy the boundary conditions

ηtx(0, s) = ηtx(L, s) = ζt(0, s) = ζt(L, s) = 0,

while within the full Dirichlet boundary conditions (5) the variables η and ζ satisfy
the boundary conditions

ηt(0, s) = ηt(L, s) = ζt(0, s) = ζt(L, s) = 0.

At this point, we rewrite (2) as

ρ1ϕtt − k(ϕx + ψ)x + γθx = 0,

ρ2ψtt − bψxx + k(ϕx + ψ)− γθ + σξx = 0,

ρ3θt −$1

∫ ∞
0

µ(s)ηxx(s)ds+ γ(ϕx + ψ)t = 0,

ηt − Tη − θ = 0,

ρ4ξt −$2

∫ ∞
0

ν(s)ζxx(s)ds+ σψxt = 0,

ζt − Tζ − ξ = 0.

(12)
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The initial conditions (3) translate into{
ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = Φ0(x), ψ(x, 0) = ψ0(x), ψt(x, 0) = Ψ0(x),

θ(x, 0) = θ0(x), η0(x, s) = η0(x, s), ξ(x, 0) = ξ0(x), ζ0(x, s) = ζ0(x, s),
(13)

where η0(x, s) =
∫ s
0
p0(x, r)dr and ζ0(x, s) =

∫ s
0
q0(x, r)dr. Introducing now the

state vector

U(t) = (ϕ(t),Φ(t), ψ(t),Ψ(t), θ(t), ηt, ξ(t), ζt) ∈ H,

we view problem (12)-(13) as the abstract first-order ODE{
Ut = AU, t > 0,

U(0) = U0,
(14)

where U0 = (ϕ0,Φ0, ψ0,Ψ0, θ0, η0, ξ0, ζ0) ∈ H and the operator A : D(A) ⊂ H → H
reads

A



ϕ
Φ
ψ
Ψ
θ
η
ξ
ζ


=



Φ
k
ρ1

(ϕx + ψ)x − γ
ρ1
θx

Ψ
b
ρ2
ψxx − k

ρ2
(ϕx + ψ) + γ

ρ2
θ − σ

ρ2
ξx

$1

ρ3

∫∞
0
µ(s)ηxx(s)ds− γ

ρ3
(Φx + Ψ)

Tη + θ
$2

ρ4

∫∞
0
ν(s)ζxx(s)ds− σ

ρ4
Ψx

Tζ + ξ


.

The domain of A is defined as

D(A) =

{
{U ∈ W | ψx,

∫∞
0
µ(s)ηx(s)ds ∈ H1

0 ; Ψ, θ ∈ H1
∗} (b.c. (4))

{U ∈ W | ψ ∈ H2; Ψ, θ ∈ H1
0 ;
∫∞
0
µ(s)η(s)ds ∈ H2} (b.c. (5))

where

W =
{
U ∈ H | ϕ ∈ H2; Φ, ξ ∈ H1

0 ;

∫ ∞
0

ν(s)ζ(s)ds ∈ H2; η, ζ ∈ D(T )
}
.

With the aid of (10)-(11), after a standard computation we get the equality

Re 〈AU,U〉H = −$1

2
Γ[η]− $2

2
Γ[ζ] ≤ 0, ∀U ∈ D(A), (15)

so that A is dissipative. By means of standard techniques (see e.g. [12, 23]), one
can also prove that I − A is surjective. Thus A is densely defined and, due to
the Lumer-Phillips theorem, it is the infinitesimal generator of a contraction C0-
semigroup S(t) : H → H (see e.g. [24]). In particular:

• if U0 ∈ H, then problem (14) has a unique mild solution U ∈ C0([0,∞),H)
given by

U(t) = S(t)U0, t ≥ 0;

• if U0 ∈ D(A), then problem (14) has a unique classical solution

U ∈ C0([0,∞), D(A)) ∩ C1([0,∞),H);

• if U0 ∈ D(An) for some n ≥ 2, then the solution is more regular, that is

U ∈
n⋂
`=0

Cn−`([0,∞), D(A`)).



TIMOSHENKO-GURTIN-PIPKIN WITH FULL THERMAL COUPLING 2195

4. Exponential stability. The main result of the paper reads as follows:

Theorem 4.1. The contraction C0-semigroup S(t) : H → H generated by A is
exponentially stable, namely, there exist two structural constants ω > 0 and K =
K(ω) ≥ 1 such that

‖S(t)‖L(H) ≤ Ke−ωt, ∀t ≥ 0.

The remaining of the section is devoted to the proof of Theorem 4.1.

4.1. Resolvent analysis. For every λ ∈ R and Û = (ϕ̂, Φ̂, ψ̂, Ψ̂, θ̂, η̂, ξ̂, ζ̂) ∈ H, we
consider the resolvent equation

iλU −AU = Û

in the unknown U = (ϕ,Φ, ψ,Ψ, θ, η, ξ, ζ) ∈ D(A). Multiplying by 2U in H, taking
the real part and exploiting (15), we get the identity

$1Γ[η] +$2Γ[ζ] = 2Re 〈iλU −AU,U〉H = 2Re 〈Û , U〉H.

Recalling that Γ[η] ≥ 0 and Γ[ζ] ≥ 0, we readily find

$1Γ[η] +$2Γ[ζ] ≤ 2‖U‖H‖Û‖H. (16)

Such an estimate yields the following bound on the memory variables η and ζ.

Lemma 4.2. For every λ ∈ R, the inequality

$1‖η‖2M +$2‖ζ‖2N ≤ c‖U‖H‖Û‖H
holds for some structural constant c > 0 independent of λ.

Proof. Follows immediately from (16) and (8)-(9).

At this point, we write the resolvent equation componentwise:

iλϕ− Φ = ϕ̂, (17)

iλρ1Φ− k(ϕx + ψ)x + γθx = ρ1Φ̂, (18)

iλψ −Ψ = ψ̂, (19)

iλρ2Ψ− bψxx + k(ϕx + ψ)− γθ + σξx = ρ2Ψ̂, (20)

iλρ3θ −$1

∫ ∞
0

µ(s)ηxx(s)ds+ γ(Φx + Ψ) = ρ3θ̂, (21)

iλη − Tη − θ = η̂, (22)

iλρ4ξ −$2

∫ ∞
0

ν(s)ζxx(s)ds+ σΨx = ρ4ξ̂, (23)

iλζ − Tζ − ξ = ζ̂. (24)

In the next two results, we establish suitable controls on the temperature variables
θ and ξ.

Lemma 4.3. For every λ ∈ R and every ε ∈ (0, 1), the inequality

ρ3‖θ‖2 + ρ4‖ξ‖2 ≤ ε‖U‖2H +
c

ε
‖U‖H‖Û‖H

holds for some structural constant c > 0 independent of λ and ε.
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In the proof of Lemma 4.3, as well as in the proofs of the subsequent Lemmas
4.4-4.9, we always denote by c > 0 a generic structural constant independent of λ,
whose value might change from line to line or even within the same line.

Proof. In order to deal with the possible singularity of µ at zero, we fix s0 > 0 such
that µ(s0) > 0 and we define the kernel m(s) = µ(s0)χ(0,s0](s) + µ(s)χ(s0,∞)(s).
Then, we consider the space

U0 =

{
L2
m(R+;L2

∗) (b.c. (4))

L2
m(R+;L2) (b.c. (5))

equipped with the inner product

〈η1, η2〉U0 =

∫ ∞
0

m(s)〈η1(s), η2(s)〉ds.

Since m(s) ≤ µ(s), the memory spaceM is continuously embedded into U0. There-
fore, we can multiply (22) by ρ3θ in U0, finding the identity

ρ3

(∫ ∞
0

m(s)ds
)
‖θ‖2 = iλρ3〈η, θ〉U0︸ ︷︷ ︸

:=I1

−ρ3〈Tη, θ〉U0︸ ︷︷ ︸
:=I2

−ρ3〈η̂, θ〉U0 . (25)

Exploiting (21), it is not difficult to see that

|I1| ≤ c
(∫ ∞

0

µ(s)‖ηx(s)‖ds
)2

+ c
(∫ ∞

0

µ(s)‖ηx(s)‖ds
)
‖Φ‖

+ c|〈η,Ψ〉U0 |+ c|〈η, θ̂〉U0 |

≤ c‖η‖2M + c‖η‖M‖Φ‖+ c‖η‖M‖Ψ‖+ c‖η‖M‖θ̂‖

≤ c‖η‖2M + c‖η‖M‖U‖H + c‖U‖H‖Û‖H.

Integrating by parts in s (the boundary terms vanish, see e.g. [17]), we also infer
that

|I2| =
∣∣ρ3 ∫ ∞

s0

−µ′(s)〈η(s), θ〉ds
∣∣ ≤ c‖θ‖(∫ ∞

s0

−µ′(s)‖ηx(s)‖ds
)
≤ c‖U‖H

√
Γ[η].

Plugging the estimates above into (25) and noting that |−ρ3〈η̂, θ〉U0 | ≤ c‖U‖H‖Û‖H,
we obtain

ρ3‖θ‖2 ≤ c‖η‖2M + c‖η‖M‖U‖H + c‖U‖H‖Û‖H + c‖U‖H
√

Γ[η]

≤ c‖U‖H‖Û‖H + c‖U‖H
√
‖U‖H‖Û‖H

where the second inequality follows from (16) and Lemma 4.2. Thus, for every
ε ∈ (0, 1), we end up with

ρ3‖θ‖2 ≤
ε

2
‖U‖2H +

c

ε
‖U‖H‖Û‖H

where c > 0 is independent of λ and ε.
Next, in order to deal with the possible singularity of ν at zero, we fix s1 > 0 such

that ν(s1) > 0 and we introduce the kernel n(s) = ν(s1)χ(0,s1](s) + ν(s)χ(s1,∞)(s).
Then, we consider the space

V0 = L2
n(R+;L2),
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equipped with the inner product

〈ζ1, ζ2〉V0 =

∫ ∞
0

n(s)〈ζ1(s), ζ2(s)〉ds.

Being n(s) ≤ ν(s), the memory space N is continuously embedded into V0. As a
consequence, multiplying (24) by ρ4ξ in V0, we get

ρ4

(∫ ∞
0

n(s)ds
)
‖ξ‖2 = iλρ4〈ζ, ξ〉V0︸ ︷︷ ︸

:=I′1

−ρ4〈Tζ, ξ〉V0︸ ︷︷ ︸
:=I′2

−ρ4〈ζ̂, ξ〉V0 . (26)

An exploitation of (23) yields

|I ′1| ≤ c‖ζ‖2N + c‖ζ‖N ‖U‖H + c‖U‖H‖Û‖H,
while integrating by parts in s we find

|I ′2| ≤ c‖U‖H
√

Γ[ζ]

(cf. the corresponding estimates for I1 and I2 above). Plugging these inequalities
into (26) and owing to (16) and Lemma 4.2, we finally get

ρ4‖ξ‖2 ≤ c‖ζ‖2N + c‖ζ‖N ‖U‖H + c‖U‖H‖Û‖H + c‖U‖H
√

Γ[ζ]

≤ c‖U‖H‖Û‖H + c‖U‖H
√
‖U‖H‖Û‖H

≤ ε

2
‖U‖2H +

c

ε
‖U‖H‖Û‖H

for every ε ∈ (0, 1) and some c > 0 independent of λ and ε. The proof is finished.

Lemma 4.4. For every λ ∈ R, the inequality

‖θx‖+ ‖ξx‖ ≤ c
[
1 + |λ|

]√
‖U‖H‖Û‖H + c‖Û‖H

holds for some structural constant c > 0 independent of λ.

Proof. As in the proof of Lemma 4.3, we consider the kernel m(s) = µ(s0)χ(0,s0](s)+
µ(s)χ(s0,∞)(s) where s0 > 0 is such that µ(s0) > 0. Then, we introduce the space

U1 =

{
L2
m(R+;H1

∗ ) (b.c. (4))

L2
m(R+;H1

0 ) (b.c. (5))

equipped with the inner product

〈η1, η2〉U1 =

∫ ∞
0

m(s)〈η1x(s), η2x(s)〉ds.

Again, since m(s) ≤ µ(s), the memory space M is continuously embedded into U1.
Thus, multiplying (22) by θ in U1, we infer that(∫ ∞

0

m(s)ds
)
‖θx‖2 = iλ〈η, θ〉U1 − 〈Tη, θ〉U1 − 〈η̂, θ〉U1 .

It follows from Lemma 4.2 that

|iλ〈η, θ〉U1 | ≤ c|λ|‖θx‖‖η‖M ≤ c|λ|‖θx‖
√
‖U‖H‖Û‖H.

Moreover, integrating by parts in s and using (16), we can write (cf. the estimate
for I2 in the proof of Lemma 4.3)

| − 〈Tη, θ〉U1 | =
∣∣ ∫ ∞
s0

−µ′(s)〈ηx(s), θx〉ds
∣∣ ≤ c‖θx‖√Γ[η] ≤ c‖θx‖

√
‖U‖H‖Û‖H.
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Finally, it is easy to see that | − 〈η̂, θ〉U1 | ≤ c‖θx‖‖Û‖H, and the required bound for
‖θx‖ follows.

In order to estimate ‖ξx‖, we proceed in an analogous way. As in the proof of
Lemma 4.3, we consider the kernel n(s) = ν(s1)χ(0,s1](s) + ν(s)χ(s1,∞)(s) where
s1 > 0 is such that ν(s1) > 0, and we introduce the space

V1 = L2
n(R+;H1

0 )

equipped with the inner product

〈ζ1, ζ2〉V1 =

∫ ∞
0

n(s)〈ζ1x(s), ζ2x(s)〉ds.

Since N is continuously embedded into V1, multiplying (24) by ξ in V1 we find(∫ ∞
0

n(s)ds
)
‖ξx‖2 = iλ〈ζ, ξ〉V1 − 〈Tζ, ξ〉V1 − 〈ζ̂, ξ〉V1 .

Arguing exactly as above, the modulus of the right-hand side is less than or equal
to

c
[
1 + |λ|

]
‖ξx‖

√
‖U‖H‖Û‖H + c‖ξx‖‖Û‖H,

and the required bound for ‖ξx‖ has been proved.

The next step is to control the variables Φ and Ψ.

Lemma 4.5. For every λ ∈ R and every ε ∈ (0, 1), the inequality

ρ1‖Φ‖2 + ρ2‖Ψ‖2 ≤ cε‖U‖2H + c‖U‖H
[
‖ϕx + ψ‖+ ‖ψx‖

]
+

c

ε3
‖U‖H‖Û‖H

holds for some structural constant c > 0 independent of λ and ε.

Proof. Multiplying (18) by ϕ in L2 and exploiting (17), we readily infer that

ρ1‖Φ‖2 = −ρ1〈Φ̂, ϕ〉 − ρ1〈Φ, ϕ̂〉+ k〈ϕx + ψ,ϕx〉 − γ〈θ, ϕx〉.
Invoking Lemma 4.3, for every ε ∈ (0, 1) we have

ρ1‖Φ‖2 ≤ c‖U‖H‖Û‖H + c‖U‖H‖ϕx + ψ‖+ c‖U‖H‖θ‖

≤ c‖U‖H‖Û‖H + c‖U‖H‖ϕx + ψ‖+ c‖U‖H
[
ε‖U‖H +

1

ε

√
‖U‖H‖Û‖H

]
≤ cε‖U‖2H + c‖U‖H‖ϕx + ψ‖+

c

ε3
‖U‖H‖Û‖H,

where c > 0 is independent of λ and ε. Now, we multiply (20) by ψ in L2 and we
use (19) to get

ρ2‖Ψ‖2 = −ρ2〈Ψ̂, ψ〉 − ρ2〈Ψ, ψ̂〉+ b‖ψx‖2 + k〈ϕx + ψ,ψ〉 − γ〈θ, ψ〉 − σ〈ξ, ψx〉.
Again, an exploitation of Lemma 4.3 yields

ρ2‖Ψ‖2 ≤ c‖U‖H‖Û‖H + c‖U‖H‖ψx‖+ c‖U‖H‖ϕx + ψ‖+ c‖U‖H
[
‖θ‖+ ‖ξ‖

]
≤ c‖U‖H‖Û‖H + c‖U‖H

[
‖ϕx + ψ‖+ ‖ψx‖

]
+ c‖U‖H

[
ε‖U‖H +

1

ε

√
‖U‖H‖Û‖H

]
≤ cε‖U‖2H + c‖U‖H

[
‖ϕx + ψ‖+ ‖ψx‖

]
+

c

ε3
‖U‖H‖Û‖H

for every ε ∈ (0, 1), where as before c > 0 is independent of λ and ε. Taking the
sum of the two estimates obtained so far, we reach the thesis.
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We now need to control the variables ϕx + ψ and ψx. To this end, we introduce
the functions

α(x) =

∫ ∞
0

µ(s)ηx(x, s)ds and β(x) =

∫ ∞
0

ν(s)ζx(x, s)ds,

and we set

P(ϕ,ψ, α) = |α(L)||ϕx(L) + ψ(L)|+ |α(0)||ϕx(0) + ψ(0)|,
Q(ψ, β) = |β(L)||ψx(L)|+ |β(0)||ψx(0)|.

For the b.c. (4) one has P(ϕ,ψ, α) = Q(ψ, β) = 0, but this is not the case for the
b.c. (5).

Lemma 4.6. For every λ 6= 0 and every ε ∈ (0, 1), the inequality

k‖ϕx+ψ‖2+b‖ψx‖2 ≤ cε‖U‖2H+
c

ε

[
1

|λ|2
+1

]
‖U‖H‖Û‖H+

c

|λ|
[
P(ϕ,ψ, α)+Q(ψ, β)

]
holds for some structural constant c > 0 independent of λ and ε .

Proof. Replacing (17) and (19) into (21), we find

iλρ3θ −$1αx + iλγ(ϕx + ψ) = ρ3θ̂ + γ(ϕ̂x + ψ̂).

Multiplying the identity above by k(ϕx + ψ) in L2, we obtain

iλγk‖ϕx + ψ‖2 = $1k〈αx, ϕx + ψ〉︸ ︷︷ ︸
:=J1

−iλρ3k〈θ, ϕx + ψ〉︸ ︷︷ ︸
:=J2

+k〈ρ3θ̂ + γ(ϕ̂x + ψ̂), ϕx + ψ〉.

(27)

With the aid of (18), we rewrite J1 as

J1 = $1〈α, ρ1Φ̂− γθx − iλρ1Φ〉+$1k α(ϕx + ψ)
∣∣∣L
0
.

Invoking Lemmas 4.2 and 4.4, it is readily seen that

|〈α, ρ1Φ̂− γθx − iλρ1Φ〉| ≤ c‖η‖M‖θx‖+ c|λ|‖η‖M‖Φ‖+ c‖U‖H‖Û‖H
≤ c
[
1 + |λ|

]
‖U‖H‖Û‖H + c|λ|‖η‖M‖U‖H,

from where we get

|J1| ≤ c
[
1 + |λ|

]
‖U‖H‖Û‖H + c|λ|‖η‖M‖U‖H + cP(ϕ,ψ, α).

Since |J2| ≤ c|λ|‖θ‖‖ϕx + ψ‖, it follows from (27) together with Lemmas 4.2-4.3,
that

2k‖ϕx + ψ‖2 ≤ c
[

1

|λ|
+ 1

]
‖U‖H‖Û‖H + c‖η‖M‖U‖H + c‖θ‖‖ϕx + ψ‖

+
c

|λ|
P(ϕ,ψ, α)

≤ ε‖U‖2H + c

[
1

|λ|
+ 1

]
‖U‖H‖Û‖H +

c

ε
‖η‖2M + c‖θ‖2 + k‖ϕx + ψ‖2

+
c

|λ|
P(ϕ,ψ, α)

≤ cε‖U‖2H +
c

ε

[
1

|λ|2
+ 1

]
‖U‖H‖Û‖H + k‖ϕx + ψ‖2 +

c

|λ|
P(ϕ,ψ, α)
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for every λ 6= 0 and ε ∈ (0, 1), where c > 0 is independent of λ and ε. In conclusion,

k‖ϕx + ψ‖2 ≤ cε‖U‖2H +
c

ε

[
1

|λ|2
+ 1

]
‖U‖H‖Û‖H +

c

|λ|
P(ϕ,ψ, α).

In order to prove the analogous bound for ‖ψx‖, we substitute (19) in (23), getting

iλρ4ξ −$2βx + iλσψx = ρ4ξ̂ + σψ̂x.

Multiplying such an identity by bψx in L2, we find

iλσb‖ψx‖2 = $2b〈βx, ψx〉︸ ︷︷ ︸
:=J′

1

−iλρ4b〈ξ, ψx〉︸ ︷︷ ︸
:=J′

2

+ρ4b〈ξ̂, ψx〉+ σb〈ψ̂x, ψx〉. (28)

Using (20), we rewrite

J ′1 = $2〈β, ρ2Ψ̂ + γθ − σξx − k(ϕx + ψ)− iλρ2Ψ〉+$2b βψx
∣∣L
0
.

An exploitation of Lemmas 4.2 and 4.4 now yields (cf. the corresponding estimate
for J1 above)

|J ′1| ≤ c
[
1 + |λ|

]
‖U‖H‖Û‖H + c

[
1 + |λ|

]
‖ζ‖N ‖U‖H + cQ(ψ, β).

Since |J ′2| ≤ c|λ|‖ξ‖‖ψx‖, making use of Lemmas 4.2-4.3 it follows from (28) that

2b‖ψx‖2 ≤ c
[

1

|λ|
+ 1

]
‖U‖H‖Û‖H + c

[
1

|λ|
+ 1

]
‖ζ‖N ‖U‖H

+ c‖ξ‖‖ψx‖+
c

|λ|
Q(ψ, β)

≤ ε‖U‖2H + c

[
1

|λ|
+ 1

]
‖U‖H‖Û‖H +

c

ε

[
1

|λ|2
+ 1

]
‖ζ‖2N + c‖ξ‖2

+ b‖ψx‖2 +
c

|λ|
Q(ψ, β)

≤ cε‖U‖2H +
c

ε

[
1

|λ|2
+ 1

]
‖U‖H‖Û‖H + b‖ψx‖2 +

c

|λ|
Q(ψ, β),

for every λ 6= 0 and ε ∈ (0, 1), where c > 0 is independent of λ and ε. Hence, we
end up with

b‖ψx‖2 ≤ cε‖U‖2H +
c

ε

[
1

|λ|2
+ 1

]
‖U‖H‖Û‖H +

c

|λ|
Q(ψ, β),

leading to the desired conclusion.

Our final task is to control the terms P(ϕ,ψ, α) and Q(ψ, β) (within the b.c. (5)).

4.2. Observability analysis.

Lemma 4.7 (Elastic observability-type inequality). Consider the full Dirichlet
b.c. (5). For every λ ∈ R, the following inequalities hold for some structural con-
stant c > 0 independent of λ.

(i) Defining I(ϕ,ψ) = |ϕx(0) + ψ(0)|2 + |ϕx(L) + ψ(L)|2 we have

I(ϕ,ψ) ≤ c‖U‖2H + c‖U‖H‖Û‖H + c‖U‖H‖θx‖.

(ii) Defining J (ψ) = |ψx(0)|2 + |ψx(L)|2 we have

J (ψ) ≤ c‖U‖2H + c‖U‖H‖Û‖H + c‖U‖H‖ξx‖.
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Proof. Setting z(x) = (x− L/2) we multiply (18) by z(ϕx + ψ) in L2. Taking real
part of the resulting equality, we obtain

Re
[
iλρ1〈Φ, z(ϕx + ψ)〉 − k〈(ϕx + ψ)x, z(ϕx + ψ)〉

]︸ ︷︷ ︸
:=P1

+ γRe 〈θx, z(ϕx + ψ)〉

= ρ1Re 〈Φ̂, z(ϕx + ψ)〉.

Substituting ϕ and ψ given by (17) and (19) into P1 and after an elementary cal-
culation, we find

P1 =
ρ1
2
‖Φ‖2 +

k

2
‖ϕx + ψ‖2 − ρ1Re 〈Φ, zΨ〉 − ρ1Re 〈Φ, z(ϕ̂x + ψ̂)〉 − kL

4
I(ϕ,ψ).

Therefore, we get the identity

I(ϕ,ψ) =
2ρ1
kL
‖Φ‖2 +

2

L
‖ϕx + ψ‖2 − 4ρ1

kL
Re 〈Φ, zΨ〉+

4γ

kL
Re 〈θx, z(ϕx + ψ)〉

− 4ρ1
kL

Re 〈Φ̂, z(ϕx + ψ)〉 − 4ρ1
kL

Re 〈Φ, z(ϕ̂x + ψ̂)〉.

Since the modulus of the right-hand side is less than or equal to

c‖U‖2H + c‖U‖H‖Û‖H + c‖U‖H‖θx‖

the proof of item (i) is finished.
In order to prove item (ii), we multiply (20) by zψx in L2. Taking real part of

the resulting identity, we arrive at

Re
[
iλρ2〈Ψ, zψx〉 − b〈ψxx, zψx〉

]︸ ︷︷ ︸
:=P2

+kRe 〈ϕx + ψ, zψx〉+ Re 〈σξx − γθ, zψx〉

= ρ2Re 〈Ψ̂, zψx〉.

Inserting ψ given by (19) in P2, after an elementary calculation we infer that

P2 =
ρ2
2
‖Ψ‖2 +

b

2
‖ψx‖2 − ρ2Re 〈Ψ, zψ̂x〉 −

bL

4
J (ψ).

Thus, we have

J (ψ) =
2ρ2
bL
‖Ψ‖2 +

2

L
‖ψx‖2 +

4k

bL
Re 〈ϕx + ψ, zψx〉+

4σ

bL
Re 〈ξx, zψx〉

− 4γ

bL
Re 〈θ, zψx〉 −

4ρ2
bL

Re 〈Ψ̂, zψx〉 −
4ρ2
bL

Re 〈Ψ, zψ̂x〉.

Exploiting the equality above, we readily end up with the desired estimate

J (ψ) ≤ c‖U‖2H + c‖U‖H‖Û‖H + c‖U‖H‖ξx‖.

The lemma has been proved.

Lemma 4.8 (Viscoelastic observability-type inequality). Consider the full Dirichlet
b.c. (5). For every λ ∈ R and every ε ∈ (0, 1), the inequalities

P(ϕ,ψ, α) ≤ cε‖U‖2H + cε‖U‖H‖θx‖+
c

ε
|λ|‖η‖M‖U‖H +

c

ε
‖U‖H‖Û‖H

Q(ψ, β) ≤ cε‖U‖2H + cε‖U‖H‖ξx‖+
c

ε
|λ|‖ζ‖N ‖U‖H +

c

ε
‖U‖H‖Û‖H

hold for some structural constant c > 0 independent of λ and ε.
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Proof. Exploiting the Gagliardo-Nirenberg interpolation inequality (see e.g. [5, p.
233]), we have

P(ϕ,ψ, α) ≤ c‖α‖L∞(0,L)

√
I(ϕ,ψ) ≤ εI(ϕ,ψ) +

c

ε
‖α‖2L∞(0,L)

≤ εI(ϕ,ψ) +
c

ε
‖α‖2 +

c

ε
‖α‖‖αx‖

for every ε ∈ (0, 1), where I(ψ,ϕ) is given by Lemma 4.7 and c > 0 is independent
of λ and ε. On the other hand, combining equations (17), (19) and (21), we can
write

$1αx = iλρ3θ + iλγ(ϕx + ψ)− γ(ϕ̂x + ψ̂)− ρ3θ̂,

which yields the bound

‖αx‖ ≤ c|λ|
[
‖θ‖+ ‖ϕx + ψ‖

]
+ c‖Û‖H.

Since ‖α‖ ≤ c‖η‖M, we finally obtain

P(ϕ,ψ, α) ≤ εI(ϕ,ψ) +
c

ε
‖η‖2M +

c

ε
|λ|‖η‖M

[
‖θ‖+ ‖ϕx + ψ‖

]
+
c

ε
‖η‖M‖Û‖H

≤ cε‖U‖2H + cε‖U‖H‖θx‖+
c

ε
|λ|‖η‖M‖U‖H +

c

ε
‖U‖H‖Û‖H,

where the second inequality follows from Lemmas 4.2 and 4.7.
We are left to prove the analogous bound for Q(ψ, β). To this end, exploit-

ing again the Gagliardo-Nirenberg interpolation inequality and arguing exactly as
above, we find

Q(ψ, β) ≤ εJ (ψ) +
c

ε
‖β‖2 +

c

ε
‖β‖‖βx‖

for every ε ∈ (0, 1), where J (ψ) is given by Lemma 4.7 and c > 0 is independent of
λ and ε. Additionally, combining equations (19) and (23), we promptly have

$2βx = iλρ4ξ + iλσψx − σψ̂x − ρ4ξ̂.

Consequently, we can write

‖βx‖ ≤ c|λ|
[
‖ξ‖+ ‖ψx‖

]
+ c‖Û‖H.

Due to the fact that ‖β‖ ≤ c‖ζ‖N , we end up with

Q(ψ, β) ≤ εJ (ψ) +
c

ε
‖ζ‖2N +

c

ε
|λ|‖ζ‖N

[
‖ξ‖+ ‖ψx‖

]
+
c

ε
‖ζ‖N ‖Û‖H

≤ cε‖U‖2H + cε‖U‖H‖ξx‖+
c

ε
|λ|‖ζ‖N ‖U‖H +

c

ε
‖U‖H‖Û‖H,

where the second inequality follows from Lemmas 4.2 and 4.7. The proof is over.

We finally obtain the following estimate for the terms ϕx + ψ and ψx.

Lemma 4.9. For every λ 6= 0 and every ε ∈ (0, 1), the inequality

k‖ϕx + ψ‖2 + b‖ψx‖2 ≤ cε
[

1

|λ|
+ 1

]
‖U‖2H +

c

ε3

[
1

|λ|2
+ 1

]
‖U‖H‖Û‖H.

holds for some structural constant c > 0 independent of λ and ε.
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Proof. For the b.c. (4) the result follows immediately from Lemma 4.6 (recall that in
this situation P(ϕ,ψ, α) = Q(ψ, β) = 0). Hence, we only need to treat the b.c. (5).
By Lemma 4.8, we have

P(ϕ,ψ, α) +Q(ψ, β) ≤ cε‖U‖2H + cε
[
‖θx‖+ ‖ξx‖

]
‖U‖H

+
c

ε
|λ|
[
‖η‖M + ‖ζ‖N

]
‖U‖H +

c

ε
‖U‖H‖Û‖H.

In the light of Lemmas 4.2 and 4.4, the right-hand side above is less than or equal
to

cε‖U‖2H+ cε
[
1 + |λ|

]
‖U‖H

√
‖U‖H‖Û‖H+

c

ε
|λ|‖U‖H

√
‖U‖H‖Û‖H+

c

ε
‖U‖H‖Û‖H

for every ε ∈ (0, 1), where c > 0 is independent of λ and ε. Applying Lemma 4.6,
we arrive at

k‖ϕx + ψ‖2 + b‖ψx‖2 ≤ cε
[

1

|λ|
+ 1

]
‖U‖2H +

c

ε

[
1

|λ|
+ 1

]
‖U‖H

√
‖U‖H‖Û‖H

+
c

ε

[
1

|λ|2
+ 1

]
‖U‖H‖Û‖H

≤ cε
[

1

|λ|
+ 1

]
‖U‖2H +

c

ε3

[
1

|λ|2
+ 1

]
‖U‖H‖Û‖H

for every λ 6= 0 and every ε ∈ (0, 1). The thesis has been proved.

4.3. Proof of Theorem 4.1 (completion). In the light of the Gearhart-Prüss-
Huang theorem [16, 19, 25] (see also [20]), the conclusion of Theorem 4.1 follows
provided that iR is contained into the resolvent set ρ(A) of A and

lim sup
|λ|→∞

‖(iλ−A)−1‖L(H) <∞. (29)

In the next two propositions we verify these conditions.

Proposition 4.1. The inclusion iR ⊂ ρ(A) holds.

Proof. Let us assume by contradiction that iλ0 /∈ ρ(A) for some λ0 ∈ R. Since A
generates a contraction semigroup, then iλ0 is necessarily an approximate eigenvalue
(see e.g. [4, Proposition B.2]). This amounts to saying that there exists Un =
(ϕn,Φn, ψn,Φn, θn, ηn, ξn, ζn) ∈ D(A) satisfying

‖Un‖H = 1 and iλ0Un −AUn = Ûn → 0 in H. (30)

We limit ourself to consider the case λ0 6= 0. When λ0 = 0 the argument can be
carried out arguing similarly as in the proof of [13, Theorem 7.10] and the details
are left to the reader.

Using Lemmas 4.2, 4.3, 4.5 and 4.9, we estimate

‖Un‖2H ≤ cε
[

1

|λ0|
+ 1

]
‖Un‖2H + c‖Un‖H

[
‖ϕnx + ψn‖+ ‖ψnx‖

]
+

c

ε3

[
1

|λ0|2
+ 1

]
‖Un‖H‖Ûn‖H

≤ cε
[

1

|λ0|
+ 1

]
‖Un‖2H +

c

ε7

[
1

|λ0|2
+ 1

]
‖Un‖H‖Ûn‖H,
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for every ε ∈ (0, 1) and some c > 0 independent of ε and λ0. Fixing now ε = ε(λ0) ∈
(0, 1) small enough that

ε <
1

2c

[
1

|λ0|
+ 1

]−1
,

there exists a constant K = K(λ0) > 0 such that ‖Un‖H ≤ K‖Ûn‖H, contradict-
ing (30).

Proposition 4.2. Condition (29) holds.

Proof. It is sufficient to show that, for every |λ| > 1, the inequality

‖U‖H ≤ c‖Û‖H (31)

holds for some structural constant c > 0 independent of λ. Once this bound has been
established, Proposition 4.1 ensures that ‖(iλ − A)−1‖L(H) ≤ c for every |λ| > 1,
and the latter yields (29).

In order to prove (31) we first notice that for |λ| > 1 the conclusion of Lemma 4.9
becomes

k‖ϕx + ψ‖2 + b‖ψx‖2 ≤ cε‖U‖2H +
c

ε3
‖U‖H‖Û‖H.

Combining the estimate above with Lemmas 4.2, 4.3 and 4.5, for every ε ∈ (0, 1)
we have

‖U‖2H ≤ cε‖U‖2H + c‖U‖H
[
‖ϕx + ψ‖+ ‖ψx‖

]
+

c

ε3
‖U‖H‖Û‖H

≤ cε‖U‖2H +
c

ε7
‖U‖H‖Û‖H

with c > 0 independent of λ and ε. Fixing ε ∈ (0, 1) small enough that cε ≤ 1
2 , we

reach (31).

5. Concluding remarks.

I. As already mentioned in the Introduction, the Gurtin-Pipkin law is more general
than the Cattaneo one. Indeed, choosing for τ, ς > 0

g(s) = gτ (s) =
1

τ
e−

s
τ and h(s) = hς(s) =

1

ς
e−

s
ς , (32)

and defining the heat-flux variables

q(x, t) = −$1

∫ ∞
0

gτ (s)θx(x, t− s)ds,

p(x, t) = −$2

∫ ∞
0

hς(s)ξx(x, t− s)ds,

by means of an elementary calculation one can see that q and p satisfy (7) provided
that θ and ξ satisfy (1). This correspondence is not merely formal and indeed,
arguing as in [14, Section 8], it is possible to show rigorously that the semigroup
S(t) generated by the Timoshenko-Gurtin-Pipkin system corresponding to the par-
ticular choice (32) is exponentially stable if and only if the same does the semigroup
generated by the Timoshenko-Cattaneo system.

II. Also the Fourier law can be recovered from the Gurtin-Pipkin one by means of
a singular limit procedure. To see that, we consider for ε > 0 the rescaled kernels

gε(s) =
1

ε
g
(s
ε

)
and hε(s) =

1

ε
h
(s
ε

)
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which converge in the distributional sense to the Dirac mass δ0 as ε → 0. In this
way, system (1) boils down to (6) in the (singular) limit ε→ 0 (see [10, 14] for more
details). Using a similar procedure it is also possible to recover the Timoshenko-
Coleman-Gurtin system, which consists in replacing (1) with the equations (see [9])

ρ3θt −$1(1− `)θxx −$1`

∫ ∞
0

g(s)θxx(t− s)ds+ γ(ϕx + ψ)t = 0,

ρ4ξt −$2(1− `)ξxx −$2`

∫ ∞
0

h(s)ξxx(t− s)ds+ σψxt = 0.

(33)

Here, ` ∈ (0, 1) is a fixed parameter and the limit cases ` = 0, 1 correspond to
the Fourier and the Gurtin-Pipkin models, respectively. Considering for ε > 0 the
rescaled kernels

gε(s) =
1− `
ε

g
(s
ε

)
+ `g(s) and hε(s) =

1− `
ε

h
(s
ε

)
+ `h(s),

we have the convergence gε → (1 − `)δ0 + `g and hε → (1 − `)δ0 + `h in the
distributional sense for ε → 0, and thus system (1) with the choice g = gε and
h = hε boils down to (33).

III. Although so far we have assumed that the temperatures fulfill the same con-
stitutive law, it is possible to analyze Timoshenko systems where θ and ξ obey
different laws. In order to illustrate all the possible cases that can be covered, let
us use the following abbreviations:

• Gurtin-Pipkin (GP);
• Fourier (F);
• Cattaneo (C);
• Coleman-Gurtin (CG).

All the models listed in the table below are either a particular instance of system (2)
or else can be recovered from it by means of appropriate singular limit procedures.
The corresponding solutions semigroups are exponentially stable independently of
the values of the structural parameters.

Coupling on shear force (θ) Coupling on bending moment (ξ)

(GP) (GP) (our problem)
(GP) (F)
(GP) (C)
(GP) (CG)

(F) (GP)
(F) (F) (problem in [2])
(F) (C)
(F) (CG)

(C) (GP)
(C) (F)
(C) (C) (problem in [15])
(C) (CG)

(CG) (GP)
(CG) (F)
(CG) (C)
(CG) (CG)

IV. Finally, we mention that the analysis carried out in this work can be adapted
also to different boundary conditions. For instance, one can assume the mixed
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Neumann-Dirichlet boundary conditions considered in [15]

ϕx(0, t) = ϕx(L, t) = ψ(0, t) = ψ(L, t) = θ(0, t) = θ(L, t) = ξ(0, t) = ξ(L, t) = 0,

or any of the boundary conditions considered in [2]. Clearly, appropriate modifica-
tions and precise computations must be done, but no substantial challenges arise.
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