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1. Introduction

In this work we shall prove a characterization of the (uniform) exponential stability result with respect 
to the following thermo-viscoelastic Timoshenko beam system under Fourier’s law and memory in a history 
framework ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρ1φtt − κ(φx + ψ)x + σθx = 0 in (0, L) ×R+,

ρ2ψtt − bψxx + κ(φx + ψ) +
∞∫
0

g(s)ψxx(s) ds− σθ = 0 in (0, L) ×R+,

ρ3θt − βθxx + σ(φx + ψ)t = 0 in (0, L) ×R+,

(1.1)

subject to initial-boundary conditions⎧⎪⎪⎨⎪⎪⎩
φx(0, t) = φx(L, t) = ψ(0, t) = ψ(L, t) = θ(0, t) = θ(L, t) = 0, t ≥ 0,
(φ(x, 0), φt(x, 0), ψt(x, 0), θ(x, 0)) = (φ0, φ1, ψ1, θ0), x ∈ (0, L),
ψ(x, t) = ψ0(x, t), (x, t) ∈ (0, L) × (−∞, 0].

(1.2)

Here, the unknown functions φ = φ(x, t), ψ = ψ(x, t), and θ = θ(x, t) represent, respectively, the vertical 
displacement, the rotation angle, and the temperature deviation of a beam with length L > 0.

We intend to clarify what is exactly the most general assumption on the kernel g that characterizes a 
necessary and sufficient condition for the (uniform) exponential stability of the IBVP (1.1)-(1.2). This fact 
has never been approached for such a problem so far and its value judgment is clarified in forthcoming 
arguments. Before doing so, we launch its corresponding autonomous problem, which is indeed the object 
of study in the present article.

1.1. Equivalent autonomous problem

As usual, to address the IBVP (1.1)-(1.2), we set the new variable (inspired by Dafermos [7,8]) known 
as relative displacement history

ηt(s) := ψ(t) − ψ(t− s), t, s > 0.

Thus, by following similar steps as in [13], we can rewrite problem (1.1)-(1.2) equivalently as the next system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ1φtt − κ(φx + ψ)x + σθx = 0 in (0, L) ×R+,

ρ2ψtt − b̃ψxx + κ(φx + ψ) −
∞∫
0

g(s)ηxx(s) ds− σθ = 0 in (0, L) ×R+,

ρ3θt − βθxx + σ(φx + ψ)t = 0 in (0, L) ×R+,

ηt + ηs = ψt in (0, L) ×R+ ×R+,

(1.3)

with boundary conditions ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

φx(0, t) = φx(L, t) = 0, t ≥ 0,
ψ(0, t) = ψ(L, t) = 0, t ≥ 0,
θ(0, t) = θ(L, t) = 0, t ≥ 0,
ηt(0, s) = ηt(L, s) = 0, t, s > 0,
ηt(x, 0) = 0, x ∈ (0, L), t > 0,

(1.4)
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and initial data{
(φ(x, 0), φt(x, 0), ψ(x, 0), ψt(x, 0), θ(x, 0)) = (φ0, φ1, ψ0(0), ψ1, θ0), x ∈ (0, L),
η0(x, s) = ψ0(x, 0) − ψ0(x,−s), (x, s) ∈ (0, L) ×R+,

(1.5)

where

b̃ := b−
∞∫
0

g(s) ds.

Hence, from now on, all results shall be developed for the autonomous problem (1.3)-(1.5). It is known 
(cf. [10,14,18]) that the existence and uniqueness result for (1.3)-(1.5) only requires the following assumption 
on the memory kernel.

(G) g : R+ → [0, ∞) is an absolutely continuous, integrable, and non-increasing function such that

b̃ := b−
∞∫
0

g(s) ds > 0.

1.2. State of the art: previous results and main goal

Very recently, in [14, Sect. 2] the authors proved that the following assumption is a sufficient condition
to reach the (uniform) exponential stability of problem (1.3)-(1.5):

• there exists δ > 0 such that

g′(s) + δg(s) ≤ 0, s > 0. (1.6)

See, for instance, [14, Thm. 2.2]. As a matter of fact, this latter result responds precisely the question early 
proposed by [18, Rem. 3.8] and improves notably the stability results achieved in [10, Thms. 2.2 and 2.3], 
since it reveals that the (uniform) exponential stability of (1.3)-(1.5) can be concluded without any extra 
assumption on the coefficients nor higher regularity of initial data.

The above fact leads us to the main question of the present paper:

Q1. Conversely, if the IBVP (1.3)-(1.5) is exponential stable (in the semigroup sense), then must condition 
(1.6) necessarily hold?

In other words, the above question can be remade as: Is also condition (1.6) a necessary assumption for the 
exponential stability of (1.3)-(1.5)? In order to give a precise answer to such questions, we firstly observe 
that condition (1.6) is equivalent to the following one (cf. [5,6]):

• there exists δ > 0 such that

g(τ + s) ≤ e−δτg(s), s > 0, τ ≥ 0. (1.7)

Secondly, we still note that assumption (1.7) is a particular case of the following one so-called admissible 
memory kernel:
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• there exist C ≥ 1 and δ > 0 such that

g(τ + s) ≤ Ce−δτg(s), (1.8)

for every τ > 0 and for almost every s > 0.

We highlight that (1.8) is (for sure) more general than (1.6) and some examples can be found in [5,6]. 
Moreover, in what concerns (1.8), our main goal is to prove that it is not only sufficient but also a necessary 
condition to the (uniform) exponential stability of problem (1.3)-(1.5) in terms of its related semigroup 
solution. This fact is precisely stated in Theorem 3.1 (Section 3). Summarizing, under the assumption (G), 
we have proved the next statement:

The admissible memory kernel assumption (1.8) holds if and only if the semigroup solution corresponding 
to (1.3)-(1.5) is exponentially stable.

Therefore, our contribution is twofold:

(1) Our main stability result (Theorem 3.1) generalizes Theorem 2.2 in [14], since (1.8) is much weaker 
(therefore more general) than (1.6);

(2) It also gives the answer to questions Q1 by showing that (1.8) is precisely the equivalent condition to 
the exponential stability property of (1.3)-(1.5), and not assumption (1.6).

In conclusion, this work ends a cycle of studies on the system (1.3)-(1.5) (resp. (1.1)-(1.2)) by giving 
the characterization of exponential stability in terms of the memory kernel g, which in turn means a 
generalization of the stability results in [10,14,18]. Besides being more general, our arguments are different 
from these latter once assumption (1.8) needs extra analysis on the estimates and, for this purpose, our 
analysis is inspired by [5,6,12]. Moreover, here the temperature plays an important role in the stability 
analysis because, once coupled on the shear force component, it gives a way to reach all estimates without 
any additional assumptions on the coefficients, as it happens for partially damped systems with (fading) 
memory acting only on the bending moment and no temperature deviations being taken into account, see 
e.g. [6]. On the other hand, when we neglect the memory term and consider the temperature acting either 
on the bending moment or shear force only, then we still have a partially damped system. For instance, 
when omitting the viscoelastic effect (g = 0) in (1.1)-(1.2), it becomes to a partially damped with a solely 
dissipation coming from the temperature coupled only on the shear force. This scenario requires a different 
analysis for stability results along with the equal wave speeds assumption (say, EWS for short), cf. [1–3]. 
Additionally, if we consider only thermal coupling on the bending moment (still no memory term), then 
the stability results are well understood in the literature as one can see e.g. in [4,16] where, under the 
EWS assumption, different computations are considered. Moreover, in this case we can go further once 
there are results in a much more general situation, namely, by regarding the Gurtin-Pipkin thermal law. 
In this direction, we quote the recent paper by Dell’Oro [9] where the stability of Bresse and Timoshenko 
systems with hyperbolic heat conduction are taken into account. The author provides a complete study 
encompassing the stability of the pure thermoelastic Timoshenko under Gurtin-Pipkin’s law. Therein, since 
the temperature effect acts only on the bending moment, the stability depends upon the so-called stability 
number, still noting that there is no other (extra) damping in turn nor additional coupling terms as in our 
case. We refer to [9, Section 6] for more details on the model and the (non-exponential) stability result.

In Section 2 we provide the necessary notations as well as the existence result in terms of the linear 
semigroup theory, which is fundamental for the main stability result presented in Section 3.
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2. Semigroup solution

2.1. Useful notations

Let L2(0, L) be the standard L2-space with inner product and norm

(u, v) =
L∫

0

u(x)v(x) dx, ‖u‖ =

⎛⎝ L∫
0

|u(x)|2 dx

⎞⎠1/2

.

The space H1
0 (0, L) stands for the usual Sobolev space, and

L2
∗(0, L) =

⎧⎨⎩u ∈ L2(0, L), 1
L

L∫
0

u(x)dx = 0

⎫⎬⎭ , H1
∗ (0, L) = H1(0, L) ∩ L2

∗(0, L),

equipped with the norms

‖u‖L2
∗(0,L) = ‖u‖, ‖u‖H1

0 (0,L) = ‖u‖H1
∗(0,L) = ‖ux‖.

Let h : (0, ∞) → R+ be a measurable function and p ≥ 1. To deal with the relative displacement history 
variable, we consider the memory spaces

Lp
h(R+;H1

0 (0, L)) :=

⎧⎨⎩η : R+ → H1
0 (0, L);

∞∫
0

h(s)‖ηx(s)‖p ds < ∞

⎫⎬⎭
with norm

‖η‖p
Lp

h(R+;H1
0 (0,L)) :=

∞∫
0

h(s)‖ηx(s)‖p ds.

In particular, for p = 2, we simply denote the space

Mh := L2
h(R+;H1

0 (0, L)),

which is a Hilbert space endowed with inner product

(η, ξ)Mh
=

∞∫
0

h(s)(ηx(s), ξx(s)) ds.

Additionally, under the above notations and assumption (G), we consider the phase space

H = H1
∗ (0, L) × L2

∗(0, L) ×H1
0 (0, L) × L2(0, L) × L2(0, L) ×Mg

equipped with inner product

(z1, z2)H = ρ1(Φ1,Φ2) + ρ2(Ψ1,Ψ2) + ρ3(θ1, θ2) + κ(φ1,x + ψ1, φ2,x + ψ2) + b̃(ψ1,x, ψ2,x) + (η1, η2)Mg

and norm
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‖z‖2
H = ρ1‖Φ‖2 + ρ2‖Ψ‖2 + ρ3‖θ‖2 + κ‖φx + ψ‖2 + b̃‖ψx‖2 + ‖η‖2

Mg
,

where zi = (φi, Φi, ψi, Ψi, θi, ηi), z = (φ, Φ, ψ, Ψ, θ, η) ∈ H, i = 1, 2.

2.2. Right-translation and contraction semigroups

Now we set the operator L : D(L) ⊂ Mg → Mg given by

D(L) := {η ∈ Mg, Lη ∈ Mg and η(0) = 0}, Lη := −∂sη,

which is the infinitesimal generator of the right-translation semigroup R(t) : Mg → Mg given by

[R(t)η](s) :=
{
η(s− t), s > t,

0, 0 < s ≤ t.

Accordingly, by means of (1.3)4 and following the same arguments as in [13], we can express η explicitly 
in terms of ψ, namely

ηt(s) =
{
η0(s− t) + ψ(t) − ψ0(0), s > t,

ψ(t) − ψ(t− s), 0 < s ≤ t.
(2.1)

Moreover, by setting Φ = φt, Ψ = ψt, and z0 = (φ0, φ1, ψ0, ψ1, θ0, η0), we can now rewrite (1.3)-(1.5) as 
the following the Cauchy problem {

zt = Az, t > 0,
z(0) = z0,

(2.2)

where the linear operator A : D(A) ⊂ H → H is given by

A =

⎡⎢⎢⎢⎢⎢⎢⎣

0 Id 0 0 0 0
κ
ρ1
∂xx 0 − κ

ρ1
∂x 0 σ

ρ1
∂x 0

0 0 0 Id 0 0
− κ

ρ2
∂x 0 b̃

ρ2
∂xx − κ

ρ2
Id 0 κ

ρ2
Id 1

ρ2
Ig ◦ ∂xx

0 − σ
ρ3
∂x 0 − σ

ρ3
Id β

ρ3
∂xx 0

0 0 0 Id 0 −∂s

⎤⎥⎥⎥⎥⎥⎥⎦ (2.3)

with domain

D(A) =
{
z ∈ H; φx,Ψ, θ ∈ H1

0 (0, L), φ, θ, b̃ψ + Ig(η) ∈ H2(0, L), η ∈ D(L)
}
,

and, for simplicity, we adopt the notation

Ig(η) :=
∞∫
0

g(s)η(s) ds.

If (G) holds, one can prove that D(A) is dense in H, I −A is onto, and

(Az, z)H = 1
2

∞∫
g′(s)‖ηx(s)‖2 ds− β‖θx‖2 ≤ 0, (2.4)
0
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for every z = (φ, Φ, ψ, Ψ, θ, η) ∈ D(A) (cf. [14, Sect. 2]). Therefore, from Lumer-Phillips Theorem (cf. [15, 
Thm. 1.2.4]), the operator A set in (2.3) is the infinitesimal generator of a C0-semigroup of contractions 
S(t) := eAt on H. Consequently, it yields

Theorem 2.1 (Existence and Un1iqueness). Let assumption (G) be in turn. Then, for every z0 ∈ H, problem 
(2.2) has a unique mild solution z ∈ C(0, ∞; H) given by

z(t) = eAtz0, t ≥ 0. (2.5)

If, in addition z0 ∈ D(A), then z is the classical solution of (2.2) with

z ∈ C1(0,∞;H) ∩ C(0,∞;D(A)).

Theorem 2.1 also means that problem (1.3)-(1.5) is well-posed. Below, our main goal is to give a complete 
characterization of its stability result.

3. Characterization of stability

Let us recall that a semigroup T (t) : H → H is exponentially stable if and only if there exist constants 
M ≥ 1 and γ > 0 such that

‖T (t)z‖H ≤ Me−γt‖z‖H , ∀ z ∈ H.

In the present paper, our main goal is prove that the semigroup S(t) = eAt related to the solution (2.5) of 
problem (2.2) (and consequently (1.3)-(1.5)) is exponentially stable iff the following additional assumption 
holds true:

(S) there exist constants C ≥ 1 and δ > 0 such that

g(t + s) ≤ Ce−δtg(s) (3.1)

for every t > 0 and for almost every s > 0.
More precisely, we have:

Theorem 3.1 (Main Result – Characterization of Exponential Stability). Let assumption (G) be in turn. 
Then, the following statements are equivalent:

(i) g satisfies (S);
(ii) the semigroup solution z given by (2.5) is exponential stable.

In conclusion, Theorem 3.1 claims that condition (S) is not only sufficient but also necessary for the 
exponential stability of problem (2.2) (resp. (1.3)-(1.5)). Its detailed proof shall be given as follows.

3.1. Proof of the main result: part I (necessity)

The arguments in the proof of Theorem 3.1 ((ii) ⇒ (i)) are inspired by [5, Thm. 3.2]. For the sake of 
completeness, we are going to prove it in detail.

Let us consider η0 ∈ Mg and

z̃(t) = S(t)(0, 0, 0, 0, 0, η0) = (φ̃, Φ̃, ψ̃, Ψ̃, θ̃, η̃).
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By assuming that (ii) holds, namely, the semigroup S(t) is exponentially stable and so we have

‖z̃(t)‖2
H = ‖S(t)(0, 0, 0, 0, 0, η0)‖2

H ≤ Me−γt‖η0‖2
Mg

, (3.2)

for some M ≥ 1, γ > 0 and for every t > 0. Now, by the formula (2.1) and using (3.2), we deduce

∞∫
t

g(s)‖η0x(s− t)‖2 ds ≤ 2‖η̃t‖2
Mg

+ 2b‖ψ̃x(t)‖2

≤ 2M(1 + b0)e−γt‖η0‖2
Mg

, (3.3)

where b0 := b
b̃
> 1.

On the other hand, for each t > 0 we define

Bt := {s ∈ R+, g(t + s) − 2M(1 + b0)e−γtg(s) > 0}.

We claim that meas(Bt) = 0, for every t > 0. Indeed, suppose by contradiction that exists t0 > 0 such that 
meas(Bt0) > 0 (possibly infinite). Then,

0 <

∫
Bt0

[g(t0 + s) − 2M(1 + b0)e−γt0g(s)] ds < +∞. (3.4)

But, from (3.3),

0 ≥
∞∫

t0

g(s)‖η0x(s− t0)‖2 ds− 2M(1 + b0)e−γt0

∞∫
0

g(s)‖η0x(s)‖2 ds

=
∞∫
0

[g(t0 + s) − 2M(1 + b0)e−γt0g(s)]‖η0x(s)‖2 ds.

Now we choose η0(s) = χBt0
(s)φ∗, for some φ∗ ∈ H1

0 (0, L) such that ‖φ∗
x‖ = 1. Therefore,∫

Bt0

[g(t0 + s) − 2M(1 + b0)e−γt0g(s)] ds ≤ 0,

which contradicts (3.4). Hence, condition (3.1) holds as desired. �
3.2. General results

Before concluding the proof of Theorem 3.1 ((i) ⇒ (ii)), we are going to clarify how important the 
inequality (3.1) is in the controllability of specific integral terms. More specifically, we prove the following 
(more) general result that shall very useful in our future computations.

Lemma 3.2. Let p ≥ 1 and η ∈ Lp
g(R+; H1

0 (0, L)). If (3.1) holds, then for every 0 ≤ r ≤ p − 1 we have the 
estimate

∞∫
g(s)

⎛⎝ s∫
‖ηx(τ)‖ dτ

⎞⎠p−r

ds ≤ C(p−r)/p br/p
(p
δ

)p−r

‖η‖p−r
Lp

g(R+;H1
0 (0,L)), (3.5)
0 0
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where C ≥ 1 and δ > 0 are given in (3.1).

Proof. Using (3.1) and Hölder inequality with rp + p−r
p = 1, we obtain

∞∫
0

g(s)

⎛⎝ s∫
0

‖ηx(τ)‖ dτ

⎞⎠p−r

ds

=
∞∫
0

gr/p(s)

⎛⎝ s∫
0

g1/p(s)‖ηx(τ)‖ dτ

⎞⎠p−r

ds

≤ C(p−r)/p
∞∫
0

gr/p(s)

⎛⎝ s∫
0

e−
δ
p (s−τ)g1/p(τ)‖ηx(τ)‖ dτ

⎞⎠p−r

ds

≤ C(p−r)/p br/p

⎡⎣ ∞∫
0

⎛⎝ s∫
0

e−
δ
p (s−τ)g1/p(τ)‖ηx(τ)‖ dτ

⎞⎠p

ds

⎤⎦(p−r)/p

.

Now, applying Young inequality for convolutions (see e.g. [11, Thm. 8.7]) with

e−
δ
p (·) ∈ L1(R+), g1/p(·)‖ηx(·)‖ ∈ Lp(R+),

we get

∞∫
0

⎛⎝ s∫
0

e−
δ
p (s−τ)g1/p(τ)‖ηx(τ)‖ dτ

⎞⎠p

ds ≤

⎛⎝ ∞∫
0

e−
δ
p s ds

⎞⎠p

‖η‖p
Lp

g(R+;H1
0 (0,L))

=
(p
δ

)p
‖η‖p

Lp
g(R+;H1

0 (0,L)).

Collecting the above estimates, we arrive at (3.5). �
Corollary 3.3. If η ∈ D(L), then

‖η‖Mg
≤

√
4C
δ

‖ηs‖Mg
.

Proof. It is a direct consequence of the following inequality

‖η‖Mg
≤

⎡⎢⎣ ∞∫
0

g(s)

⎛⎝ s∫
0

‖ηsx(τ)‖ dτ

⎞⎠2

ds

⎤⎥⎦
1/2

and Lemma 3.2 with p = 2 and r = 0. �
3.3. Proof of the main result: part II (sufficiency)

In addition, to complete the proof of Theorem 3.1, we appeal to the following known result.
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Lemma 3.4 ([12, Lemma 1.6]). Let T (t) be a C0-semigroup of contractions on a Hilbert space H, and B its 
infinitesimal generator. If there exists ε > 0 such that

inf
λ∈R

‖(iλ−Bc)z‖Hc
≥ ε‖z‖Hc

, ∀ z ∈ D(Bc), (3.6)

where Hc and Bc are the complexification of H and B, respectively, that is,

Hc = {u + iv, u, v ∈ H} , Bc : D(Bc) ⊂ Hc → Hc, Bc(u + iv) = Bu + iBv,

then T (t) is exponentially stable.

To simplify the notation, we will omit the complexification index (c).
Now, to prove that ‘(i) ⇒ (ii)’, we argue by contradiction. Let us assume condition (i), but suppose that 

S(t) is not exponentially stable. From (3.6), one can construct sequences

zn = (φn,Φn, ψn,Ψn, θn, ηn) ∈ D(A), λn ∈ R,

with ‖zn‖H = 1 such that λn → λ∗ ∈ [−∞, +∞] and

iλnzn −Azn → 0 in H. (3.7)

Componentwise,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iλnφn − Φn → 0 in H1
∗ (0, L),

iλnρ1Φn − κ(φnx + ψn)x + σθnx → 0 in L2
∗(0, L)

iλnψn − Ψn → 0 in H1
0 (0, L),

iλnρ2Ψn + κ(φnx + ψn) −
(
b̃ψn + Ig(ηn)

)
xx

− σθn → 0 in L2(0, L),
iλnρ3θn − βθnxx + σ(Φnx + Ψn) → 0 in L2(0, L),
iλnηn + ηns − Ψn → 0 in Mg.

(3.8)

From (2.4), (3.7) and using the boundedness of zn in H, we have

−1
2

∞∫
0

g′(s)‖ηnx(s)‖2 ds + β‖θnx‖2 ≤ Re (iλnzn −Azn, zn)H → 0. (3.9)

Therefore, using the embedding H1
0 (0, L) ↪→ L2(0, L) and (3.9), we can reduce (3.8) to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1
n := iλnφn − Φn → 0 in H1

∗ (0, L),
f2
n := iλnρ1Φn − κ(φnx + ψn)x → 0 in L2

∗(0, L)
f3
n := iλnψn − Ψn → 0 in H1

0 (0, L),
f4
n := iλnρ2Ψn + κ(φnx + ψn) −

(
b̃ψn + Ig(ηn)

)
xx

→ 0 in L2(0, L),
f5
n := iλnρ3θn − βθnxx + σ(Φnx + Ψn) → 0 in L2(0, L),
f6
n := iλnηn + ηns − Ψn → 0 in Mg.

(3.10)

At this moment, we are going to divide the proof in three cases.
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Case 1: λ∗ = 0. From (3.10)1, (3.10)3, (3.10)6 and boundness of zn, we have

Φn → 0 in H1
∗ (0, L), Ψn → 0 in H1

0 (0, L), ηns → 0 in Mg.

Then, using the embeddings H1
∗(0, L) ↪→ L2

∗(0, L), H1
0 (0, L) ↪→ L2(0, L) and applying Corollary 3.3, we 

arrive at

Φn → 0 in L2
∗(0, L), Ψn → 0 in L2(0, L), ηn → 0 in Mg. (3.11)

On the other hand, taking the inner product of (3.10)2 with φn in L2
∗(0, l), the inner product of (3.10)4

with ψn in L2(0, l) and adding the results, we deduce

κ‖φnx + ψn‖2 + b̃‖ψnx‖2 = (f2
n − iλnρ1Φn, φn) + (f4

n − iλnρ2Ψn, ψn) + (Ig(ηnx), ψnx) . (3.12)

But, from (3.10)2, (3.10)4 and (3.11), we infer

|(f2
n − iλnρ1Φn, φn)| ≤ ‖f2

n − iλnρ1Φn‖‖φn‖ → 0,

|(f4
n − iλnρ2Ψn, ψn)| ≤ ‖f4

n − iλnρ2Ψn‖‖ψn‖ → 0,

|(Ig(ηnx), ψnx)| ≤
√
b‖η‖Mg

‖ψnx‖ → 0.

Hence, from (3.11) and (3.12) we conclude that ‖zn‖H → 0, which contradicts ‖zn‖H = 1. This prevents 
that λ∗ = 0.

Remark 3.5. For the two remaining cases λ∗ ∈ R\{0} or λ∗ ∈ {−∞, +∞}, we need an additional conver-
gence. Indeed, since we can not transfer the dissipation generated by 

∫∞
0 g′(s)‖ηnx(s)‖2 ds to ‖ηn‖Mg

, we 
restrict the kernel g to a set where we can do it. Indeed, let α > 0 such that the set

N = {s ∈ R+, αg′(s) + g(s) < 0}

has positive Lebesgue measure. The existence of such α can be found in [17]. Calling g̃(s) := g(s)χN (s) and 
noting that Mg ⊂ Mg̃, we have

1
α
‖ηn‖2

Mg̃
≤ −

∞∫
0

g′(s)‖ηnx(s)‖2 ds. (3.13)

Then, combining (3.9) and (3.13) one gets

1
2α‖ηn‖2

Mg̃
+ β‖θnx‖2 → 0. (3.14)

Now we are ready to study the remaining cases. Without loss of generality, we can assume that λn �= 0
for every n ∈ N.
Case 2: λ∗ ∈ R\{0}. We will split this case in several parts.

Part I: ‖ψnx‖, ‖Ψnx‖ → 0. First, we claim that Ψn is bounded in H1
0 (0, L). Indeed, by the triangular 

inequality

‖Ψnx‖ ≤ ‖Ψnx − iλnψnx‖ + |λn|‖ψnx‖.
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The desire boundedness follows from (3.10)3 and from the boundedness of ψn in H1
0 (0, L).

From (3.10)6 we obtain the expression for ηn

ηn(s) = 1
iλn

(
1 − e−iλns

)
Ψn +

s∫
0

e−iλn(s−τ)f6
n(τ)d τ. (3.15)

Taking the inner product of (3.15) with Ψn in Mg̃, we get⎡⎣ ∞∫
0

g̃(s) (1 − cos(λns)) ds

⎤⎦ ‖Ψnx‖2 = Re
[
iλn(ηn,Ψn)Mg̃

+ υn
]
, (3.16)

where

υn = −iλn

∞∫
0

g̃(s)
s∫

0

e−iλn(s−τ)(f6
nx(τ),Ψnx)dτ ds.

Since ‖Ψnx‖ is bounded, we have

∣∣λn(ηn,Ψn)Mg̃

∣∣ ≤ |λn|‖Ψnx‖

⎛⎝ ∞∫
0

g̃(s)‖ηnx(s)‖ds

⎞⎠ ≤
√
b|λn|‖Ψnx‖‖ηn‖Mg̃

→ 0.

Using again Lemma 3.2 with p = 2 and r = 1 and the fact g̃ ≤ g, we get

|υn| ≤ |λn|‖Ψnx‖

⎛⎝ ∞∫
0

g(s)
s∫

0

‖f6
nx(τ)‖dτ ds

⎞⎠ ≤
√

4Cb

δ
|λn|‖Ψnx‖‖f6

n‖Mg
→ 0.

Now, considering the countable set

P :=
{
s ∈ N, s = 2jπ

λn
or s = 2jπ

λ∗
, j, n ∈ N

}
we obtain

∞∫
0

g̃(s) (1 − cos(λns)) ds →
∫

N\P

g(s) (1 − cos(λ∗s)) ds > 0. (3.17)

Here we use the fact that a countable set is a null set. Taking the limit in (3.16) and using the above 
convergences, we conclude that ‖Ψnx‖ → 0. Consequently, the convergence ‖ψnx‖ → 0 holds from (3.10)3.

Part II: ‖ηn‖Mg
→ 0. From the expression (3.15), we have

‖ηnx(s)‖2 = |(ηnx(s), ηnx(s))| ≤
2

|λn|
‖ηnx(s)‖‖Ψnx‖ +

⎛⎝ s∫
0

‖f6
nx(τ)‖ dτ

⎞⎠ ‖ηnx(s)‖, (3.18)

for almost every s > 0. Multiplying (3.18) by g(s), integrating the result in R+ and making use of the 
Hölder’s inequality, we deduce
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‖ηn‖2
Mg

≤ 2
√
b

|λn|
‖ηn‖Mg

‖Ψnx‖ +

⎡⎢⎣ ∞∫
0

g(s)

⎛⎝ s∫
0

‖f6
nx(τ)‖ dτ

⎞⎠2

ds

⎤⎥⎦
1/2

‖ηn‖Mg
. (3.19)

Using Lemma 3.2 with p = 2 and r = 0, we obtain

∞∫
0

g(s)

⎛⎝ s∫
0

‖f6
nx(τ)‖ dτ

⎞⎠2

ds ≤ 4C
δ2 ‖f6

n‖2
Mg

.

Hence, from (3.19) we get

‖ηn‖2
Mg

≤ 2
√
b

|λn|
‖ηn‖Mg

‖Ψnx‖ +
√

4C
δ

‖f6
n‖Mg

‖ηn‖Mg
.

From Part I, boundedness of ηn in Mg and (3.10)6, we conclude the desire convergence.

Part III: ‖φnx + ψn‖ → 0. Let

ωn := b̃ψn + Ig(ηn).

From Part I and Part II, we get

‖ωnx‖ ≤ b̃‖ψnx‖ +
√
b‖ηn‖Mg

→ 0. (3.20)

Now, taking the L2-inner product of (3.10)4 with φnx +ψn and performing an integration by parts we have

iλnρ2(Ψn, φnx + ψn) + κ‖φnx + ψn‖2 − (ωnx, (φnx + ψn)x) → 0.

From Part II and boundedness of φnx + ψn in L2(0, L), the previous convergence reduces to

κ‖φnx + ψn‖2 − (ωnxx, φnx + ψn) → 0. (3.21)

On the other hand, taking the L2-inner product of (3.10)2 with ωnx, using the boundedness of Φn in L2(0, L)
and taking into account (3.20), we obtain the following convergence

((φnx + ψn)x, ωnx) → 0. (3.22)

Combining (3.21) and (3.22) we conclude that the desire convergence holds.

Part IV: ‖Φn‖ → 0. Taking the L2-inner product of (3.10)1 and (3.10)2 with ρ1Φn and φn, respectively, 
and adding the obtained results, we deduce

2iλnρ1 Re(φn,Φn) − ρ1‖Φn‖2 − κ((φnx + ψn)x, φn) → 0.

Taking the real part and performing an integration by parts, we obtain

−ρ1‖Φn‖2 + κRe(φnx + ψn, φnx) → 0. (3.23)

Now, recalling φnx + ψn, ψn are bounded in L2(0, L) and noting that
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‖φnx‖ ≤ ‖φnx + ψn‖ + ‖ψn‖,

we conclude that φnx is bounded in L2(0, L). Then, from Part III we have

(φnx + ψn, φnx) → 0

Hence, the desire convergence holds from (3.23).
Collecting the convergences from (3.14) and Part I - Part IV, we conclude again that ‖zn‖H → 0, which 

contradicts ‖zn‖H = 1. Therefore, the case λ∗ ∈ R\{0} can not happen either.

Case 3: λ∗ ∈ {−∞,+∞}. This case will also be divided into several steps.

Part I: λnΨn is bounded in H−1(0, L). Let ‖ · ‖−1 be the usual H−1-norm. From (3.10)4 we have

ρ2‖λnΨn‖−1 ≤ ‖f4
n‖−1 + ‖κ(φnx + ψn) − b̃ψnxx − Ig(ηnxx)‖−1. (3.24)

The first in the right-side of (3.24) is bounded since L2(0, L) ↪→ H−1(0, L) and f4
n → 0 in L2(0, L). The 

second one can be estimated as follows

‖κ(φnx + ψn) − b̃ψnxx − Ig(ηnxx)‖−1 ≤ κ‖φnx + ψn‖−1 + b̃‖ψnx‖ + ‖Ig(ηnx)‖ ≤ d′‖zn‖ = d′,

for some d′ > 0. Hence, λnΨn is bounded in H−1(0, L).

Part II: ‖Ψn‖ → 0 Let us consider ϑn ∈ H2(0, L) ∩H1
0 (0, L) a solution of −ϑnxx = Ψn. Then, from (3.15)

we get ⎡⎣ ∞∫
0

g̃(s) (1 − cos(λns)) ds

⎤⎦ ‖Ψn‖2 = Re
[
iλn(ηn, ϑn)Mg̃

+ ζn
]
, (3.25)

where

ζn := −iλn

∞∫
0

g̃(s)
s∫

0

e−iλn(s−τ)(f6
nx(τ), ϑnx)dτ ds.

Then, from (3.14) and Part I, we have

∣∣λn(ηn, ϑn)Mg̃

∣∣ ≤ ‖λnΨn‖−1

⎛⎝ ∞∫
0

g̃(s)‖ηnx(s)‖ds

⎞⎠ ≤
√
b‖λnΨn‖−1‖ηn‖Mg̃

→ 0.

Applying Lemma 3.2 with p = 2 and r = 1, and the fact g̃ ≤ g, we get

|ζn| ≤ ‖λnΨn‖−1

⎛⎝ ∞∫
0

g(s)
s∫

0

‖f6
nx(τ)‖dτ ds

⎞⎠ ≤
√

4Cb

δ
‖λnΨn‖−1‖f6

n‖Mg
→ 0.

Using the last two convergences to pass the limit in (3.25), we arrive at⎡⎣ ∞∫
g̃(s) (1 − cos(λns)) ds

⎤⎦ ‖Ψn‖2 → 0.

0
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Since λ∗ ∈ {−∞, +∞}, we apply the Riemann-Lebesgue Lemma (see [11], Theorem 8.22) to get

∞∫
0

g̃(s) (1 − cos(λns)) ds →
∫

N/Q

g(s) ds > 0, (3.26)

where Q is the null set

Q :=
{
s ∈ N, s = 2jπ

λn
, j, n ∈ N

}
.

Hence, we obtain the desire convergence.

Part III: ‖ψnx‖ → 0. First, we add and subtract the term (1 − e−iλns)ψn in the right side of (3.15) to get

ηn(s) =
(
1 − e−iλns

)
ψn +

s∫
0

e−iλn(s−τ)f6
n(τ)d τ − 1

iλn

(
1 − e−iλns

)
f3
n. (3.27)

Taking the Mg̃-inner product of (3.27) with ψn we have⎡⎣ ∞∫
0

g̃(s) (1 − cos(λns)) ds

⎤⎦ ‖ψnx‖2 = Re
[
(ηn, ψn)Mg̃

+ ζ1
n + ζ2

n

]
, (3.28)

where

ζ1
n := −

∞∫
0

g̃(s)
s∫

0

e−iλn(s−τ)(f6
nx(τ), ψnx)dτ ds,

ζ2
n := 1

iλn

⎡⎣ ∞∫
0

g̃(s)
(
1 − e−iλns

)
ds

⎤⎦ (f3
nx, ψnx).

Since 1
λn

and ‖ψnx‖ are bounded, we deduce

∣∣(ηn, ψn)Mg̃

∣∣ ≤ ‖ψnx‖

⎛⎝ ∞∫
0

g̃(s)‖ηnx(s)‖ds

⎞⎠ ≤
√
b‖ψnx‖‖ηn‖Mg̃

→ 0

and ∣∣ζ2
n

∣∣ ≤ 2b
|λn|

|(f3
nx, ψnx)| ≤

2
|λn|

‖ψnx‖‖f3
nx‖ → 0.

Using Lemma 3.2 with p = 2 and r = 1, and the fact g̃ ≤ g, we get

∣∣ζ1
n

∣∣ ≤ ‖ψnx‖

⎛⎝ ∞∫
0

g(s)
s∫

0

‖f6
nx(τ)‖dτ ds

⎞⎠ ≤
√

4Cb

δ
‖ψnx‖‖f6

n‖Mg
→ 0.

Passing the limit in (3.28), taking into account the last three convergences and applying (3.26) we obtain 
the desire convergence.
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Part IV: ‖ηn‖Mg
→ 0. From the expression (3.27), we infer

‖ηnx(s)‖2 ≤ 2‖ηnx(s)‖‖ψnx‖ +

⎛⎝ s∫
0

‖f6
nx(τ)‖ dτ

⎞⎠ ‖ηnx(s)‖ + 2
|λn|

‖ηnx(s)‖‖f3
nx‖, (3.29)

for almost every s > 0. Proceeding in the same way to obtain Part II of Case 2, we arrive at

‖ηn‖2
Mg

≤ 2
√
b‖ηn‖Mg

‖ψnx‖ +
√

4C
δ

‖f6
n‖Mg

‖ηn‖Mg
+ 2

√
b

|λn|
‖ηn‖Mg

‖f3
nx‖.

From Part III, (3.10)3, (3.10)6 and boundedness of ηn in Mg, we conclude the desire convergence.

Part V: ‖φnx+ψn‖, ‖Φn‖ → 0. This is the precise moment where we explore the strength of (3.10)5. Indeed, 
combining (3.10)1, (3.10)3 and (3.10)5, we have

iλnρ3θn − βθnxx + iλnσ(φnx + ψn) − σ(f1
nx + f3

n) → 0. (3.30)

Therefore, taking the L2-inner product of the sequence in (3.30) with κ(φnx + ψn) and using that 1
λn

→ 0, 
we get

σκ‖φnx + ψn‖2 + εn → 0, (3.31)

where

εn := ρ3κ(θn, φnx + ψn) + βκ

iλn
(θnx, (φnx + ψn)x) − σκ

iλn
((f1

nx + f3
n), φnx + ψn).

From (3.10)2, we can write εn as follows

εn := ρ3κ(θn, φnx + ψn) − βρ1(θnx,Ψn) − β

iλn
(θnx, f2

n) + σκ

iλn
((f1

nx + f3
n), φnx + ψn).

Now, using the boundedness of ‖zn‖H, the convergences (3.14) and (3.10), we deduce

|εn| ≤
(
ρ3κ‖θn‖ + σκ

|λn|
‖f1

nx + f3
n‖
)
‖φnx + ψn‖ +

(
βρ1‖Ψn‖ + β

|λn|
‖f2

n‖
)
‖θnx‖ → 0.

Hence, from (3.31) we obtain the first convergence. The last convergence follows using exactly the same 
argument of Part V of Case 2.

Collecting the convergences from (3.14) and Part II - Part V, we finally conclude that ‖zn‖H → 0, which 
contradicts again ‖zn‖H = 1 and implies in the impossibility of such a case λ∗ ∈ {−∞, +∞}.

Therefore, from Cases 1-3 we conclude that (ii) holds true, that is, the semigroup S(t) is exponentially 
stable in H.

This finishes the proof of Theorem 3.1. �
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