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Abstract This is the first paper of a trilogy intended
by the authors in what concerns a unified approach to
the stability of thermoelastic arched beams of Bresse
type under Fourier’s law. Our main goal in this starting
work is to develop an original observability inequal-
ity for conservative Bresse systems with non-constant
coefficients. Then, as a powerful application, we prove
mathematically that the stability of a partially damped
model in thermoelastic Bresse beams is invariant under
the boundary conditions. The exponential and optimal
polynomial decay rates are addressed. This approach
gives a new view on the stability of Bresse systems
subject to different boundary conditions as well as it
provides an accurate answer for the related issue raised
by Liu and Rao (Z. Angew. Math. Phys. 60(1): 54–69,
2009) from both the physical and mathematical points
of view.
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1 Introduction

In a pioneering work on asymptotic stability for beams
of Bresse type, Liu and Rao [24] explored the energy
decay rate to following thermoelastic Bresse system

ρ1ϕt t − k(ϕx + ψ + lw)x

−k0l(wx − lϕ) + k2lη = 0 in (0, L) × R
+,

ρ2ψt t − b ψxx + k(ϕx

+ψ + lw) + k1ϑx = 0 in (0, L) × R
+,

ρ1wt t − k0(wx − lϕ)x

+kl(ϕx + ψ + lw) + k2ηx = 0 in (0, L) × R
+,

ρ3ϑt − γ1ϑxx + k1ψxt = 0 in (0, L) × R
+,

ρ4ηt − γ2ηxx + k2(wx − lϕ)t = 0 in (0, L) × R
+,

(1.1)
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subject to initial conditions

ϕ(x, 0) = ϕ0(x), ϕt (x, 0) = ϕ1(x),

ψ(x, 0) = ψ0(x), ψt (x, 0) = ψ1(x),

w(x, 0) = w0(x), wt (x, 0) = w1(x), ϑ(x, 0) = ϑ0(x),

η(x, 0) = η0(x), x ∈ (0, L), (1.2)

and either the full Dirichlet or mixed Dirichlet–
Neumann boundary conditions

ϕ(x, t) = ψ(x, t) = w(x, t) = ϑ(x, t)

= η(x, t) = 0, x ∈ {0, L}, t ≥ 0, (1.3)

or

ϕ(x, t) = ψx (x, t) = wx (x, t) = ϑ(x, t)

= η(x, t) = 0, x ∈ {0, L}, t ≥ 0. (1.4)

As highlighted by the authors in [24, Sect. 1], the
governing model (1.1) stands for a linear planar, shear-
able, and flexible thermoelastic beam vibration, which
is a special case of networks on flexible thermoelastic
beams as structured by Lagnese, Leugering, & Schmidt
[22,23]. Moreover, in their works [22,23] the authors
derived more general nonlinear thermoelastic flexible
beams whose model (1.1) arises as a particular proto-
type in the linear framework. Accordingly, the physical
meaning of the whole problem is described as follows:
the coefficients are given by

ρ1 = ρ A, ρ2 = ρ I, k = G A,

b = E I, k0 = E A,

ρ3, ρ4 = ρc

T0
, γ1, γ2 = 1

T0
,

k1, k2 = α, l = 1

R
, (1.5)

where ρ is the mass density per unit of the reference
area, A is the cross-sectional area, I is the second
moment of area of the cross section, G is the shear
modulus, E is the modulus of elasticity, c is the heat
capacity, α is the coefficient of thermal expansion, T0 is
the reference temperature, and R is the curvature ratio
in a beamwith length L > 0; the unknown functions ϕ,
ψ , and w are the vertical, shear angle, and longitudinal
displacements; η and ϑ are the temperature deviations
from the reference temperature T0 along the longitudi-
nal and vertical directions.

The main results in [24] go around the stability of
system (1.1) in terms of the boundary conditions (1.3)
or (1.4), and also taking into account the assumption
on equal speeds of wave propagation (EWS for short)

k = k0 ⇐⇒ E = G. (1.6)

More precisely, when (1.6) holds, it is proved in
[24, Theorem 3.1] that problem (1.1)–(1.2) with both
boundary conditions (1.3)–(1.4) is exponentially sta-
ble. Otherwise, if (1.6) does not hold, i.e., in the mean-
ingful physical case E �= G, then problem (1.1)–(1.2)
is only polynomial stable with decay rate depending
on both the regularity of initial data and boundary con-
ditions (1.3)–(1.4), see [24, Theorem 4.1]. To be even
more specific, let us exhibit the latter commented result
in case m = 1 (see on p. 64 therein): IfE �= G, then
the semigroup solution associated with (1.1)–(1.2) is
semi-uniformly stable1 with the polynomial-type decay
rate

Case1 : (ln t)5/4

t1/4

for (1.4) (≈ 1

t1/4−ε
as t → +∞, ε 
 1),

Case2 : (ln t)9/8

t1/8

for (1.3) (≈ 1

t1/8−ε
as t → +∞, ε 
 1).

(1.7)

Since then, several authors dealt with other thermoe-
lastic Bresse–Timoshenko systems by showing similar
results on polynomial-like stability, namely, obtaining
different polynomial decay rates for different bound-
ary conditions, see e.g., [2,15,16,29,30]. On the other
hand, it is common to address Bresse systemswith only
one boundary condition, especially in cases of mixed
Dirichlet–Neumann boundary conditions and avoiding
the full Dirichlet one. In this direction, we quote the
following references addressing thermoelastic Bresse
systems with different couplings and laws for the heat
flux of conduction [1,10–12,14,18,21,28].

As far as we have noted, the main technical reason
to get distinct polynomial decay rates for each bound-
ary condition falls on the fact of dealing with boundary
point-wise terms. Indeed, to handle them, the authors
obtain weak estimates. For instance, in the proof by
contradictions arguments presented in [24, Sect. 4]
the convergence of point-wise boundary terms in case
(1.3) drives us to a poorer estimate when compared
to (1.4) where such point-wise terms vanish. Conse-

1 Throughout this paper, the notion of semi-uniform stability is
always invokedwhen the stability of the semigroup solution does
not occur for all weak initial data (say at the same energy level
of solutions), but only for more regular initial data, e.g., data in
the domain of the infinitesimal generator of the semigroup.
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quently, in the case of different speeds of wave prop-
agation E �= G, a slower decay rate arises for (1.3).
The same issue happens in [2,15,16,29,30] where the
direct proofs employ a one-dimensional version of the
TraceTheorem to handle boundary point-wise terms by
reflecting directly in worse estimates than desirable for
the case of full Dirichlet boundary condition. In addi-
tion, we can ask ourselveswhether other boundary con-
ditions could be considered in [1,10–12,14,18,21,28]
and still provide the same stability results.

However, there is no consistentmotive (mostly phys-
ical) to get different decay rates for different conserva-
tive boundary conditions as in (1.7). Indeed, going back
to the notable work by Liu & Rao [24], we stress the
following statement in Remark 4.1 therein:

“It is interesting to see that the polynomial
decay rate depends on the boundary conditions.
Although we can’t guarantee that our estimate of
the decay rate is optimal since we are only verify-
ing sufficient conditions, the reader will see from
the following proof that the best l is chosen in
order to get a contradiction. However, we do not
have a physical explanation why case one has a
faster decay rate than case two.”

In the above statement, the reader can think of cases
one and two as in (1.7). This issue boosted the authors
to look for a mathematical method where such a phys-
ical dichotomy in terms of boundary conditions can
be removed in what concerns the stability results for
(thermoelastic) Bresse systems.

Therefore, motivated by [24, Remark 4.1] and also
by the fact that none of the aforementioned papers wor-
ried about this dichotomy between the two different
decay rates for different (but still conservative) bound-
ary conditions, our main goal in this first work of the
trilogy is to deal with the thermoelastic Bresse system
(1.1)–(1.4) by proving that:

I. In the case where the EWS assumption does not
hold (E �= G), problem (1.1)–(1.2) has a uni-
fied (semi-uniform) polynomial stability with the
same decay rate for both boundary conditions
(1.3)–(1.4). Moreover, the decay rate is optimal
in the specific case of mixed Dirichlet–Neumann
boundary condition (1.4), which prevents any
kind of uniform stability on this occasion. These
facts are fully detailed in Theorems 3.2 and 3.3,

Corollary 3.4, and their subsequent proofs in
Sect. 3.

I I. In the case of assuming the non-physical EWS
assumption (1.6), we still prove the already
expected (uniform) exponential stability of prob-
lem (1.1)–(1.2) with both boundary conditions
(1.3)–(1.4). In particular, it leads to the complete
characterization of the stability for (1.1)–(1.2)
with boundary condition (1.4). These facts are
proved in Theorem 3.5 and Corollary 3.6 (also
in Sect. 3).

I I I. In any case concerning the condition (1.6), we
clarify in Sect. 4 that both Theorem 3.2 (poly-
nomial stability) and Theorem 3.5 (exponential
stability) can be succeeded to any other tangi-
ble boundary condition, which reveals the main
advantage of our approach, namely, the poly-
nomial (for k �= k0) and the exponential (for
k = k0) stability results hold true independently
of the boundary conditions. Other improvements
and novelties are also clarified in the concluding
Sect. 4.

I V . Last, but not least, to reach the above three pur-
poses, we develop in Sect. 2 (see Proposition 2.2
and Corollary 2.3) a new Observability Inequal-
ity and Extension Result for linear conservative
systems of Bresse type by means of the resolvent
equation in a more general framework, namely,
for the non-homogeneous Bresse systems where
the coefficients are positive functions of the spa-
tial variable. This approach allows us to proceed
with a localized resolvent analysis in the subse-
quent thermoelastic problem and, consequently,
to obtain the unified stability results in terms of
boundary conditions as stated in Sects. 3 and 4.

In conclusion, we highlight that the whole technique
explored in this opening paper brings a new view in the
stability of thermoelastic Bresse systems, it is different
from [24] (and also from other papers in Bresse beams
commented before), and finally it can be extended to
several other related Bresse systems (not only ther-
moelastic ones) as we shall see in forthcoming related
works.

2 Observability analysis: conservative problem

Westart by considering the following conservative non-
homogeneous Bresse system
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ρ1ϕt t − (k(ϕx + ψ + lw))x

− k0l(wx − lϕ) = 0 in (0, L) × R
+, (2.1)

ρ2ψt t − (b ψx )x

+ k(ϕx + ψ + lw) = 0 in (0, L) × R
+,

(2.2)

ρ1wt t − (k0(wx − lϕ))x

+ kl(ϕx + ψ + lw) = 0 in (0, L) × R
+,

(2.3)

with initial conditions

ϕ(x, 0) = ϕ0(x), ϕt (x, 0) = ϕ1(x),

ψ(x, 0) = ψ0(x), ψt (x, 0) = ψ1(x),

w(x, 0) = w0(x), wt (x, 0) = w1(x),

x ∈ (0, L), (2.4)

and either Dirichlet boundary conditions

ϕ(x, t) = ψ(x, t) = w(x, t) = 0,

x ∈ {0, L}, t ≥ 0,

(2.5)

or mixed Dirichlet–Neumann boundary conditions

ϕ(x, t) = ψx (x, t) = wx (x, t) = 0,

x ∈ {0, L}, t ≥ 0.

(2.6)

The coefficients ρ1, ρ2, k, k0, b are functions satis-
fying

ρ1, ρ2, k, k0, b ∈ C1[0, L],
ρ1, ρ2, k, k0, b > 0 in [0, L]. (2.7)

In this case, we can rewrite (2.1)–(2.6) in the fol-
lowing Cauchy problem{ d

dt V = A j V, t > 0,
V (0) = V0,

(2.8)

where

V := (ϕ,
,ψ,�,w, W ), 
 := ϕt ,

� := ψt , W := wt ,

and for j = 1, 2,

A j V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣



1
ρ1

(k(ϕx + ψ + lw))x + k0l
ρ1

(wx − lϕ)

�
1
ρ2

(b ψx )x − k
ρ2

(ϕx + ψ + lw)

W
1
ρ1

(k0(wx − lϕ))x − kl
ρ1

(ϕx + ψ + lw)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T

,

V0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

ϕ0

ϕ1

ψ0

ψ1

w0

w1

⎤
⎥⎥⎥⎥⎥⎥⎦

T

.

In order to simplify the notations on functions spaces
along the text, we denote

L2 := L2(0, L), H1
0 := H1

0 (0, L),

L2∗ := L2∗(0, L), H1∗ := H1∗ (0, L),

with standard scalar products and norms, where

L2∗(0, L) =
{

u ∈ L2; 1

L

∫ L

0
u(x) dx = 0

}
and

H1∗ = H1 ∩ L2∗.

Under the above notations, we set the Hilbert spaces

H1 = H1
0 × L2 × H1

0 × L2 × H1
0 × L2 for (2.5),

and

H2 = H1
0 × L2 × H1∗ × L2∗ × H1∗ × L2∗ for (2.6),

and then the domain of the operator A j is given by

D(A1) = {U ∈ H1 : ϕ,ψ,w ∈ H2 ∩ H1
0 ;


,�, W ∈ H1
0

}
for (2.5),

and

D(A2) = {U ∈ H2 : ϕ ∈ H2; 
,ψx , wx ∈ H1
0 ;

�, W ∈ H1∗
}

for (2.6).

In what follows, we are going to provide the desired
observability inequality by means of the resolvent
equation corresponding to the conservative problem
(2.8). As a consequence, we have an extension result
that will be very useful in applications.

To accomplish the above purpose, let us consider the
resolvent equation

iβV − A j V = G, (2.9)

for β ∈ R and G = (g1, g2, g3, g4, g5, g6), where we
take{

(g1, g2, g3, g4, g5, g6) ∈ H1 for (2.5),
(g1, g2, g3, g4, g5, g6) ∈ H2 for (2.6).

(2.10)

Under the conditions (2.7) and (2.10), it is rela-
tively simple to show that (2.9) has a unique solution
V ∈ D(A j ), j = 1, 2. To this end, the Lax–Milgram
theorem and elliptic regularity can be easily employed.
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Now, in order to proceed with the necessary compu-
tations, let us convert the resolvent Eq. (2.9) in terms
of its components as follows

iβϕ − 
 = g1 in (0, L), (2.11)
iβρ1
 − (k(ϕx + ψ + lw))x − k0l(wx − lϕ) = g2 in (0, L),

(2.12)
iβψ − � = g3 in (0, L), (2.13)
iβρ2� − (bψx )x + k(ϕx + ψ + lw) = g4 in (0, L), (2.14)
iβw − W = g5 in (0, L), (2.15)
iβρ1W − (k0(wx − lϕ))x + kl(ϕx + ψ + lw) = g6 in (0, L),

(2.16)

Additionally, given any 0 ≤ a1 < a2 ≤ L , the nota-
tion ‖ · ‖a1, a2 stands for

‖V ‖2a1, a2 :=
∫ a2

a1

(
|ϕx + ψ + lw|2 + |
|2 + |ψx |2

+|�|2 + |wx − lϕ|2 + |W |2
)

dx,

and for j = 1, 2, we set

I (a j ) := |(ϕx + ψ + lw)(a j )|2 + |
(a j )|2 + |ψx (a j )|2
+|�(a j )|2 + |(wx − lϕ)(a j )|2 + |W (a j )|2.

We are finally in position to state and prove the main
result of this section. For the sake of didactic reasons,
we consider the previous technical lemma which will
be used in the proof of the main result.

Lemma 2.1 Let q ∈ C1[a1, a2] be a function given by

q(x) = γ (x)

∫ x

a1
enτ dτ, n ∈ N,

where γ ∈ C1[a1, a2] satisfies γ0 ≤ γ (x) ≤ γ1 for all
x ∈ [a1, a2] with 0 < γ0 < γ1. Then,

q ′(x) ≥ 1

2
γ0enx , (2.17)

for all x ∈ [a1, a2] and n large enough.

Proof Trivial. ��
Proposition 2.2 (Observability Inequality) Under the
conditions (2.7)and (2.10), let V = (ϕ,
,ψ,�,w, W )

be a solution of (2.9). Then, for any numbers 0 ≤ a1 <

a2 ≤ L, there exist universal constants C0, C1 > 0
(depending only on ρ1, ρ2, k, k0, b, l) such that

I (a j ) ≤ C0‖V ‖2a1, a2 + C0‖G‖20, L , j = 1, 2,(2.18)

‖V ‖2a1, a2 ≤ C1 I (a j ) + C1‖G‖20, L , j = 1, 2, (2.19)

by taking |β| > 1 large enough.

Proof The proof will be done in three steps as follows.
Step 1. A crucial identity. Let us start by fixing three
functions q1, q2, q3 ∈ C1[a1, a2].

Initially, taking the multiplier q1k(ϕx + ψ + lw) in
(2.12) and integrating on (a1, a2), we get

∫ a2

a1
q1kg2(ϕx + ψ + lw) dx

= −
∫ a2

a1
q1ρ1k 
(iβ(ϕx + ψ + lw)) dx

︸ ︷︷ ︸
:=J1

−
∫ a2

a1
q1(k(ϕx + ψ + lw))x (k(ϕx + ψ + lw)) dx

︸ ︷︷ ︸
:=J2

−
∫ a2

a1
q1k0lk(wx − lϕ)(ϕx + ψ + lw)dx . (2.20)

Using Eqs. (2.11), (2.13), and (2.15), integration by
parts and taking the real part of J1 and J2, it follows that

Re J1 = − 1

2
q1ρ1k |
|2

∣∣∣∣
a2

a1

+ 1

2

∫ a2

a1
(q1ρ1k)x |
|2 dx

− Re
∫ a2

a1
q1ρ1k 
(� + lW ) dx

− Re
∫ a2

a1
q1ρ1k 
(g1,x + g3 + lg5) dx,

and

Re J2 = − 1

2
q1k2|ϕx + ψ + lw|2

∣∣∣∣
a2

a1

+1

2

∫ a2

a1
q1,x k2|ϕx + ψ + lw|2 dx .

Then, taking the real part of (2.20) we obtain,

− 1

2

(
q1ρ1k|
|2 + q1k2|ϕx + ψ + lw|2)

∣∣∣∣
a2

a1

+ 1

2

∫ a2

a1

(
(q1ρ1k)x |
|2 + q1,x k2|ϕx + ψ + lw|2)dx

= Re
∫ a2

a1
q1kg2(ϕx + ψ + lw)dx

+ Re
∫ a2

a1
q1ρ1k
(g1,x + g3 + lg5)dx

+ Re
∫ a2

a1
q1ρ1k
(� + lW )dx

+ Re
∫ a2

a1
q1k0lk(wx − lϕ)(ϕx + ψ + lw)dx . (2.21)
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Secondly,multiplying (2.14) byq2b ψx and integrat-
ing on (a1, a2), we have

∫ a2

a1
q2b g4ψx dx

= −
∫ a2

a1
q2ρ2b �(iβψx ) dx

︸ ︷︷ ︸
:=J3

−
∫ a2

a1
q2(b ψx )x (b ψx ) dx

︸ ︷︷ ︸
:=J4

+
∫ a2

a1
q2bk (ϕx + ψ + lw)ψx dx

︸ ︷︷ ︸
:=J5

. (2.22)

Then, using Eq. (2.13) and integrating by parts J3
and J4, yields

Re J3 = − 1

2
q2ρ2b |�|2

∣∣∣∣
a2

a1

+ 1

2

∫ a2

a1
(q2ρ2b)x |�|2 dx

− Re
∫ a2

a1
q2ρ2b �g3,x dx

and

Re J4 = − 1

2
q2b2|ψx |2

∣∣∣∣
a2

a1

+ 1

2

∫ a2

a1
q2,x b2|ψx |2 dx .

In addition, integration by parts J5 and using
Eqs. (2.12) and (2.13), one has

Re J5 = Re

(
q2bk (ϕx + ψ + lw)ψ

∣∣∣∣
a2

a1

)

+ 1

β
Im
∫ a2

a1
(q2b)x k(ϕx + ψ + lw)g3 dx

+ 1

β
Im
∫ a2

a1
(q2b)x k(ϕx + ψ + lw)� dx

+ Re
∫ a2

a1
q2bg2ψ dx

− 1

β
Im
∫ a2

a1
q2bk0l(wx − lϕ)g3 dx

− 1

β
Im
∫ a2

a1
q2bk0l(wx − lϕ)� dx

+ Re
∫ a2

a1
q2bρ1
g3 dx

+ Re
∫ a2

a1
q2bρ1
� dx .

Returning to (2.22), taking its real part and replacing
these last three equalities, we deduce

− 1

2

(
q2ρ2b |�|2 + q2b2|ψx |2

)∣∣∣∣
a2

a1

+ 1

2

∫ a2

a1

(
(q2ρ2b)x |�|2 + q2,x b2|ψx |2

)
dx

= Re
∫ a2

a1
q2bg4ψx dx + Re

∫ a2

a1
q2ρ2b�g3,x dx

− Re

(
q2bk(ϕx + ψ + lw)ψ

)∣∣∣∣
a2

a1

− 1

β
Im
∫ a2

a1
(q2b)x k(ϕx + ψ + lw)g3 dx

− 1

β
Im
∫ a2

a1
(q2b)x k(ϕx + ψ + lw)� dx

− Re
∫ a2

a1
q2bg2ψ dx + 1

β
Im
∫ a2

a1
q2bk0l(wx − lϕ)g3 dx

− Re
∫ a2

a1
q2ρ1b
g3 dx

+ 1

β
Im
∫ a2

a1
q2bk0l(wx − lϕ)� dx

− Re
∫ a2

a1
q2ρ1b
� dx . (2.23)

Third, taking the multiplier q3k0(wx − lϕ) in (2.16)
and integrating on (a1, a2), we get

∫ a2

a1
q3k0g6(wx − lϕ) dx

= −
∫ a2

a1
q3ρ1k0W (iβ(wx − lϕ) dx

︸ ︷︷ ︸
:=J6

−
∫ a2

a1
q3(k0(wx − lϕ))x (k0(wx − lϕ)) dx

︸ ︷︷ ︸
:=J7

+
∫ a2

a1
q3k0lk(ϕx + ψ + lw)(wx − lϕ) dx .

(2.24)

Using Eqs. (2.11) and (2.15), integration by parts
and taking the real part of J6 and J7, it follows that

Re J6 = − 1

2
q3ρ1k0 |W |2

∣∣∣∣
a2

a1
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+ 1

2

∫ a2

a1
(q3ρ1k0)x |W |2 dx

+ Re
∫ a2

a1
q3ρ1k0l W
 dx

− Re
∫ a2

a1
q3ρ1k0 W (g5,x − lg1) dx,

and

Re J7 = − 1

2
q3k20 |wx − lϕ|2

∣∣∣∣
a2

a1

+1

2

∫ a2

a1
q3,x k20 |wx − lϕ|2 dx .

Then, taking the real part of (2.24) we obtain,

− 1

2

(
q3ρ1k0|W |2 + q3k20 |wx − lϕ|2)

∣∣∣∣
a2

a1

+ 1

2

∫ a2

a1

(
(q3ρ1k0)x |W |2 + q3,x k20 |wx − lϕ|2) dx

= Re
∫ a2

a1
q3k0g6(wx − lϕ) dx − Re

∫ a2

a1
q3ρ1k0lW
 dx

+ Re
∫ a2

a1
q3ρ1k0lW (g5,x − lg1) dx

− Re
∫ a2

a1
q3k0lk(ϕx + ψ + lw)(wx − lϕ) dx . (2.25)

Finally, combining the identities (2.21), (2.23), and
(2.25), we arrive at

∫ a2

a1

(
q1,x k2|ϕx + ψ + lw|2 + (q1ρ1k)x |
|2

+ q2,x b2|ψx |2 + (q2ρ2b)x |�|2
)

dx

+
∫ a2

a1

(
q3,x k20 |wx − lϕ|2 + (q3ρ1k0)x |W |2

)
dx

=
(

q1k2|ϕx + ψ + lw|2 + q1ρ1k |
|2 + q2b2|ψx |2

+ q2ρ2b |�|2
)∣∣∣∣

a2

a1

+
(

q3k20 |wx − lϕ|2 + q3ρ1k0|W |2
)∣∣∣∣

a2

a1

+ P(a1, a2) + J10 + J11 + J12 + J13 (2.26)

for any q1, q2, q3 ∈ C1[a1, a2], which denote

P(a1, a2) = − 2Re

(
q2bk (ϕx + ψ + lw)ψ

∣∣∣∣
a2

a1

)
,

J10 = 2Re
∫ a2

a1
(q1ρ1k − q2ρ1b)
� dx

+ 2Re
∫ a2

a1
l(q1ρ1k − q3ρ1k0)W
 dx,

J11 = − 2

β
Im
∫ a2

a1
(q2b)x k(ϕx + ψ + lw)� dx

+ 2

β
Im
∫ a2

a1
q2bk0l(wx − lϕ)� dx,

J12 = − 2

β
Im
∫ a2

a1
(q2b)x k(ϕx + ψ + lw)g3 dx

+ 2

β
Im
∫ a2

a1
q2bk0l(wx − lϕ)g3 dx

+ 2Re
∫ a2

a1
q3ρ1k0W (g5,x − lg1) dx

+ 2Re
∫ a2

a1
q1ρ1k
(g1,x + g3 + lg5) dx

+ 2Re
∫ a2

a1
q3k0g6(wx − lϕ) dx

+ 2Re
∫ a2

a1
q1kg2(ϕx + ψ + lw) dx

+ 2Re
∫ a2

a1
q2b
(
g4ψx + ρ2�g3,x

−ρ1
g3 − g2ψ
)

dx,

J13 = 2Re
∫ a2

a1
k0lk(q1 − q3)

(ϕx + ψ + lw)(wx − lϕ) dx .

Step 2. Conclusion of (2.18)-(2.19) for j = 2. Since
(2.26) holds true for any q1, q2, q3 ∈ C1[a1, a2], let us
choose them so that

(q1k)(x) = (q2b)(x) = (q3k0)(x)

=
∫ x

a1
enτ dτ,

for x ∈ [a1, a2] and n ∈ N to be determined later.
Thus, we prompt to have that J10 = 0. Let us estimate
the remaining terms in (2.26). Indeed, from (2.7) and
Hölder’s inequality, there exists a constantCn > 0 such
that

|J11| ≤ Cn

|β| ‖V ‖2a1, a2 and

|J12| ≤ Cn‖V ‖a1, a2‖G‖0, L . (2.27)

Using (2.13), Hölder and Young inequalities and the
embedding H1(a1, a2) ↪→ L∞(a1, a2), one sees that

|P(a1, a2)| ≤ Cn

|β| |(ϕx + ψ + lw)(a2)|2
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+Cn

|β| |�(a2)|2 + Cn‖G‖20, L . (2.28)

Now, observing that

(q1 − q3)(x) = (k0 − k)(x)

(k0k)(x)

(
enx − ena1

n

)
,

we infer

[(lk0k)(q1 − q3)](x) = [l(k0 − k)](x)(
enx − ena1

n

)
.

Then, from (2.7) and Young’s inequality, there exists a
constant M > 0 such that

|J13| ≤ M

n

∫ a2

a1
enx (|ϕx + ψ + lw|2 + |wx − lϕ|2) dx .

(2.29)

Replacing (2.27)-(2.29) in (2.26), using (2.7) and
(2.17), taking n large enough satisfying Lemma 2.1 for
the specific functions present in (2.26), there exist con-
stants C, α0 > 0 such that

1

2
α0

∫ a2

a1
enx (|ϕx + ψ + lw|2 + |
|2

+|ψx |2 + |�|2 + |wx − lϕ|2 + |W |2) dx

≤ C I (a2) + C

|β| ‖V ‖2a1, a2 + C‖G‖20, L

+ C‖V ‖a1, a2‖G‖0, L

+ M

n

∫ a2

a1
enx (|ϕx + ψ + lw|2 + |wx − lϕ|2) dx .

Again, taking n0 ∈ N large enough satisfying
Lemma 2.1 and such that

1

2
α0 − M

n0
> 0,

there exists a constant C > 0 such that

Cen0a1‖V ‖2a1, a2 ≤ C I (a2) + C

|β| ‖V ‖2a1, a2

+C‖V ‖a1, a2‖G‖0, L + C‖G‖20, L .

Considering |β| > 1 large enough and using
Young’s inequality with ε > 0, there exist a constant
C1 > 0 such that

‖V ‖a1, a2 ≤ C1 I (a2) + C1‖G‖20, L ,

concluding (2.19) for j = 2.

To conclude (2.18) for j = 2, we recall again the
identity (2.26) and, in view of the estimates (2.27)-
(2.29) along with the assumption (2.7), there exist a
constant C > 0 such that

I (a2) ≤ C‖V ‖2a1, a2 + C

|β| |(ϕx + ψ + lw)(a2)|2

+ C

|β| |�(a2)|2 + C‖G‖20, L

+ C

|β| ‖V ‖2a1, a2 + C‖V ‖a1, a2‖G‖0, L

+ Cen0a2‖V ‖2a1, a2 ,

with n0 ∈ N taken previously. Taking |β| > 1 large
enough and using Young’s inequality, there exist a con-
stant C0 > 0 such that

I (a2) ≤ C0‖V ‖2a1, a2 + C0‖G‖20, L .

This concludes (2.18) j = 2.
Step 3. Conclusion of (2.18)-(2.19) for j = 1. The
proof is similar to the case j = 2 with minor changes.
In fact, in this case, we initially pick up q1, q2, and q3
given by

(q1k)(x) = (q2b)(x) = (q3k0)(x)

= −
∫ a2

x
e−nτ dτ,

for x ∈ [a1, a2] and n ∈ N. Thus, we still have
J10 = 0 and the estimates (2.27)-(2.29) follow analo-
gously. Therefore, going back to (2.26) and proceeding
similarly as above, the estimates (2.18)-(2.19) can be
concluded for j = 1.

The proof of Proposition 2.2 is complete. ��

Remark 2.1 Taking a closer look at the proof of (2.18)-
(2.19), one sees that they are proved without any
requirement on the boundary conditions for the dis-
placements ϕ, ψ, and w. Thus, the choices of the
boundary conditions (2.5) and (2.6) are simply for rea-
sons of compatibility with the thermoelastic problem
in the next section and future works on the subject. In
conclusion, Proposition 2.2 can be considered with any
other boundary condition concerning the conservative
Bresse system provided that (2.9) is satisfied.

The following extension result is a direct conse-
quence of Proposition 2.2. It will be quite useful later
in order to recover global estimates in the applications.
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Corollary 2.3 (Extension Result) Under the condi-
tions of Proposition 2.2, let V = (ϕ,
,ψ,�,w, W )

be a solution of (2.9). If for some sub-interval (b1, b2) ⊂
(0, L) one has

‖V ‖2b1,b2 ≤ �, for some parameter

� = �(V, G, β), (2.30)

then there exists a (universal) constant C > 0 such that

‖V ‖20, L ≤ C� + C‖G‖20, L . (2.31)

Proof From (2.18) and (2.30), in particular for (b1, b2),
we have

I (b j ) ≤ C0� + C0‖G‖20, L , j = 1, 2. (2.32)

Using (2.19) with a1 = 0, a2 = b2 and (2.32) with
j = 2, we obtain∫ b2

0

(
|ϕx + ψ + lw|2 + |
|2 + |ψx |2 + |�|2

+ |wx − lϕ|2 + |W |2
)

dx ≤ C2 � + C2‖G‖20, L ,

(2.33)

whereC2 = C1C0+C1 > 0.Analogously, using (2.19)
with a1 = b2, a2 = L and (2.32) with j = 2, we also
obtain∫ L

b2

(
|ϕx + ψ + lw|2 + |
|2 + |ψx |2 + |�|2

+ |wx − lϕ|2 + |W |2
)

dx ≤ C2 � + C2‖G‖20, L .

(2.34)

Therefore, adding (2.33) and (2.34), there exists a
constant C > 0 such that

‖V ‖20, L ≤ C� + C‖G‖20, L ,

which completes the proof of (2.31). ��

3 Asymptotic stability: thermoelastic system

In this section, we provide the stability analysis to the
partially damped thermoelastic Bresse system (1.1)-
(1.4). In order to work in a slightly more general frame-
work, we do not consider necessarily ρ3 = ρ4, γ1 =
γ2, and k1 = k2 as in (1.5). As we shall see in the com-
putations, they can be constants assuming different val-
ues. To emphasize this fact, let us rewrite thermoelastic
Bresse problem again as follows:

ρ1ϕt t − k(ϕx + ψ + lw)x − k0l(wx − lϕ)

+ k2lη = 0 in (0, L) × R
+, (3.1)

ρ2ψt t − b ψxx + k(ϕx + ψ + lw)

+ k1ϑx = 0 in (0, L) × R
+, (3.2)

ρ1wt t − k0(wx − lϕ)x + kl(ϕx + ψ + lw)

+ k2ηx = 0 in (0, L) × R
+, (3.3)

ρ3ϑt − γ1ϑxx + k1ψxt = 0 in (0, L) × R
+, (3.4)

ρ4ηt − γ2ηxx + k2(wx − lϕ)t = 0 in (0, L) × R
+,

(3.5)

with initial conditions

ϕ(x, 0) = ϕ0(x), ϕt (x, 0) = ϕ1(x),

ψ(x, 0) = ψ0(x), ψt (x, 0) = ψ1(x),

w(x, 0) = w0(x), wt (x, 0) = w1(x),

ϑ(x, 0) = ϑ0(x),

η(x, 0) = η0(x), x ∈ (0, L), (3.6)

and either Dirichlet boundary conditions

ϕ(x, t) = ψ(x, t) = w(x, t)

= ϑ(x, t) = η(x, t) = 0, x ∈ {0, L}, t ≥ 0,

(3.7)

or mixed Dirichlet–Neumann boundary conditions

ϕ(x, t) = ψx (x, t) = wx (x, t)

= ϑ(x, t) = η(x, t) = 0, x ∈ {0, L}, t ≥ 0,

(3.8)

where physical meaning of the coefficients ρ1, ρ2, ρ3,

ρ4, k, b, k0, γ1, γ2, k1, k2, l > 0 are given in the intro-
duction.

3.1 Semigroup setting

Let us initially consider the Hilbert phase spaces

H1 = H1
0 × L2 × H1

0 × L2 × H1
0 × L2 × L2 × L2

for (3.7),

and

H2 = H1
0 × L2 × H1∗ × L2∗ × H1∗ × L2∗ × L2 × L2

for (3.8),

with inner product

(U, U∗)H j =
∫ L

0

[
ρ1

∗

+ ρ2��∗ + ρ1W W ∗ + bψxψ∗
x
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+ k(ϕx + ψ + lw)(ϕ∗
x + ψ∗ + lw∗)

+ k0(wx − lϕ)(w∗
x − lϕ∗)

+ρ3ϑϑ∗ + ρ4ηη∗] dx, (3.9)

and induced norm

‖U‖2H j
=
∫ L

0

[
ρ1|
|2 + ρ2|�|2

+ ρ1|W |2 + b|ψx |2 + k|ϕx + ψ + lw|2
+ k0|wx − lϕ|2

+ ρ3|ϑ |2 + ρ4|η|2
]
dx, (3.10)

for all U = (ϕ,
,ψ,�,w, W, ϑ, η), U∗ = (ϕ∗,

∗, ψ∗, �∗, w∗, W ∗, ϑ∗, η∗) ∈ H j , j = 1, 2.

Remark 3.1 It is worth mentioning that the bilinear
map (3.9) does define an inner product inH1, whereas
in H2 it is an inner product only if Ll �= nπ , n ∈ Z.

Therefore, from now on it is implicit that, whenever
working with boundary condition (3.8), we are assum-
ing such a condition.

Denoting ϕt = 
, ψt = �, wt = W , and U =
(ϕ,
,ψ,�,w, W, ϑ, η), we can convert the thermoe-
lastic system of second-order (3.1)-(3.8) into the fol-
lowing Cauchy problem{ d

dt U=A j U, t > 0,
U (0)=(ϕ0, ϕ1, ψ0, ψ1, w0, w1, ϑ0, η0) := U0,

(3.11)

where A j : D(A j ) ⊂ H j → H j is defined by

A j U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣



k
ρ1

(ϕx + ψ + lw)x + k0l
ρ1

(wx − lϕ) − k2l
ρ1

η

�
b
ρ2

ψxx − k
ρ2

(ϕx + ψ + lw) − k1
ρ2

ϑx

W
k0
ρ1

(wx − lϕ)x − kl
ρ1

(ϕx + ψ + lw) − k2
ρ1

ηx
γ1
ρ3

ϑxx − k1
ρ3

�x
γ2
ρ4

ηxx − k2
ρ4

(Wx − l
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

U ∈ D(A j ), j = 1, 2, (3.12)

with domain

D(A1) =
{

U ∈ H1 : ϕ,ψ,w, ϑ, η ∈ H2 ∩ H1
0 ;


,�, W ∈ H1
0

}
for (3.7),

and

D(A2) =
{

U ∈ H2 : ϕ, ϑ, η ∈ H2; 
,

ψx , wx , ϑ, η ∈ H1
0 ; �, W ∈ H1∗

}
for (3.8).

Under the above notations, the existence and unique-
ness of a solution to (3.11) and, consequently, to (3.1)-
(3.8), reads as follows:

Theorem 3.1 ([24, Theorem 2.1]) Under the above
notations, we have:

(i) If U0 ∈ H j , then problem (3.11) has a unique
mild solution

U ∈ C0([0,∞),H j ), j = 1, 2.

(i i) If U0 ∈ D(A j ), then problem (3.11) has a unique
regular solution

U ∈ C0([0,∞), D(A j )) ∩ C1([0,∞),H j ),

j = 1, 2.

(i i i) If U0 ∈ D(An
j ), n ≥ 2 integer, then the solution

is more regular

U ∈
n⋂

ν=0

Cn−ν([0,∞), D(Aν
j )), j = 1, 2.

Proof For the sake of convenience in future computa-
tions, we just sketch the proof presented in [24, Theo-
rem 2.1].

It is not difficult to check that 0 ∈ ρ(A j ), where
ρ(A j ) stands for the resolvent set of A j , j = 1, 2.
Also, a straightforward computation shows that A j is
dissipative with

Re(A jU, U )H j

= −
∫ L

0
γ1|ϑx |2dx

−
∫ L

0
γ2|ηx |2 dx ≤ 0, U ∈ D(A j ), j = 1, 2.

(3.13)

Therefore, employing the Lummer–Philips Theo-
rem (see e.g., [26, Theorem 4.6]) we have thatA j is the
infinitesimal generator of a C0-semigroup of contrac-
tions S j (t) := eA j t on H j , j = 1, 2. Consequently,
the solution of (3.11) satisfying (i)-(i i i) is given by

U (t) = eA j tU0, t ≥ 0, j = 1, 2.

��
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3.2 Main results

Our first main result asserts that problem (3.1)-(3.8) is,
in general, only semi-uniformly stable with the poly-
nomial rate depending on the regularity of initial data.
However, it is independent of the boundary conditions.
In any case, in accordance with (1.6), the asymptotic
stability will depend on the following number

χ0 := k − k0. (3.14)

Theorem 3.2 (Semi-uniform Polynomial Decay) Let
us assume that χ0 �= 0 in (3.14). Then, for every inte-
ger n ≥ 1, there exists a constant Cn > 0 indepen-
dent of U0 ∈ D(A j

n) such that the semigroup solution
U (t) = eA j tU0 satisfies

‖U (t)‖H j ≤
Cn

tn/2 ‖U0‖D(An
j )
, j=1, 2, t→+∞. (3.15)

In other words, the thermoelastic system (3.1)-(3.6)
with either boundary conditions (3.7) or (3.8) is (semi-
uniformly) polynomially stable with the decay rate
depending on the regularity of initial data.

In addition to Theorem 3.2, one can show that
the semi-uniform polynomial decay is optimal for the
boundary condition (3.8). This is proved for n = 1,
namely when initial data belong to the domain of the
operator. More precisely, we have:

Theorem 3.3 (Optimality) Let us assume that χ0 �= 0
and take U0 ∈ D(A2). Then, the semi-uniform poly-
nomial rate 1/t1/2 obtained (3.15) is optimal, that is,
there is no constant ν0 > 0 such that

‖U (t)‖H2 ≤ C

t
1
2+ν0

‖U0‖D(A2), t → +∞. (3.16)

In particular, the thermoelastic Bresse system (3.1)-
(3.6)with boundary condition (3.8) is not exponentially
stable if χ0 �= 0.

As an immediate consequence of Theorem 3.3, we
deduce the next result.

Corollary 3.4 (Non-uniform Stability) Under the con-
ditions of Theorem 3.3, then system (3.1)-(3.6) with
boundary condition (3.8) is never uniformly stable for
initial data U0 ∈ H2. More precisely, there is no pos-
itive function ϒ(t) vanishing at infinity such that

‖U (t)‖H2

≤ C0 ϒ(t), ∀ U0 ∈ H2, t → +∞, (3.17)

where C0 = C0(‖U0‖H2) > 0 is a constant depending
on U0.

Proof It follows promptly from Theorem 3.3 and [9,
Remark 3.1]. ��

Our fourth main result in this section deals with the
uniform (exponential) stability of system (3.1)-(3.8)
when the assumption on equal wave speeds is taken
into account.

Theorem 3.5 (Uniform Exponential Stability) Let us
assume that χ0 = 0 in (3.14). Then, there exist con-
stants C, ω > 0 independent of U0 ∈ H j such that the
semigroup solutionU (t) = eA j tU0, j = 1, 2, satisfies

‖U (t)‖H j ≤ Ce−ω t‖U0‖H j , t > 0. (3.18)

In other words, the thermoelastic system (3.1)-(3.6)
with either boundary conditions (3.7) or (3.8) is (uni-
formly) exponentially stable if χ0 = 0.

Corollary 3.6 The thermoelastic Bresse system (3.1)-
(3.6) with boundary condition (3.8) is exponentially
stable if and only if χ0 = 0.

Proof Immediately from Theorems 3.3 and 3.5. ��
The conclusion of the proofs of Theorems 3.2 to 3.5

will be given at the end of this section. In what fol-
lows, we first introduce the needed machinery to this
purpose, namely, we provide some technical lemmas
with localized estimates employing the resolvent equa-
tion and then combine with the observability inequality
previously obtained for systems of Bresse type. Hence,
the proofs will follow from the general theory in linear
semigroup, see e.g., [6,13,17,19,25,27].

3.3 Technical results via resolvent equation

In this case, the resolvent equation associated with
problem (3.11) is given by

iβU − A jU = F, j = 1, 2, (3.19)

with U = (ϕ,
,ψ,�,w, W, ϑ, η), F = ( f1, f2, f3,
f4, f5, f6, f7, f8) and A j defined in (3.12), which in
terms of its components takes the form

iβϕ − 
 = f1, (3.20)

iβρ1
 − k(ϕx + ψ + lw)x

−k0l(wx − lϕ) + k2lη = ρ1 f2, (3.21)
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iβψ − � = f3, (3.22)

iβρ2� − bψxx + k(ϕx + ψ + lw)

+k1ϑx = ρ2 f4, (3.23)

iβw − W = f5, (3.24)

iβρ1W − k0(wx − lϕ)x + kl(ϕx + ψ + lw)

+k2ηx = ρ1 f6, (3.25)

iβρ3ϑ − γ1ϑxx + k1�x = ρ3 f7, (3.26)

iβρ4η − γ2ηxx + k2(Wx − l
) = ρ4 f8. (3.27)

Lemma 3.7 ([24, p. 63]) Under the above notations,
we have iR ⊆ ρ(A j ), where ρ(A j ) stands for the
resolvent set of A j , j = 1, 2, given in (3.12).

Proof A proof by contradiction arguments can be
found in [24] (see e.g., p. 63 therein). Here, for the
sake of completeness, we present an alternative proof
involving direct arguments.

From Engel–Nagel [13, Proposition 5.8 and Corol-
lary 1.15], and taking into account that D(A j ) is com-
pactly embedded inH j , j = 1, 2, then it is enough to
show that iβ Id −A j is injective for every β ∈ R, which
in turn is easily obtained by means of the resolvent
Eq. (3.19) (with F = 0) and the dissipativity (3.13).

Hence, iR ⊆ ρ(A j ) as desired. ��
Hereafter, to simplify the notations, we will use a

parameter C > 0 to denote several different posi-
tive constants in the computations below. As usual,
‖ · ‖2 stands for the norm in L2. Hölder and Poincaré’s
inequalities will be constantly regarded, sometimes
implicitly in the estimates without mentioning them
to avoid so many repetitions, and also |β| > 1 large
enough can be taken w.l.o.g. in the estimates.

Lemma 3.8 Under the above notations, there exists a
constant C > 0 such that

‖ϑx‖22 + ‖ηx‖22
≤ C‖U‖H j ‖F‖H j , for j = 1, 2. (3.28)

Proof Estimate (3.28) is a direct consequence of (3.13)
and (3.19). ��

To the next results, we shall invoke some useful aux-
iliary cut-off functions in order to get localized esti-
mates. This allows us to work with both boundary con-
ditions at the same time without trouble with possible
boundary point-wise terms coming from integration by
parts.

Let us consider l0 ∈ (0, L) and δ > 0 such that
(l0 − δ, l0 + δ) ⊂ (0, L). Then, we set s1 ∈ C2(0, L)

satisfying

supp s1 ⊂ (l0 − δ, l0 + δ),

0 ≤ s1(x) ≤ 1, x ∈ (0, L), (3.29)

and

s1(x) = 1 for

x ∈ [l0 − δ/2, l0 + δ/2]. (3.30)

Remark 3.2 Anexplicit example of such a cut-off func-
tion is given below.

s1(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if 0 ≤ x ≤ l0 − δ,

e−1

e(x−(l0−δ/2))2−1
if l0 − δ < x ≤ l0 − δ

2 ,

1 if l0 − δ
2 ≤ x ≤ l0 + δ

2 ,

e−1

e(x−(l0+δ/2))2−1
if l0 + δ

2 ,≤ x < l0 + δ,

0 if l0 + δ ≤ x ≤ L .

The geometric idea of s1 can be seen, e.g., in [8] (see
Figure 1 therein). We mention that cut-off functions
have shown very effective for local estimates in Timo-
shenko systems, cf. [3–5,8,20]. However, as far as we
know, this is the first time they are employed in com-
putations for the Bresse system via components of the
resolvent Eqs. (3.20)–(3.27).

Lemma 3.9 Under the above notations, there exists a
constant C > 0 such that

∫ l0+δ

l0−δ

s1|wx − lϕ|2 dx

≤ C

|β| ‖U‖H j ‖F‖H j

+ C

|β| ‖ηx‖2‖U‖H j + C

|β| ‖F‖2H j

+ C‖ηx‖2
(∫ l0+δ

l0−δ

s1|W |2 dx

)1/2
, j = 1, 2.

(3.31)

Proof From (3.20), (3.24), and (3.27), we have

iβρ4η − γ2ηxx + iβk2(wx − lϕ)

= ρ4 f8 + k2( f5,x − l f1). (3.32)

123



Arched beams of Bresse type: observability 2377

Taking the multiplier k0s1(wx − lϕ) in (3.32) and
performing integration by parts, we get

iβk0k2

∫ L

0
s1|wx − lϕ|2 dx

= −γ2

∫ L

0
s1ηx (k0(wx − lϕ)) dx

︸ ︷︷ ︸
:=I1

− γ2k0

∫ L

0
s′
1ηx (wx − lϕ) dx

+k0ρ4

∫ L

0
s1η(iβ(wx − lϕ)) dx

︸ ︷︷ ︸
:=I2

+ k0ρ4

∫ L

0
s1 f8(wx − lϕ) dx

+ k2k0

∫ L

0
s1( f5,x − l f1)(wx − lϕ) dx . (3.33)

Using (3.25),

I1 = iβγ2ρ1

∫ L

0
s1ηx W dx

− γ2kl
∫ L

0
s1ηx (ϕx + ψ + lw) dx

− γ2k2

∫ L

0
s1|ηx |2 dx

+ γ2ρ1

∫ L

0
s1ηx f6 dx .

In addition, applying (3.20) and (3.24),

I2 = −k0ρ4

∫ L

0
[s1η]x W dx

−k0lρ4

∫ L

0
s1η
 dx

+k0ρ4

∫ L

0
s1η( f5,x − l f1) dx .

Replacing these two last identities in (3.33), we obtain

iβk0k2

∫ L

0
s1|wx − lϕ|2 dx

= iβγ2ρ1

∫ L

0
s1ηx W dx + I3, (3.34)

where

I3 = − γ2k2

∫ L

0
s1|ηx |2 dx

− γ2k0

∫ L

0
s′
1ηx (wx − lϕ) dx

− k0ρ4

∫ L

0
[s1η]x W dx

+ k0ρ4

∫ L

0
s1η( f5,x − l f1) dx

+ γ2ρ1

∫ L

0
s1ηx f6 dx

− γ2kl
∫ L

0
s1ηx (ϕx + ψ + lw) dx

+ k0ρ4

∫ L

0
s1 f8(wx − lϕ) dx

+ k2k0

∫ L

0
s1( f5,x − l f1)(wx − lϕ) dx

− k0lρ4

∫ L

0
s1η
 dx .

Using (3.28), the condition (3.29) about the function
s1 and the Hölder and Young inequalities, there exists
a constant C > 0 such that

|I3| ≤ C‖ηx‖2‖U‖H j + C‖ηx‖2‖F‖H j

+C‖U‖H j ‖F‖H j .

Going back to (3.34) and using condition (3.29) on s1,
we conclude

|β|
∫ l0+δ

l0−δ

s1|wx − lϕ|2 dx

≤ C‖U‖H j ‖F‖H j + C‖ηx‖2‖U‖H j

+ C‖ηx‖2‖F‖H j

+ C |β|
∫ l0+δ

l0−δ

s1|θx ||W | dx .

Moreover, applying Hölder and Young inequalities and
estimate (3.28), we obtain

∫ l0+δ

l0−δ

s1|wx − lϕ|2 dx

≤ C

|β| ‖U‖H j ‖F‖H j + C

|β| ‖ηx‖2‖U‖H j

+ C

|β| ‖F‖2H j
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+ C‖ηx‖2
(∫ l0+δ

l0−δ

s1|W |2 dx

)1/2
. (3.35)

��
Lemma 3.10 Under the above notations, there exists
a constant C > 0 such that∫ l0+δ

l0−δ

|W |2 dx

≤ C

|β| ‖ηx‖2‖U‖H j + C‖U‖H j ‖F‖H j

+ C‖F‖2H j
+ C

|β|2 ‖U‖2H j
, (3.36)

for j = 1, 2.

Proof Taking the multiplier −s1w in (3.25), perform-
ing integration by parts, and using (3.24), we get

ρ1

∫ L

0
s1|W |2 dx

= k0

∫ L

0
s1|wx − lϕ|2 dx + k0l

∫ L

0
s1(wx − lϕ)ϕ dx

−ρ1

∫ L

0
s2[ f6w + W f5] dx + i

β
k2

∫ L

0
s1ηx (W + f5) dx

︸ ︷︷ ︸
:=I4

−kl2
∫ L

0
s1|ϕ|2 − kl

∫ L

0
s′
1ϕw dx + kl

∫ L

0
s1(ψ + lw)w dx

︸ ︷︷ ︸
:=I5

− kl
∫ L

0
s1ϕ(wx − lϕ) dx +k0

∫ L

0
s′
1(wx − lϕ)w dx

︸ ︷︷ ︸
:=I6

.

(3.37)

Using Hölder’s inequality, there exists a constant
C > 0 such that

|I4| ≤ C

|β| ‖ηx‖2‖U‖H j

+C‖ηx‖2‖F‖H j + C‖U‖H j ‖F‖H j .

(3.38)

On the other hand, from Eqs. (3.20), (3.22), (3.24),
it follows that

|I5| ≤ C

|β|2 ‖U‖2H j
+ C

|β|2 ‖F‖2H j
, (3.39)

for some constant C > 0.
Besides, applying (3.20), (3.24), and integration by

parts,

|ReI6| ≤ C

|β|2 ‖U‖2H j

+ C

|β|2 ‖F‖2H j
, (3.40)

for some constant C > 0. Thus, taking the real part
of (3.37), using (3.38), (3.39), (3.40) and the condition
(3.29) on s1, we obtain

∫ l0+δ

l0−δ

s1|W |2 dx

≤ C
∫ l0+δ

l0−δ

s1|wx − lϕ|2 dx

+ C
∫ l0+δ

l0−δ

s1|wx − lϕ||ϕ| dx

+ C

|β| ‖ηx‖2‖U‖H j

+ C

|β| ‖ηx‖2‖F‖H j + C‖U‖H j ‖F‖H j

+ C

|β|2 ‖U‖2H j
+ C

|β|2 ‖F‖2H j
,

for some constant C > 0. Using Hölder’s inequality
and (3.20),

∫ l0+δ

l0−δ

s1|W |2 dx

≤ C
∫ l0+δ

l0−δ

s1|wx − lϕ|2 dx

+ C

|β|
(∫ l0+δ

l0−δ

s1|wx − lϕ|2 dx

)1/2
‖U‖H j

+ C

|β| ‖ηx‖2‖U‖H j + C

|β| ‖ηx‖2‖F‖H j

+ C‖U‖H j ‖F‖H j

+ C

|β|2 ‖U‖2H j
+ C

|β|2 ‖F‖2H j
,

for some constant C > 0. Therefore, from Lemmas 3.8
and 3.9, using Young’s inequality, we conclude

∫ l0+δ

l0−δ

|W |2 dx

≤ C

|β| ‖ηx‖2‖U‖H j + C‖U‖H j ‖F‖H j

+ C‖F‖2H j
+ C

|β|2 ‖U‖2H j
.

��
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Corollary 3.11 Under the above notations, there exists
a constant C > 0 such that∫ l0+ δ

2

l0− δ
2

|wx − lϕ|2 dx

≤ C

|β| ‖ηx‖2‖U‖H j + C‖U‖H j ‖F‖H j

+ C‖F‖2H j
, (3.41)

for j = 1, 2.

Proof Combining (3.31) and (3.36), using the condi-
tion (3.30) on s1, Young’s inequality, and Lemma 3.8,
we obtain (3.11). ��
Lemma 3.12 Under the above notations, there exists
a constant C > 0 such that

∫ l0+δ

l0−δ

s1|ψx |2 dx ≤ C

|β| ‖ϑx‖2‖U‖H j

+ C

|β| ‖U‖H j ‖F‖H j + C

|β| ‖F‖2H j

+ C‖ϑx‖2
(∫ l0+δ

l0−δ

s1|�|2 dx

)1/2
, for j = 1, 2.

(3.42)

Proof Deriving (3.22) and replacing in (3.26), we have

iβk1ψx = γ1ϑxx − iβρ3ϑ + k1 f3,x + ρ3 f7. (3.43)

Multiplying (3.43) by bs1ψx and integrating in (0, L),
we get

iβk1b
∫ L

0
s1|ψx |2 dx = γ1b

∫ L

0
s1ϑxxψx dx

−iβρ3b
∫ L

0
s1ϑψx dx

+b
∫ L

0
s1[k1 f3,x + ρ3 f7]ψx dx .

Integrating by parts, using Eqs. (3.22) and (3.23), it
follows that

iβk1b
∫ L

0
s1|ψx |2 dx

= iβγ1ρ2

∫ L

0
s1ϑx� dx

−ρ3b
∫ L

0
s1ϑx� dx + I7, (3.44)

where

I7 = − γ1

∫ L

0
s1ϑx [k(ϕx + ψ + lw) + k1ϑx − ρ2 f4] dx

− ρ3b
∫ L

0
s1ϑx f3 dx

− ρ3b
∫ L

0
s′
1ϑ(� + f3) dx

+ b
∫ L

0
s1[k1 f3,x + ρ3 f7]ψx dx

− γ1b
∫ L

0
s′
1ϑxψx dx .

From condition (3.29) on s1, Hölder and Young
inequalities, and Lemma 3.8, we have that

|I7| ≤ C‖ϑx‖2‖U‖H j + C‖F‖2H j
+ C‖U‖H j ‖F‖H j ,

for some constant C > 0 and for j = 1, 2. Therefore,
taking the module in (3.44), using Hölder’s inequality
along with the condition (3.29) on s1, we conclude

∫ l0+δ

l0−δ

s1|ψx |2dx

≤ C

|β| ‖ϑx‖2‖U‖H j + C

|β| ‖F‖2H j

+ C

|β| ‖U‖H j ‖F‖H j

+ C‖ϑx‖2
(∫ l0+δ

l0−δ

s1|�|2 dx

)1/2
,

for some constant C > 0 and j = 1, 2, conclud-
ing 3.42. ��
Lemma 3.13 Under the above notations, there exists
a constant C > 0 such that∫ l0+δ

l0−δ

s1|�|2 dx ≤ C

|β| ‖ϑx‖2‖U‖H j

+C‖U‖H j ‖F‖H j + C‖F‖2H j

+ C

|β|2 ‖U‖2H j
, (3.45)

for j = 1, 2.

Proof Multiplying (3.23) by −s1ψ and integrating on
(0, L), we have

−iβρ2

∫ L

0
s1�ψ dx = − b

∫ L

0
s1ψxxψ dx

+k
∫ L

0
s1(ϕx + ψ + lw)ψ dx

+
∫ L

0
s1[k1ϑx + ρ2 f4]ψ dx .
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Integrating by parts, from (3.22) and (3.23), we have
that

ρ2

∫ L

0
s1|�|2 dx = b

∫ L

0
s1|ψx |2 dx

+b
∫ L

0
s′
1ψxψ dx

︸ ︷︷ ︸
:=I8

+ I9, (3.46)

where

I9 = k
∫ L

0
s1(ϕx + ψ + lw)ψ dx

+
∫ L

0
s1k1ϑx + ρ2 f4]ψ dx − ρ1

∫ L

0
s1� f3 dx .

Performing some calculations, it is easy to check

|I9| ≤ C
∫ l0+δ

l0−δ

s1|ψx |2 dx

+ C

|β| ‖ϑx‖2‖U‖H j + C‖U‖H j ‖F‖H j

+C‖F‖2H j
+ C

|β|2 ‖U‖2H j
, (3.47)

and

|ReI8| ≤ C

|β|2 ‖U‖2H j
+ C

|β|2 ‖F‖2H j
, (3.48)

for some constant C > 0 and j = 1, 2. Therefore, tak-
ing the real part of (3.46) and using (3.47), (3.48), it
follows that

∫ l0+δ

l0−δ

s1|�|2 dx ≤ C
∫ l0+δ

l0−δ

s1|ψx |2 dx

+ C

|β| ‖ϑx‖2‖U‖H j

+ C‖U‖H j ‖F‖H j

+ C‖F‖2H j
+ C

|β|2 ‖U‖2H j
,

(3.49)

for some constant C > 0 and j = 1, 2. Using
Lemma 3.12, Young’s inequality, and Lemma 3.8, then∫ l0+δ

l0−δ

s1|�|2 dx ≤ C

|β| ‖ϑx‖2‖U‖H j

+C‖U‖H j ‖F‖H j + C‖F‖2H j

+ C

|β|2 ‖U‖2H j
,

for some constantC > 0 and j = 1.2, concluding 3.45.
��

Corollary 3.14 Under the above notations, there exists
a constant C > 0 such that

∫ l0+ δ
2

l0− δ
2

(|ψx |2 + |�|2) dx

≤ C

|β| ‖ϑx‖2‖U‖H j + C‖U‖H j ‖F‖H j + C‖F‖2H j

+ C

|β|2 ‖U‖2H j
, (3.50)

for j = 1, 2.

Proof Combining (3.42) and (3.45), using the condi-
tion (3.30) on s1, Young’s inequality, and Lemma 3.8,
we arrive at (3.50). ��

Now, we consider another auxiliary cut-off function
s2 ∈ C2(0, L) satisfying

supp s2 ⊂ (l0 − δ/2, l0 + δ/2),

0 ≤ s2(x) ≤ 1, x ∈ (0, L), (3.51)

and

s2(x) = 1 for x ∈ [l0 − δ/3, l0 + δ/3]. (3.52)

A prototype of such a function can be considered in a
similar way as done for s1 in Remark 3.2. See also [8,
Figure 1].

Lemma 3.15 Under the above notations, there exists
a constant C > 0 such that

∫ l0+ δ
2

l0− δ
2

s2|ϕx + ψ + lw|2 dx

≤ C |β||k0 − k|
∫ l0+ δ

2

l0− δ
2

s2|wx − lϕ||
| dx

+ C‖ηx‖2‖U‖H j + C‖U‖H j(∫ l0+ δ
2

l0− δ
2

|wx − lϕ|2 dx

)1/2

+ C‖U‖H j ‖F‖H j + C‖F‖2H j
+ C

|β|2 ‖U‖2H j
,

(3.53)

for j = 1, 2.

Proof Multiplying (3.21) by s2
kl
ρ1

ϕ and integrating on
(0, L), we get

kl
∫ L

0
s2 f2ϕ dx
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= iβkl
∫ L

0
s2
ϕ dx

− k2l

ρ1

∫ L

0
s2(ϕx + ψ + lw)xϕ dx

− k0kl2

ρ1

∫ L

0
s2(wx − lϕ)ϕ dx

+ k2kl2

ρ1

∫ L

0
s2ηϕ dx .

Performing integration by parts and adding appropriate
terms, we have

k2l

ρ1

∫ L

0
s2|ϕx + ψ + lw|2 dx

= iβk
∫ L

0
s2(−l
)ϕ dx

− k2l

ρ1

∫ L

0
s′
2(ϕx + ψ + lw)ϕ dx

+ k0kl2

ρ1

∫ L

0
s2(wx − lϕ)ϕ dx

− k2kl2

ρ1

∫ L

0
s2ηϕ dx

+ kl
∫ L

0
s2 f2ϕ dx

+ k2l

ρ1

∫ L

0
s2(ϕx + ψ + lw)(ψ + lw) dx . (3.54)

On the other hand, deriving (3.24), multiplying by
s2

k
ρ1

ϕ and integrating on (0, L), we get

k
∫ L

0
s2 f6,xϕ dx

= iβk
∫ L

0
s2Wxϕ dx − k

ρ1

∫ L

0
s2(k0(wx − lϕ)xx )ϕ dx

+ k2l

ρ1

∫ L

0
s2(ϕx + ψ + lw)xϕ dx

+ k2k

ρ1

∫ L

0
s2ηxxϕ dx .

Integrating by parts and adding appropriate terms,

k2l

ρ1

∫ L

0
s2|ϕx + ψ + lw|2 dx

= iβk
∫ L

0
s2Wxϕ dx + k

ρ1

∫ L

0
s′
2(k0(wx − lϕ)x )ϕ dx

+ k

ρ1

∫ L

0
s2(k0(wx − lϕ)x )ϕx dx

− k2l

ρ1

∫ L

0
s′
2(ϕx + ψ + lw)ϕ dx

+ k2l

ρ1

∫ L

0
s2(ϕx + ψ + lw)(ψ + lw) dx

− k2k

ρ1

∫ L

0
ηx [s2ϕ]x dx

+ k
∫ L

0
f6[s2ϕ]x dx . (3.55)

Now, adding (3.54) and (3.55), we obtain

2k2l

ρ1

∫ L

0
s2|ϕx + ψ + lw|2 dx

= iβk
∫ L

0
s2(Wx − l
)ϕ dx

︸ ︷︷ ︸
:=I10

− 2k2l

ρ1

∫ L

0
s′
2(ϕx + ψ + lw)ϕ dx

+ k0kl2

ρ1

∫ L

0
s2(wx − lϕ)ϕ dx − k2kl2

ρ1

∫ L

0
s2ηϕ dx

+ kl
∫ L

0
s2 f2ϕ dx − k2k

ρ1

∫ L

0
ηx [s2ϕ]x dx

+ k
∫ L

0
f6[s2ϕ]x dx

+ k

ρ1

∫ L

0
s2(k0(wx − lϕ)x )ϕx dx

︸ ︷︷ ︸
:=I11

+ k

ρ1

∫ L

0
s′
2(k0(wx − lϕ)x )ϕ dx

︸ ︷︷ ︸
:=I12

+ 2k2l

ρ1

∫ L

0
(ϕx + ψ + lw)(ψ + lw) dx (3.56)

Note that, from (3.20), (3.24), and integrating by
parts,

I10 = −iβk
∫ L

0
s2(wx − lϕ)
 dx

+k
∫ L

0
s2( f5,x − l f1)
 dx + k

∫ L

0
W [s2 f1]x dx

+kl
∫ L

0
s2
 f1 dx .

In addition, again integrating by parts and using (3.21),

I11 = − k0k

ρ1

∫ L

0
s′
2(wx − lϕ)ϕx dx

+ k0k

ρ1

∫ L

0
s2(wx − lϕ)ψx dx
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+ k0kl

ρ1

∫ L

0
s2(wx − lϕ)wx dx

+ iβk0

∫ L

0
s2(wx − lϕ)
 dx

+ k0l2

ρ1

∫ L

0
s2(wx − lϕ)(wx − lϕ) dx

− k0k2l

ρ1

∫ L

0
s2(wx − lϕ)η dx

+ k0

∫ L

0
s2(wx − lϕ) f2 dx,

and

I12 = −k0k

ρ1

∫ L

0
s′′
2 (wx − lϕ)ϕ dx

−k0k

ρ1

∫ L

0
s′
2(wx − lϕ)ϕx dx . (3.57)

Replacing the three last identities in (3.56),we arrive
at

2k2l

ρ1

∫ L

0
s2|ϕx + ψ + lw|2 dx

= iβ(k0 − k)

∫ L

0
s2(wx − lϕ)
 dx + I13 + I14 + I15

+ 2k2l

ρ1

∫ L

0
s2(ϕx + ψ + lw)(ψ + lw) dx, (3.58)

where

I13 = k
∫ L

0
W [s2 f1]x dx + kl

∫ L

0
s2
 f1 dx

+ k
∫ L

0
s2( f5,x − l f1)
 dx

− k2kl2

ρ1

∫ L

0
s2ηϕ dx + kl

∫ L

0
s2 f2ϕ dx

+ k2k

ρ1

∫ L

0
ηx [s2ϕ]x dx

+ k
∫ L

0
f6[s2ϕ]x dx − k0k2l

ρ1

∫ L

0
s2(wx − lϕ)η dx

+ k0

∫ L

0
s2(wx − lϕ) f6 dx,

I14 = k0kl2

ρ1

∫ L

0
s2(wx − lϕ)ϕ dx

− k0k

ρ1

∫ L

0
s2(wx − lϕ)ϕ dx

+ k0k

ρ1

∫ L

0
s2(wx − lϕ)ψx dx

+ k0kl

ρ1

∫ L

0
s2(wx − lϕ)wx dx

− k0k

ρ1

∫ L

0
s′′
2 (wx − lϕ)ϕ dx

− k0k

ρ1

∫ L

0
s′
2(wx − lϕ)ϕx dx

+ k20l

ρ1

∫ L

0
s2(wx − lϕ)(wx − lϕ) dx,

and

I15 = −2k2l

ρ1

∫ L

0
s′
2(ϕx + ψ + lw)ϕ dx .

Now, using theHölder, Poincaré andYoung inequal-
ities, along with Lemma 3.8,

|I13| ≤ C‖ηx‖2‖U‖H j

+C‖U‖H j ‖F‖H j + C‖F‖2H j
, (3.59)

for some constant C > 0 and j = 1, 2. Additionally,
from condition (3.51) on s2 and invoking again Hölder
and Poincaré’s inequalities,

|I14| ≤ C‖U‖H j

(∫ l0+ δ
2

l0− δ
2

|wx − lϕ|2 dx

)1/2
, (3.60)

for some constantC > 0 and j = 1, 2.Moreover, from
(3.20), (3.22), (3.24), and applyingHölder andYoung’s
inequalities,

|ReI15| ≤ C

|β|2 ‖U‖2H j

+ C

|β|2 ‖F‖H j , (3.61)

for some constant C > 0 and j = 1, 2. Going back to
(3.58), taking the real part, using (3.59), (3.60), (3.61),
and condition (3.51) on s2,

∫ l0+ δ
2

l0− δ
2

s2|ϕx + ψ + lw|2 dx

≤ C |β||k0 − k|
∫ l0+ δ

2

l0− δ
2

s2|wx − lϕ||
| dx

+ C‖ηx‖2‖U‖H j + C‖U‖H j(∫ l0+ δ
2

l0− δ
2

|wx − lϕ|2 dx

)1/2

+ C‖U‖H j ‖F‖H j + C‖F‖2H j

+ C

|β|2 ‖U‖2H j
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+ C
∫ l0+ δ

2

l0− δ
2

s2|ϕx + ψ + lw||ψ + lw| dx,

for some constant C > 0 and j = 1, 2. Finally, using
(3.22), (3.24),Hölder andYoung’s inequalities,we con-
clude that

∫ l0+ δ
2

l0− δ
2

s2|ϕx + ψ + lw|2 dx

≤ C |β||k0 − k|
∫ l0+ δ

2

l0− δ
2

s2|wx − lϕ||
| dx

+ C‖ηx‖2‖U‖H j + C‖U‖H j(∫ l0+ δ
2

l0− δ
2

|wx − lϕ|2 dx

)1/2

+ C‖U‖H j ‖F‖H j + C‖F‖2H j

+ C

|β|2 ‖U‖2H j
,

for some constant C > 0 and j = 1, 2. This concludes
the proof of (3.53). ��
Lemma 3.16 Under the above notations, there exists
a constant C > 0 such that

∫ l0+ δ
2

l0− δ
2

s2|
|2 dx

≤ C |β||k0 − k|
∫ l0+ δ

2

l0− δ
2

s2|wx − lϕ||
| dx + C‖U‖H j

(∫ l0+ δ
2

l0− δ
2

|wx − lϕ|2 dx

)1/2

+ C‖ηx‖2‖U‖H j + C‖U‖H j ‖F‖H j + C‖F‖2H j

+ C

|β|2 ‖U‖2H j
, (3.62)

for j = 1, 2.

Proof Taking the multiplier s2ϕ in (3.21), performing
integration by parts, using (3.20), and adding appropri-
ate terms, we get

∫ L

0
s2|
|2 dx

= −
∫ L

0
s2
 f1 dx + k

ρ1

∫ L

0
s′
2(ϕx + ψ + lw)ϕ dx

︸ ︷︷ ︸
:=I16

+ k

ρ1

∫ L

0
s2|ϕx + ψ + lw|2 dx

− k

ρ1

∫ L

0
s2(ϕx + ψ + lw)(ψ + lw) dx

︸ ︷︷ ︸
:=I17

− k0l

ρ1

∫ L

0
s2(wx − lϕ)ϕ dx

+ k2l

ρ1

∫ L

0
s2ηϕ dx −

∫ L

0
s2 f2ϕ dx . (3.63)

From (3.20), (3.22), (3.24), performing integration by
parts, and applying the Hölder and Young inequalities,

|ReI16| ≤ C

|β|2 ‖U‖2H j
+ C

|β|2 ‖F‖2H j
, (3.64)

for some constant C > 0 and j = 1, 2. In addition,
using (3.22), (3.24), the Hölder and Young inequali-
ties, and the condition (3.51) on s2, we infer

|I17| ≤ C
∫ l0+ δ

2

l0− δ
2

s2|ϕx

+ψ + lw|2 dx + C

|β|2 ‖U‖2H j

+ C

|β|2 ‖F‖2H j
, (3.65)

for some constant C > 0 and j = 1, 2.
Therefore, taking the real part in (3.63), using

Hölder’s inequality, and employing (3.64)-(3.65),
Lemma 3.15, and condition (3.51) on s2, we conclude

∫ l0+ δ
2

l0− δ
2

s2|
|2 dx

≤ C |β||k0 − k|
∫ l0+ δ

2

l0− δ
2

s2|wx − lϕ||
| dx

+ C‖U‖H j

(∫ l0+ δ
2

l0− δ
2

|wx − lϕ|2 dx

)1/2

+ C‖ηx‖2‖U‖H j + C‖U‖H j ‖F‖H j

+ C‖F‖2H j
+ C

|β|2 ‖U‖2H j
,

for some constant C > 0 and j = 1, 2, which proves
(3.62). ��
Corollary 3.17 Let ε > 0 be given. Under the above
results, we have:
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(i) If χ0 �= 0 in (3.14), then there exists a constant
Cε > 0 such that
∫ l0+ δ

3

l0− δ
3

(
|ϕx + ψ + lw|2 + |
|2

)
dx

≤ ε‖U‖2H j
+ Cε|β|4‖F‖2H j

. (3.66)

(i i) If χ0 = 0 in (3.14), then there exists a constant
Cε > 0 such that
∫ l0+ δ

3

l0− δ
3

(
|ϕx + ψ + lw|2 + |
|2

)
dx

≤ ε‖U‖2H j
+ Cε‖F‖2H j

. (3.67)

Proof Let ε > 0. Adding (3.53) and (3.62), using
Young’s inequality with ε > 0 and conditions (3.51)
and (3.52) on s2, we obtain

∫ l0+ δ
3

l0− δ
3

(|ϕx + ψ + lw|2 + |�|2) dx

≤ Cε|β|2|k0 − k|2
∫ l0+ δ

3

l0− δ
3

|wx − lϕ|2 dx + ε‖U‖2H j

+ Cε

∫ l0+ δ
2

l0− δ
2

|wx − lϕ|2 dx + C‖ηx‖2‖U‖H j

+ C‖U‖H j ‖F‖H j + C‖F‖2H j
+ C

|β|2 ‖U‖2H j
,

for some constants C, Cε > 0 and j = 1, 2. Again,
using Young’s inequality, fromLemma 3.8 and |β| > 1
large enough, we have

∫ l0+ δ
3

l0− δ
3

(|ϕx + ψ + lw|2 + |�|2) dx

≤ Cε|β|2|k0 − k|2
∫ l0+ δ

3

l0− δ
3

|wx − lϕ|2 dx + ε‖U‖2H j

Cε

∫ l0+ δ
2

l0− δ
2

|wx − lϕ|2 dx + Cε‖F‖2H j
, (3.68)

for some constant Cε > 0 and j = 1, 2.
Therefore, if χ0 �= 0, that is, k0 − k �= 0, we con-

clude from (3.41) and (3.68), using Young’s inequality
with ε > 0, and Lemma 3.8, that
∫ l0+ δ

3

l0− δ
3

(
|ϕx + ψ + lw|2 + |�|2

)
dx

≤ ε‖U‖2H j
+ Cε|β|4‖F‖2H j

,

for some constant Cε > 0 and j = 1, 2, which proves
the desired estimate (3.66). Now, if χ0 = 0, using

(3.41) and (3.68), Young’s inequality with ε > 0, and
Lemma 3.8, we obtain more easily

∫ l0+ δ
3

l0− δ
3

(
|ϕx + ψ + lw|2 + |�|2

)
dx

≤ ε‖U‖2H j
+ Cε‖F‖2H j

,

for some constant Cε > 0 and j = 1, 2, concluding
the estimate (3.67). ��

3.4 Conclusion of the proofs (completion)

From the previous sections, we have finally gathered all
ingredients to conclude the proofs ofTheorems3.2, 3.3,
and 3.5. For the sake of logistic, we are going to con-
clude initially Theorems 3.2 and 3.5, and then Theo-
rem 3.3.

3.4.1 Proof of Theorem 3.2

In this case, we have assumed χ0 �= 0. Thus, given
ε > 0, employing (3.66) togetherwith estimates (3.36),
(3.41), (3.50), and using Young’s inequality, we get

I δ
3

≤ ε‖U‖2H j
+ Cε|β|4‖F‖2H j

:= �, (3.69)

for some constant Cε > 0 and j = 1, 2, where we set
the notation

I δ
3

:=
∫ l0+ δ

3

l0− δ
3

(|ϕx + ψ + lw|2

+|
|2 + |ψx |2 + |�|2 + |wx − lϕ|2 + |W |2) dx .

(3.70)

This is the exact moment where we employ the
observability inequality provided in Sect. 2 through its
consequence given by Corollary 2.3.

Indeed, from the resolvent Eqs. (3.20)–(3.25) we
can see that V := (ϕ,
,ψ,�,w, W ) is a solution of
(2.11)-(2.16) with G := (g1, g2, g3, g4, g5, g6) given
by

g1 := f1, g2 := ρ1 f2 − k2lη, g3 := f3,

g4 := ρ2 f4 − k1ϑx , g5 := f5, g6 := ρ1 f6 − k2ηx .

In addition, considering

b1 := l0 − δ/3 and b2 := l0 + δ/3,

and taking into account the estimate (3.69), then we are
in conditions to apply Corollary 2.3, Lemma 3.8, and
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Young’s inequality, to arrive at

∫ L

0

(|ϕx + ψ + lw|2 + |
|2 + |ψx |2 + |�|2

+ |wx − lϕ|2 + |W |2)dx

≤ εC‖U‖2H j
+ Cε|β|4‖F‖2H j

,

for some constants C, Cε > 0 and j = 1, 2. Again
from Lemma 3.8, we have

‖U‖2H j
≤ εC‖U‖2H j

+ Cε|β|4‖F‖2H j
,

and choosing ε > 0 small enough we finally obtain

‖(iβ Id − A j )
−1F‖H j ≤ C |β|2‖F‖H j , |β| → +∞,

(3.71)

for some constant C > 0. From Lemma 3.7 and (3.71),
we conclude by virtue ofBorichev–Tomilov’s Theorem
(cf. [6, Theorem 2.4]) that

‖U (t)‖H j ≤ C

t1/2
‖U0‖D(A j ), t → +∞,

for U0 ∈ D(A j ), j = 1, 2, which proves (3.15) for
n = 1. The remaining decay rates in (3.15) follow by
using induction over n ≥ 2.

This completes the proof of Theorem 3.2. ��

3.4.2 Proof of Theorem 3.5

In this case, we have assumed χ0 = 0. Thus, given
ε > 0, invoking now the estimate (3.67) along with
(3.36), (3.41), and (3.50), we have

I δ
3

≤ ε‖U‖2H j
+ Cε‖F‖2H j

:= �, (3.72)

for some constant Cε > 0 and j = 1, 2, where I δ
3
is

given in (3.70). Similarly as done before, applying the
Corollary 2.3, Lemma 3.8, and Young’s inequality, we
deduce

∫ L

0

(|ϕx + ψ + lw|2 + |
|2 + |ψx |2 + |�|2

+ |wx − lϕ|2 + |W |2)dx ≤ εC‖U‖2H j
+ Cε‖F‖2H j

,

(3.73)

for some constants C, Cε > 0 and j = 1, 2. Combin-
ing Lemma 3.8 and (3.73), we obtain

‖U‖2H j
≤ εC‖U‖2H j

+ Cε‖F‖2H j
,

and taking ε > 0 small enough, we conclude

‖(iβ Id − A j )
−1F‖H j ≤ C‖F‖H j ,

|β| → +∞, j = 1, 2. (3.74)

Therefore, using once again Lemma 3.7 and (3.74),
we conclude the exponential decay (3.18) through
the classical Gearhart–Huang-Prüss characterization
of exponential stability of C0-semigroups on Hilbert
spaces (see, for instance, [25, Theorem 1.3.2]).

The proof of Theorem 3.5 is ended. ��

3.4.3 Proof of Theorem 3.3

Let us consider χ0 �= 0 and fix U0 ∈ D(A2). In order
to prove the desired optimality, we shall argue by con-
traction.

Indeed, let us suppose that there exists a constant
ν0 > 0 such that (3.16) holds true. Therefore, by tak-
ing ν = 2 − 2

1+2ν0
∈ (0, 2), we get the following

equivalent (to (3.16)) estimate

‖U (t)‖H2 ≤ C

t
1

2−ν

‖U0‖D(A2), t → +∞.

From this and equivalence coming from theBorichev–
Tomilov Theorem, cf. [6, Theorem 2.4], there exists a
constant C > 0 such that

1

|β|2−ν
‖(iβ Id − A2)

−1‖L(H2) ≤ C, |β| → +∞.

(3.75)

On the other hand, if given a bounded sequence
(Fμ)μ∈N ⊂ H2,we canfinda real sequence (βμ)μ∈N ⊂
R

+, satisfying lim
μ→∞ βμ = +∞, such that

lim
μ→+∞

1

|βμ|2−ν
‖(iβμ Id − A2)

−1Fμ‖H2 = +∞,

(3.76)

we conclude the desired contradiction with (3.75).
In what follows, we are going to proceed with the

proof of (3.76). W.l.o.g. let us take L = π and consider
Fμ ∈ H2 as

Fμ(x) =
(
0,

1

ρ1
sin(μx), 0, 0, 0, 0, 0, 0

)
, μ ∈ N.

Then, Fμ ∈ H2 and since iR ⊆ ρ(A2), let Uμ ∈
D(A2) be the solution of the resolvent equation

(iβμ Id − A2)Uμ = Fμ

⇔ Uμ = (iβμ Id − A2)
−1Fμ. (3.77)
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Rewriting (3.77) in terms of its components, where
denotingUμ := (ϕ,
,ψ,�,w, W, ϑ, η) andβμ := β

to simplify the notations, we get

iβϕ − 
 = 0,

iβρ1
 − k(ϕx + ψ + lw)x − k0l(wx − lϕ) + k2lη = sin(μx),

iβψ − � = 0,

iβρ2� − bψxx + k(ϕx + ψ + lw) + k1ϑx = 0,

iβw − W = 0,

iβρ1W − k0(wx − lϕ)x + kl(ϕx + ψ + lw) + k2ηx = 0,

iβρ3ϑ − γ1ϑxx + k1�x = 0,

iβρ4η − γ2ηxx + k2(Wx − l
) = 0.

From the first, third and fifth equations of the above
system, we can consider the following reduced system
in terms of ϕ,ψ,w, ϑ, η

− β2ρ1ϕ − k(ϕx + ψ + lw)x − k0l(wx − lϕ) + k2lη = sin(μx),

− β2ρ2ψ − bψxx + k(ϕx + ψ + lw)+ k1ϑx = 0,

− β2ρ1w − k0(wx − lϕ)x + kl(ϕx + ψ + lw) + k2ηx = 0,

iβρ3ϑ − γ1ϑxx + iβk1ψx = 0,

iβρ4η − γ2ηxx + iβk2(wx − lϕ) = 0. (3.78)

This is the precise moment where we need to work
with boundary conditions (3.8). In fact, due to the sym-
metry of the above system in compatibility with the
boundary conditions,we can look for solutions to (3.78)
of the form

ϕ = A sin(μx), ψ = B cos(μx), w = C cos(μx),

ϑ = D sin(μx), η = E sin(μx), x ∈ [0, π ],

where A = Aμ, B = Bμ, C = Cμ, D = Dμ and
E = Eμ will be determined later.

In this way, to solve (3.78) is equivalent to find a
solution (A, B, C, D, E) for the algebraic system

(−β2ρ1 + kμ2 + k0l2)A + kμB + (k + k0)lμC + k2l E = 1,

kμA + (−β2ρ2 + bμ2 + k)B + klC + k1μD = 0,

(k + k0)lμA + kl B + (−β2ρ1 + k0μ
2 + kl2)C + k2μE = 0,

−iβk1μB + (iβρ3 + γ1μ
2)D = 0,

−iβk2l A − iβk2μC + (iβρ4 + γ2μ
2)E = 0.
(3.79)

We denote the matrix of coefficients in (3.79) by

M =

⎛
⎜⎜⎜⎜⎝

P1 kμ (k + k0)lμ 0 k2l
kμ P2 kl k1μ 0

(k + k0)lμ kl P3 0 k2μ
0 −iβk1μ 0 P4 0

−iβk2l 0 −iβk2μ 0 P5

⎞
⎟⎟⎟⎟⎠

(3.80)

where

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P1 = −β2ρ1 + kμ2 + k0l2,
P2 = −β2ρ2 + bμ2 + k,

P3 = −β2ρ1 + k0μ2 + kl2,
P4 = iβρ3 + γ1μ

2,

P5 = iβρ4 + γ2μ
2,

(3.81)

are functions of β. Recalling that our goal is to evaluate
the behavior of

‖(iβ Id − A2)
−1Fμ‖H2 , μ → +∞,

let us note that

‖(iβ Id − A2)
−1Fμ‖2H2

= ‖Uμ‖2H2
≥ ρ1‖
‖22

= ρ1|β|2‖ϕ‖22 = π

2
ρ1|β|2|A|2.

Thus, we should evaluate the behavior of A when
μ → +∞. For this, using Cramer’s Rule, we have

A = det M1

det M
, (3.82)

where

M1 =

⎛
⎜⎜⎜⎜⎝

1 kμ (k + k0)lμ 0 k2l
0 P2 kl k1μ 0
0 kl P3 0 k2μ
0 −iβk1μ 0 P4 0
0 0 −iβk2μ 0 P5

⎞
⎟⎟⎟⎟⎠ .

Then, a simple calculation shows that

det M = P1P2P3P4P5 − k2μ2P3P4P5

− (k + k0)
2l2μ2P2P4P5 + iβk22μ

2P1P2P4

+ iβk21μ
2P1P3P5 − β2k21k22μ

4P1

− iβ(k + k0)
2k21l2μ4P5 + iβk22l2P2P3P4

− 2iβ(k + k0)k
2
2l2μ2P2P4

− iβk2k22μ
4P4 + 2β2(k + k0)k

2
1k22l2μ4

− β2k21k22l2μ2P3

+ 2(k + k0)k
2l2μ2P4P5

− k2l2P1P4P5 + 2iβk2k22l2μ2P4 − iβk2k22l4P4.

(3.83)
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and

det M1 = P2P3P4P5 + iβk22 P2P4 + iβk21μ
2P3P5

−β2k21k22μ
4 − k2l2P4P5. (3.84)

Now, choosing the sequence (βμ)μ∈N ⊂ R
+ such

that

βμ =
√

1

ρ1
(kμ2 + k0l2 − �), (3.85)

where � is a constant to be determined later, we get

det M �= 0 and det M1 �= 0,

for μ > 0 large enough. In addition, note that det M
and det M1 are polynomials in the variable μ of degree
≤ 10 and degree ≤ 8, respectively. Our intention is to
reduce the degree of det M without interfering in the
degree of det M1. Indeed, from (3.83) and (3.85), we
can analyze the first three terms of det M , which have
a higher degree,

P1P2P3P4P5 − k2μ2P3P4P5

− (k + k0)
2l2μ2P2P4P5

=
(

P1P2P3 − k2μ2P3

−(k + k0)
2l2μ2P2

)
P4P5.

From (3.81) and (3.85), we have

P1 =�,

P2 =
(

b − ρ2

ρ1
k

)
μ2 + k − ρ2

ρ1
k0l2 + ρ2

ρ1
�,

P3 = (k0 − k)μ2 + (k − k0)l
2 − �.

Now, in view of χ0 �= 0 in (3.14) and keeping in
mind (1.5)-(1.6), we get

k �= k0 ⇐⇒ I E �= I G ⇐⇒ b �= ρ2

ρ1
k.

Then, by setting χ := b − ρ2
ρ1

k, we also deduce that
χ �= 0, and thus

P1P2P3 − k2μ2P3 − (k + k0)
2l2μ2P2

≈ σ1μ
4 + σ2μ

3, σ1, σ2 > 0, μ → +∞,

where

σ1 = χχ0� − k2χ0 − l2(k + k0)
2χ.

Therefore, we pick up

� = k2χ0 + l2(k + k0)2χ

χχ0
,

in the sequence (βμ)μ∈N ⊂ R
+ given in (3.85), yields

det M ≈ σ3μ
7, σ3 > 0, μ → +∞,

det M1 ≈ σ4μ
8, σ4 > 0, μ → +∞.

From (3.82), we get

|Aμ| ≈ σ5μ, σ5 > 0, μ → +∞.

Therefore,

‖(iβμ Id − A2)
−1Fμ‖2H2

= ‖Uμ‖2H2

≥ π

2
ρ1|βμ|2|Aμ|2 → +∞, μ → +∞, (3.86)

which implies

|βμ|ν−2‖(iβμ Id − A2)
−1Fμ‖H2

≥
√

π

2
ρ1|βμ|ν−1|Aμ| ≈ σ6μ

ν, σ6 > 0, μ → +∞,

that is,

lim
μ→+∞

1

|β|2−ν
‖(iβμ Id − A2)

−1Fμ‖H2 = +∞.

This completes the proof of (3.76), which provides the
desired conclusion on optimality.

In particular, going back to (3.86) one sees that

lim
μ→+∞ ‖(iβμ Id − A2)

−1Fμ‖H2

= lim
μ→+∞ ‖Uμ‖H2 = +∞,

which ensures the lack of exponential stability of the
C0-semigroup {eA2t }onH2 ifχ0 �= 0, cf. [25,Theorem
1.3.2]. Hence, the semigroup solution U (t) = eA2tU0

is not exponentially stable as well.
This finishes the proof of Theorem 3.3. ��

4 Concluding remarks

Let us consider somefinal remarks onTheorems3.2, 3.3,
and 3.5 as follows, by clarifying the novelties of this
work. We also express some brief comments on the
linear physical modeling as well as on the connection
with nonlinear-related systems.

I. Polynomial stability. The semi-uniform polynomial
decay rate(
1

t

)n/2

, n ∈ N, (4.1)
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achieved in (3.15) for U0 ∈ D(A j
n) and χ0 �= 0 is the

same independently of the boundary conditions (3.7)
( j = 1) or (3.8) ( j = 2). Therefore, in both cases
w.r.t. boundary conditions, Theorem 3.2 constitutes an
improvement in the stability result [24, Theorem 4.1]
where the slower decay is obtained for n ∈ N:⎧⎪⎪⎨
⎪⎪⎩

ln t

(
ln t

t

)n/8

for (3.7),

ln t

(
ln t

t

)n/4

for (3.8).

Moreover, since the semi-uniform stability (4.1) is
the same whatever boundary condition is taken into
account, then Theorem 3.2 gives the precise answer to
the issue raised in [24, Remark 4.1] on the faster decay
rate for (3.8) than that one for case (3.7).

II. Optimality. Besides improving and clarifying the
statements in [24, Sect. 4.1], Theorem 3.3 states what
is the optimal polynomial decay rate in (3.15) for
U0 ∈ D(A2), namely, (4.1) for n = 1. In particu-
lar, the proof reveals us the lack of exponential sta-
bility as well as it prevents any other uniform decay
patterns (Corollary 3.4) when χ0 �= 0. Unfortunately,
since the technique employed in the proof of Theo-
rem 3.3 requires compatibility between the symmetry
of the system and boundary conditions, the optimal-
ity only works for the mixed boundary condition (3.8).
An analogous approach does not work well for (3.7).
However, due to the conservative nature of both bound-
ary conditions, one might expect the optimality in case
(3.7). This fact is still open.

III. Exponential stability. Although Theorem 3.5 is
already proved in [24, Theorem 3.1] when χ0 = 0,
here we consider it as a complementary result by the
simple fact that it can be extended to any other bound-
ary conditions, some exemplified below. Indeed, the
main advantage of computations provided in Sect. 3.3
relies on the fact that all localized estimates are given
bymeans of auxiliary cut-offmultipliers, and no further
information on boundary point-wise terms is required.
This is quite different from the proofs by contradictions
arguments presented in [24, Sect. 3], see for instance
on pages 63-64, wherein the case of the boundary con-
dition (3.7), the convergence of boundary terms must
be analyzed in (3.26) therein.

IV. Boundary conditions. It is worth mentioning again
that all local estimates in Sect. 3.3 are independent of
any boundary conditions. As a consequence, no bound-
ary point-wise terms must be handled and the proofs
as in Sect. 3.4 will follow in the same way. Hence,
the polynomial and exponential stability, namely, The-
orems 3.2 and 3.5, respectively, can be similarly repro-
duced for other boundary conditions. Among them, we
highlight the followingwhere the existence result holds
true.

ϕ(x, t) = ψx (x, t) = w(x, t) = ϑ(x, t)

= ηx (x, t) = 0, x ∈ {0, L}, t ≥ 0,

ϕ(x, t) = ψ(x, t) = wx (x, t) = ϑx (x, t)

= η(x, t) = 0, x ∈ {0, L}, t ≥ 0,

ϕ(x, t) = ψ(x, t) = w(x, t) = ϑx (x, t)

= ηx (x, t) = 0, x ∈ {0, L}, t ≥ 0,

ϕx (x, t) = ψ(x, t) = w(x, t) = ϑ(x, t)

= η(x, t) = 0, x ∈ {0, L}, t ≥ 0,

ϕx (x, t) = ψ(x, t) = w(x, t) = ϑx (x, t)

= ηx (x, t) = 0, x ∈ {0, L}, t ≥ 0,

ϕx (x, t) = ψ(x, t) = w(x, t) = ϑ(x, t)

= ηx (x, t) = 0, x ∈ {0, L}, t ≥ 0,

ϕx (x, t) = ψ(x, t) = w(x, t) = ϑx (x, t)

= η(x, t) = 0, x ∈ {0, L}, t ≥ 0,

and variations so on.Moreover, any othermixed bound-
ary conditions such as Dirichlet (or Neumann) at x = 0
and Neumann (or Dirichlet) on x = L can be also con-
sidered provided that the existence (in particular the
dissipative condition (3.13)) is satisfied.

V. Invariance. Under the above statements, one sees
that Theorem 3.2 (for χ0 �= 0) and Theorem 3.5 (for
χ0 = 0) are invariant with respect to boundary condi-
tions linked to the thermoelastic Bresse system (3.1)-
(3.5). We recall that (3.1)-(3.5) represents the Bresse
system with temperature deviations along the longitu-
dinal and vertical directions, here with couplings on
the axial force and bending moment as a first case. In
addition, we advance that in the next two forthcoming
works of the trilogy the analogous results (to Theo-
rems 3.2 and 3.5) will be proved for Bresse systems
with thermal couplings on the shear force and bend-
ing moment (second case) and also on the shear and
axial forces (third case). Therefore, we will be able to
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conclude that the results on polynomial and exponen-
tial stability of the whole three cases are invariant not
only under the boundary conditions but also under the
thermal couplings on two displacements of the system.

VI. Physical setup. We also stress that a deep physical
setting (including visual interpretations) of the three
aforementioned thermoelastic couplings, namely,

• axial force and bending moment (related to prob-
lem (1.1));

• shear force and bending moment (coming case);
• shear and axial forces (final case);

will be provided in the last related paper of the trilogy,
where a precise justification of the linear thermoelas-
tic models will be made by means of constitutive laws
in mathematical-physics. To this purpose, we shall use
the theory developed by [22,23] in combination with
the classical Bresse model, see [7], whose governing
equations are verywell-known, see for instance [28,29]
(Eqs. (1.1)–(1.3) therein), among several others. For a
nice picture describing the variables of the Bresse sys-
tem, we refer to [10,14] (Fig. 1 therein).

VII. Nonlinear generalizations. Aswe know, the linear
thermoelastic Bresse systems can be derived by them-
selves with no mention to a more general nonlinear
configuration. However, as mentioned in the introduc-
tion the thermoelastic problem (1.1) (among others)
can also be seen as a linear system coming from more
general nonlinear settings. Indeed, relevant nonlineari-
ties could appear in the modeling of thin thermoelastic
curved beams when forces like twist and warping are
taken into account. For example, in [22, Sects. 3–5]
a list of nonlinear thermoelastic Bresse beams is pre-
sented along the sections under several situations. See
also [23, Chapt. III]. Therefore, potential generaliza-
tions of (1.1) include nonlinear problems that could be
studied by regarding a more refined nonlinear analy-
sis on the dynamics of solutions. Other ways to con-
nect problem (1.1) with nonlinear thermoelastic Bresse
systems is to consider a similar approach as in [14].
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