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Abstract

In this paper, motivated by recent papers on the stabilization of evolution problems with nonlocal de-
generate damping terms, we address an extensible beam model with degenerate nonlocal damping of 
Balakrishnan-Taylor type. We discuss initially on the well-posedness with respect to weak and regular so-
lutions. Then we show for the first time how hard is to guarantee the stability of the energy solution (related 
to regular solutions) in the scenarios of constant and non-constant coefficient of extensibility. The degen-
eracy (in time) of the single nonlocal damping coefficient and the methodology employed in the stability 
approach are the main novelty for this kind of beam models with degenerate damping.
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1. Introduction

In the recent paper by Pucci and Saldi [41], the following Kirchhoff system governed by the 
fractional p-Laplacian operator and nonlocal damping is considered⎧⎪⎨⎪⎩

utt + (−�)spu + μ|u|p−2u + �(t)M
([u]ps

) |ut |p−2 ut

+Q(t, x,u,ut ) + f (t, x,u) = 0 in R+
0 × �,

u = 0 on R+
0 × (Rn\�) ,

(1.1)

where � is a bounded domain of Rn (n > ps), u = (u1, . . . , uN) represents a vectorial displace-
ment (N ≥ 1), μ ≥ 0, the p-Laplacian is defined by

(−�)spϕ(x) =
ˆ

Rn

|ϕ(x) − ϕ(y)|p−2[ϕ(x) − ϕ(y)]
|x − y|n+ps

dy

for any function ϕ ∈ C∞
0 (�), Q represents a nonlinear damping and f is an external force both 

given under suitable assumptions, � is a non-negative scalar function lying in L1
loc

(
R+

0

)
, M is 

a dissipative (possibly degenerate) function under proper conditions, and the bracket [u]s is a 
nonlocal term given by

[u]s =
⎛⎜⎝‖u‖p

� + 2
ˆ

�

|u(x)|pdx

ˆ

Rn\�
|x − y|−(n+ps)dy

⎞⎟⎠
1/p

, (1.2)

where ‖ · ‖� represents the fractional Gagliardo norm given by

‖u‖� =
⎛⎝ ¨

�×�

|u(x) − u(y)|p|x − y|−(n+ps)dxdy

⎞⎠1/p

for all u ∈ W
s,p

0

(
�;RN

)
. For precise details on the functional spaces, we refer to [41, Section 2]. 

We still refer to Pan et al. [39] for other types of degenerate Kirchhoff waves involving the 
fractional Laplacian with nonlinear damping and source terms.

Under the above statements, one sees that the nonlocal nonlinear damping term expressed by 
�(t)M

([u]ps
) |ut |p−2 ut is a prototype of possibly degenerate dissipation to the system, where 

the nonlocal term is driven by (1.2). Consequently, the stability results have revealed to be very 
intricate concerning problem (1.1). For global and local asymptotic stability results with respect 
to (1.1), we refer [41, Sections 3 and 4].

Motivated by the inspiring work [41], and since the stability of evolution models by means 
of nonlocal damping terms (which could be physically well established) has been attracted the 
attention recently of several researchers, we consider here a different evolution problem whose 
nonlocal degenerate damping term comes from a different prototype of dissipative systems. In-
deed, as designed below, we extract a nonlocal extensible beam equation from the Balakrishnan-
Taylor theory whose model is governed by the bi-harmonic operator. Therefore, when compared 
to [41], we provide a different technique in order to deal with the corresponding stability result, 
which is the main novelty for this kind of beam systems with degenerate damping.
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1.1. The nonlocal model

In 1989 Balakrishnan and Taylor [5] proposed the following new model for flight structures 
with nonlinear nonlocal damping in the one dimensional case

utt − 2ζ
√

λuxx + λuxxxx − γ

⎡⎣ L̂

−L

(
λ|uxx |2 + |ut |2

)
dx

⎤⎦uxxt = 0, (1.3)

where u = u(x, t) represents the transversal deflection of a beam with length 2L > 0 in the rest 
position, γ > 0 is a (small) damping coefficient, ζ is a constant appearing in the approximation 
of Krylov-Bogoliubov and λ = 2ζw

σ 2 with w being the mode frequency and σ 2 the spectral density 
of a Gaussian external force. We refer to [5, Sect. 4] for the modeling of (1.3) (see eq. (4.2) with 
q = 1 therein). The stability of (1.3) is very little known in the literature once we must deeply 

analyze the character of the degenerate nonlocal damping −γ
[´ L

−L

(
λ|uxx |2 + |ut |2

)
dx

]
uxxt . 

We observe that the latter is a damping with two nonlocal components. Since γ is small, then 
neglecting the nonlocal term corresponding to the velocity, problem (1.3) turns into the following 
equation

utt − 2ζ
√

λuxx + λuxxxx − γ λ

⎡⎣ L̂

−L

|uxx |2 dx

⎤⎦uxxt = 0. (1.4)

Moreover, in order to consider a more challenging work (at least from stability point of view), 
it would be relevant to take a nonlocal frictional damping instead of the viscous one in (1.4). In 
this direction, we may also consider the following beam model with nonlocal frictional damping

utt − 2ζ
√

λuxx + λuxxxx + γ λ

⎡⎣ L̂

−L

|uxx |2 dx

⎤⎦ut = 0. (1.5)

Our main goal in this paper is to analyze the stability of both degenerate problems (1.4) and 
(1.5), paying more attention to the case where nonlocal frictional damping is taken into account. 
More precisely, we shall consider the above models (1.4) and (1.5) in the N -dimensional case 
with extensibility coefficient 2ζ

√
λ replaced by a nonlocal function (encompassing the constant 

case) and normalizing the remaining constants because they do not change the core of the com-
putations, namely, we study the model

utt + �2u − M
(
||∇u||22

)
�u + ||�u||22 Aut = 0 in � × (0,∞), (1.6)

with A = −� or A = I (identity), where � is a bounded domain of RN with smooth boundary 
∂�, || · ||2 stands for the norm in L2(�) and M corresponds to a non-constant function of ex-
tensibility which appears in models of extensible beams, see e.g. Woinowsky-Krieger [52] and 
Berger [14].

To our best knowledge, there is no result on stability for the degenerate beam model (1.6). 
Below we consider the literature on related problems.
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1.2. A related literature overview

The stabilization of systems like (1.6) is considered by some authors just in the case of non-
degenerate damping. In fact, in Lange and Perla Menzala [35], Cavalcanti et al. [18], Jorge Silva 
and Narciso [30,31], are considered some beam/plate models with the following nonlocal damp-
ing

N(‖∇u‖2
2)ut , (1.7)

where N > 0 is assumed to be a C1-function on [0, ∞). In all these works the damping coeffi-
cient N is bounded from below, that is, there exists a constant λ0 > 0 such that N(s) ≥ λ0, s ≥ 0, 
which implies that a full damping is taken into account. In such cases, as provided in [31, Remark 
7], we can easily conclude the uniform stabilization of the energy by using multipliers. For papers 
dealing with asymptotic behavior of beam/plate models by using standard linear or nonlinear full 
damping we also refer to [6–8,18,19,23–25,34,38,50,51,54] and references therein. But this is not 
our situation once we are considering a beam equation with degenerate damping (in time) and the 
multiplier technique is not enough to achieve the stability of the energy solution of (1.6). Indeed, 
trying direct computations in the present case we are not able to estimate “bad” terms in terms of 
the damping 

´ T

0 ||�u(t)||22||∇ut (t)||22 dt in the case A = −� or 
´ T

0 ||�u(t)||22||ut (t)||22 dt in the 
case A = I when dealing with (1.6). This statement is clarified in Appendix A at the end of this 
article. There, we also note that the same difficulty also appears in the case of wave models with 
degenerate nonlocal damping.

On the other hand, for papers concerning beam models with locally distributed damping in 
the spatial variable, a pioneer work we found is due to Tucksnak [49] where it is considered the 
following problem

utt + �2u − b ||∇u||22 �u + a(x)ut = 0 in � × (0,∞), (1.8)

where b > 0 is a constant and a ∈ L∞(�), a(x) ≥ 0 a.e. in �. Assuming that there exists an 
open set ω ⊂ � and a0 > 0 such that

ω ⊂ {x ∈ �; a(x) ≥ a0 > 0}

satisfies proper geometrical hypotheses (see assumptions (A1)-(A2) on p. 899 in [49]), the 
author shows the exponential stabilization of (1.8) when initial data are uniformly bounded 
in the weak phase space, see for instance [49, Theorem 3.1]. The proof relies on a (direct) 
multiplier technique that also generates “bad” terms unquantified by a damping of the form ´ T

0 ||�u(t)||22||ut (t)||22 dt , which is our case. We refer again Appendix A for the reader’s conve-
nience. This comes from the fact that our damping is not locally distributed in the spatial variable 
or even degenerates in some points of the domain � as considered in the papers by Tucsnak et al. 
[1,2,9,49], Pazoto et al. [46,20], Tebou [48], Bucci and Toundykov [16], Han and Wang [29], Bor-
tot et al. [15], Geredeli and Webster [28], Wu [53] and Khanmamedov et al. [47,3], among others. 
Therefore, the uniform stability of beam models with degenerate nonlocal damping ||�u(t)||22ut

seems to be a hard task.
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1.3. The main stability result

In order to overcome the above negative attempts in finding multipliers to show the stabiliza-
tion of the energy Eu(t) associated with (1.6) we have used similar ideas as given in Dehman et 
al. [26,27] and inspired in the recent work by Cavalcanti et al. [17] for wave models. Our main 
result is given in Theorem 3.1 that states: In the case of constant coefficient of extensibility (say 
M ≡ c > 0), then for every R > 0, there exist constants K = K(R) > 0 and γ = γ (R) > 0 such 
that inequality

Eu(t) ≤ K Eu(0) e−γ t , t > 0, (1.9)

holds for every regular solution u of problem (1.6) with initial data (u0, u1) satisfying

‖(u0, u1)‖(H 4(�)∩H 2
0 (�))×H 2

0 (�) ≤ R.

In addition, in the case of non-constant extensibility coefficient, we still prove that the energy 
Eu(t) is stable when t goes to infinity, that is,

Eu(t) −→ 0 as t → ∞. (1.10)

Actually, this is a local stability result since (1.9) and (1.10) are only uniform on every ball with 
radius R > 0 in the strong topology (H 4(�) ∩ H 2

0 (�)) × H 2
0 (�), but they are not independent 

of the initial data. The only drawback we have is that we are not able to prove this local stability 
result in the weak topology H 2

0 (�) ×L2(�) by taking initial data uniformly bounded in H 2
0 (�) ×

L2(�), as considered e.g. in [26,27]. However, it seems to be the pioneer result for such kinds of 
nonlocal damped beam models whose degeneracy of the damping coefficient depends upon the 
solution in time. The methodology used in its proof was inspired by [17] where an observability 
inequality is proved relying on contradiction arguments. In Section 3 we give a detailed proof of 
these statements.

1.4. An additional literature overview

It is also worth mentioning that there are some papers addressing plate models with nonlin-
ear displacement-dependent damping σ(u)ut , where σ ∈ C1(R) is a positive function. See, for 
instance, Kolbasin [33], Chueshov and Kolbasin [21,22] and Khanmamedov [32] where the au-
thors study the long-time dynamics of a class of plate models with (strictly) positive damping 
coefficient, which is not our case. On the other hand, in what concerns nonlinear wave models 
with (possibly) degenerate damping we refer to articles by Barbu et al. [10–13] where their re-
sults are mainly given with respect to existence, uniqueness and blow up of solutions. Indeed, in 
[13] it is considered the model

utt − �u + |u|k∂j (ut ) = |u|p−1u in � × (0, T ), T > 0,

where j is a continuous convex function defined on R and ∂j is its sub-differential operator. 
According to the authors the damping term degenerates which contrasts to the existing litera-
ture. Under suitable conditions on function j and parameters k and p, they prove existence and 
uniqueness of weak and regular solutions. In addition, the last issue approached in [13] deals 
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with blow up of the weak solution in a finite time, see e.g. [13, Theorem 1.13]. Therefore, we 
can not compare our stability result to their nonexistence of global solution result.

We finish this introduction with remarkable earlier problems we found in the literature con-
cerning dissipations degenerating explicitly in time. In fact, to this matter we refer the papers by 
Autuori and Pucci [4], Martinez [37], Pucci and Serrin [42–45]. For instance, in [37] the author 
studies the following semilinear wave equation with a time-dependent damping

utt − �u + ρ(t, ut ) = 0 in � ×R+ and u = 0 in ∂� ×R+. (1.11)

It is assumed the following condition on the damping term ρ: there exist a non-increasing func-
tion σ(t) and a strictly increasing odd function g(v) such that ρ(t, v) satisfies

σ(t)g(|v|) ≤ |ρ(t, v)| ≤ g−1
( |v|

σ(t)

)
, ∀ t ≥ 0, ∀ v ∈ R. (1.12)

We note that assumption (1.12) has its degeneracy in time through function σ(t) but not on 
σ(u(t)) (where u(x, t) is the solution of (1.11)) as in the present work. Explicit decay rates 
estimates can be seen in [37, Theorem 1]. A similar result on stability can be seen in [42, Theorem 
3.1], but without an explicit decay rate as in (1.10). Analogous results are proved by Pucci et al. 
[4,43–45] in the same direction. However, their arguments are not useful in the present problem 
since degeneracy upon the solution in time concerns another kind of dissipation. Summarizing, it 
seems that stability results for beam models with Balakrishnan-Taylor damping like in (1.6) are 
not explored in the literature so far, unless the wave equation recently addressed by Cavalcanti et 
al. [17] where the degenerate damping coefficient depends upon the average of the gradient of u
like (1.7).

The remaining paper is organized as follows. In section 2 we prove the well-posedness to 
problem (1.6) in the case A = I . In Section 3 we prove the stability of the corresponding energy 
Eu(t) for regular solutions of (1.6). The case A = −� is analyzed at the end of this paper (see 
Remark 2) as a simpler case than the first one. We end this paper with Appendix A to clarify our 
difficulty in finding multipliers for degenerate nonlocal wave and beam models.

2. Well-Posedness

In this section we address the well-posedness to the following extensible beam model with 
degenerate nonlocal weak damping⎧⎪⎨⎪⎩

utt + �2u − M
(
||∇u||22

)
�u + ||�u||22 ut = 0 in � × (0,∞),

u = ∂νu = 0 on ∂� × (0,∞),

u(x,0) = u0(x), ut (x,0) = u1(x), x ∈ �,

(2.1)

where � is a bounded domain of RN with smooth boundary ∂�, ∂ν represents the normal deriva-
tive and M(·) corresponds to the extensibility coefficient. Throughout this paper we use the 
following notations on the function spaces

Lp(�), ||u||pp =
ˆ

|u(x)|p dx, p ≥ 1;

�
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L2(�), (u, v) =
ˆ

�

u(x)v(x) dx, ||u||22 =
ˆ

�

|u(x)|2 dx;

H 1
0 (�), (u, v)H 1

0 (�) = (∇u,∇v) , ||u||H 1
0 (�) = ||∇u||2 ,

H 2
0 (�), (u, v)H 2

0 (�) = (�u,�v) , ||u||H 2
0 (�) = ||�u||2 .

The parameter λ1 > 0 corresponds to the following embedding inequalities:

||u||22 ≤ λ−1
1 ||�u||22, ||∇u||22 ≤ λ

−1/2
1 ||�u||22, ∀ u ∈ H 2

0 (�). (2.2)

We also set the following phase spaces

H = H 2
0 (�) × L2(�), ‖(u, v)‖2

H = ‖�u‖2
2 + ‖v‖2

2,

H1 = (H 4(�) ∩ H 2
0 (�)) × H 2

0 (�), ‖(u, v)‖2
H1

= ‖�2u‖2
2 + ‖�v‖2

2.

The following assumption on M is considered:

Assumption 2.1. M ∈ C1([0, ∞)) with M(τ) ≥ −β1 for all τ ≥ 0, where 0 ≤ β1 < λ
1/2
1 .

The well-posedness of problem (2.1) can be stated analogously to the papers [18,30,31]. More 
precisely, we have:

Theorem 2.1 (Well-Posedness - Part I). Under Assumption 2.1 we have:

(i) If (u0, u1) ∈ H, then problem (2.1) has a unique weak solution in the class

(u,ut ) ∈ C([0, T ],H) and utt ∈ L∞(0, T ;H−2(�)), ∀ T > 0.

(ii) If (u0, u1) ∈ H1, then problem (2.1) has a unique regular solution in the class

(u,ut ) ∈ L∞(0, T ;H1) ∩ C([0, T ],H) and utt ∈ L∞(0, T ;L2(�)), ∀ T > 0.

Remark 1. The proof of Theorem 2.1 can be done through Faedo-Galerkin method by following 
similar arguments as in Cavalcant et al. [18,19] or Jorge Silva and Narciso [30,31]. However, is 
this work we give an alternative (and more dynamic) proof of the Hadamard well-posedness of 
(2.1) by using semigroup approach as follows.

2.1. Semigroup solution

We first consider the abstract Cauchy problem related to (2.1). Indeed, denoting by U the 
vector-valued function

U = (u, v) with v = ut ,

we can rewrite system (2.1) in the following first order problem
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{
Ut = AU + B(U), t > 0,

U(0) = (u0, u1) := U0,
(2.3)

where A : D(A) ⊂ H → H is a linear operator defined by

AU =
(

v

−�2u

)⊥
, U = (u, v) ∈ D(A) = H1, (2.4)

and B : H →H is the nonlinear operator

B(U) =
(

0
M

(||∇u||22
)
�u − ||�u||22 v

)⊥
, U = (u, v) ∈H. (2.5)

Thus, the well-posedness result for (2.3), and consequently for the system (2.1), reads as 
follows:

Theorem 2.2 (Well-Posedness - Part II). Under Assumption 2.1 we have:

(i) If U0 ∈ H, then there exists Tmax > 0 such that problem (2.3) has a unique mild solution 
U ∈ C([0, Tmax), H), which is given by

U(t) = eAtU0 +
tˆ

0

eA(t−s)B(U(s)) ds, t ∈ [0, Tmax).

(ii) If U0 ∈ D(A), then the above mild solution U is regular one.

In both cases, we have that Tmax = +∞.

Proof. It is simple to prove that A : D(A) ⊂ H → H given in (2.4) is the infinitesimal generator 
of a C0-semigroup of contractions eAt and, in view of Assumption 2.1, B : H → H defined in 
(2.5) is a locally Lipschitz continuous operator on H. Hence, the proof of (i)-(ii) follows as an 
immediate consequence of Theorems 1.4 and 1.6 in Pazy’s book [40, Chapter 6].

Remains to check that both mild and regular solutions are globally defined, that is, Tmax =
+∞. Indeed, the energy functional Eu(t) = E(u(t), ut (t)) associated with problem (2.1) is given 
by

Eu(t) = 1

2
‖�u(t)‖2

2 + 1

2
‖ut (t)‖2

2 + 1

2
M̂

(
||∇u(t)||22

)
, t ≥ 0, (2.6)

where M̂(τ ) := ´ τ

0 M(s) ds is the primitive of M . Then, a straightforward computation gives

d

dt
Eu(t) = −||�u(t)||22||ut (t)||22 ≤ 0, (2.7)

from where it follows that Eu(t) is non-increasing with Eu(t) ≤ Eu(0) for all t ∈ [0, Tmax). 
Moreover, from Assumption 2.1, the initial energy Eu(0) is a constant depending only on initial 
data in H and also, from (2.2), we obtain
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Eu(t) ≥ β

2
‖�u(t)‖2

2 + 1

2
‖ut (t)‖2

2 ≥ β

2
‖U(t)‖2

H,

where β = 1 − β1λ
−1/2
1 > 0, that is,

β

2
‖U(t)‖2

H ≤ Eu(t) ≤ Eu(0), ∀ t ∈ [0, Tmax). (2.8)

Estimate (2.8) implies that any (regular or mild) solution is globally bounded in time. Therefore, 
from Pazy [40, Theorem 1.4] we conclude that Tmax = +∞.

The proof of Theorem 2.2 is now complete. �
3. Stability

In this section we prove the stability and exponential stability (depending on the extensibility 
coefficient M) of the energy Eu(t) set in (2.6) corresponding to regular solutions of (2.1). We 
also consider the following “linear” energy El

u(t) coming from (2.1) when M ≡ 0, namely,

El
u(t) := 1

2
‖�u(t)‖2

2 + 1

2
‖ut (t)‖2

2 = 1

2
‖U(t)‖2

H, t ≥ 0. (3.1)

Before stating our main result on exponential stability we establish a Lemma that provides a rela-
tionship between the energy Eu(t) and linear energy El

u(t). To do so, we consider the following 
additional assumption on M and its primitive M̂ .

Assumption 3.1. M and M̂ satisfy

M̂(τ ) ≤ M(τ)τ + β1τ for all τ ≥ 0,

where 0 ≤ β1 < λ
1/2
1 .

Lemma 3.1. Under Assumptions 2.1 and 3.1, the following inequalities hold:

βEl
u(t) ≤ Eu(t) ≤ β0E

l
u(t), t ≥ 0, (3.2)

for any (mild or regular) solution u of (2.1), where β = 1 − β1λ
−1/2
1 > 0 and

β0 = 1 + β1λ
−1/2
1 + 2λ

−1/2
1 max

τ∈I0
|M(τ)| with I0 := [

0,2β−1λ
−1/2
1 Eu(0)

]
. (3.3)

Proof. The first inequality in (3.2) follows promptly from (2.8) and (3.1). The second one is a 
consequence of (2.2), (2.8) and Assumption 3.1. �

Our main result ensures that the energy Eu(t) is (exponential) stable for every regular solution 
whose initial data is taken uniformly bounded in the regular phase space H1.
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Theorem 3.1. Let Assumptions 2.1 and 3.1 be in force. If M(s) = c, where c is a positive 
constant, then for every R > 0, there exist constants K = K(R) > 0 and γ = γ (R) > 0 such that

Eu(t) ≤ K Eu(0) e−γ t , ∀ t > 0, (3.4)

for every regular solution u with initial data satisfying ‖(u0, u1)‖H1 ≤ R. In addition, in case 
where M(s) is more general, the energy Eu(t) goes to zero as t goes to infinity, that is,

Eu(t) −→ 0 as t → ∞. (3.5)

Proof. Identity (2.7) implies that Eu(t) is non-increasing and verifies

Eu(T ) − Eu(0) = −
T̂

0

‖�u(t)‖2
2‖ut (t)‖2

2 dt, T > 0. (3.6)

Therefore, we claim that it is sufficient to prove the estimate

Eu(0) ≤ C

T̂

0

‖�u(t)‖2
2‖ut (t)‖2

2 dt, (3.7)

for some C > 0, for all T > 0, and every initial data verifying ‖(u0, u1)‖H1 ≤ R. Indeed, com-
bining (3.6) and (3.7), since Eu(T ) ≤ Eu(0), and recalling that the solution of (2.1) satisfies the
semigroup property, then the exponential decay (3.4) as well as the decay (3.5) will follow in a 
standard way. For the sake of the readers, these facts will be explained at the end of the proof. In 
what follows our aim is to prove (3.7).

We argue by contradiction. Let us suppose that (3.7) does not hold. Then, there exist a time 
T > 0 and a sequence of regular solutions un of (2.1) such that

Eun(0)´ T

0 ‖�un(t)‖2
2‖un

t (t)‖2
2 dt

−→ ∞ when n → ∞, (3.8)

with

‖(un
0, un

1)‖H1 ≤ R, n ∈N. (3.9)

Using Assumption 3.1 and (3.9) there exists a constant CR > 0 such that

Eun(0) ≤ CR, n ∈ N. (3.10)

From (3.8) and (3.10) it follows that

T̂

‖�un(t)‖2
2‖un

t (t)‖2
2 dt −→ 0 when n → ∞. (3.11)
0
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On the other hand, since we are dealing with regular solutions whose initial data are taken into 
uniformly bounded sets, then using standard Galerkin’s estimates (see e.g. [18,19,31]) we obtain

un ⇀ u weakly star in L∞(0, T ;H 4(�) ∩ H 2
0 (�)), (3.12)

un
t ⇀ ut weakly star in L∞(0, T ;H 2

0 (�)), (3.13)

un
tt ⇀ utt weakly star in L∞(0, T ;L2(�)). (3.14)

Moreover, in the particular case M(s) = c > 0, higher Galerkin estimates can be done globally 
in time, that is, one can replace T by ∞ in the limits (3.12)-(3.14). Indeed, in this situation we 
note that for each n the solution un satisfies⎧⎪⎨⎪⎩

un
tt + �2un − c�un + ||�un||22 un

t = 0 in � × (0,∞),

un = ∂νu
n = 0 on ∂� × (0,∞),

un(x,0) = un
0(x), un

t (x,0) = un
1(x), x ∈ �.

(3.15)

Taking the multiplies un
t , −�un

t and �2un
t with (3.15) in a Faedo-Galerkin scheme, and follow-

ing similar arguments as in [30,31], then standard computations yield

‖un
t (t)‖2

2 + ‖�un(t)‖2
2 + c‖∇un(t)‖2

2 + 2

tˆ

0

||�un(s)||22‖un
t (s)‖2

2ds

≤ ‖un
1‖2

2 + ‖�un
0‖2

2 + c‖∇un
0‖2

2,

‖∇un
t (t)‖2

2 + ‖∇�un(t)‖2
2 + c‖�un(t)‖2

2 + 2

tˆ

0

||�un(s)||22‖∇un
t (s)‖2

2ds

≤ ‖∇un
1‖2

2 + ‖∇�un
0‖2

2 + c‖�un
0‖2

2, (3.16)

‖�un
t (t)‖2

2 + ‖�2un(t)‖2
2 + c‖∇�un(t)‖2

2 + 2

tˆ

0

||�un(s)||22‖�un
t (s)‖2

2ds

≤ ‖�un
1‖2

2 + ‖�2un
0‖2

2 + c‖∇�un
0‖2

2,

and from (3.9) we obtain the uniform boundedness of higher order for solutions independent of 
time, which allows us to achieve the limits (3.12)-(3.14) on [0, ∞) with respect to time.

In addition, since embeddings H 4(�) ∩ H 2
0 (�) ↪→ H 2

0 (�) ↪→ L2(�) are compact, then ap-
plying Aubin-Lions Theorem and passing a subsequence if necessary, we also have

un → u strongly in L2(0, T ;H 2
0 (�)), (3.17)

un
t → ut strongly in L2(0, T ;L2(�)). (3.18)

Further, due to continuity of solutions and Arzelá-Ascoli Theorem, we infer
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||�un(·)||22 → ||�u(·)||22 uniformly in [0, T ], (3.19)

||un
t (·)||22 → ||ut (·)||22 uniformly in [0, T ]. (3.20)

Indeed, regarding convergences (3.12)-(3.14), we get

{||�un(·)||22}, {||un
t (·)||22} are bounded in H 2([0, T ]) ↪→ C1([0, T ]). (3.21)

Moreover, convergences (3.17)-(3.18) and the regularity of the functions un imply

||�un(t)||22 → ||�u(t)||22 for every t ∈ [0, T ], (3.22)

||un
t (t)||22 → ||ut (t)||22 for every t ∈ [0, T ]. (3.23)

Noting that d
dt

||�un(t)||22 = 2(�un(t), �un
t (t))| ≤ 2||�un(t)||2||�un

t (t)||2 and

||�un(t1)||22 − ||�un(t2)||22 =
t1ˆ

t2

d

ds
||�un(s)||22 ds, t1, t2 ∈ [0, T ],

then Galerkin’s estimates yield, for some positive constant L1,∣∣∣||�un(t1)||22 − ||�un(t2)||22
∣∣∣ ≤ L1|t1 − t2|, t1, t2 ∈ [0, T ]. (3.24)

Analogously, one has∣∣∣||un
t (t1)||22 − ||un

t (t2)||22
∣∣∣ ≤ L2|t1 − t2|, t1, t2 ∈ [0, T ]. (3.25)

The above estimates (3.21) and (3.24)-(3.25) show that {||�un(·)||22}, {||un
t (·)||22} are uniformly 

bounded and equicontinuous on [0, T ] and, therefore, in view of Arzelá-Ascoli Theorem together 
with convergences (3.22)-(3.23) establish the desired convergences (3.19)-(3.20). Therefore, in 
light of these uniformly limits (3.19)-(3.20) and the assumptions on M (see Assumptions 2.1
and 3.1) we have, in particular, the following convergence for t = 0:

lim
n→+∞Eun(0) = Eu(0) ≥ 0, (3.26)

where Eu(t), t ≥ 0, is the energy defined in (2.6), which is associated with the original problem 
(2.1). We note that we have two possibilities, namely, Eu(0) = 0 (where the limit solution has the 
energy equal identically zero) or else Eu(0) > 0 for non-trivial limit solution. But in both cases 
we are going to see that the desired contradiction happens. The first one (Eu(0) = 0) is more 
delicate and a normalization of the problem is necessary whereas the second one (Eu(0) > 0) it 
is easier to examine. In what follows, we will analyze these two cases separately.

Case 1. Limit solution with energy identically zero. In this case, let us first define the following 
sequences:

αn = [Eun(0)] 1
2 and vn = un

. (3.27)

αn
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Then, from (3.26) one has αn → 0. We also observe that for null initial data, the only solution is 
the trivial one and nothing needs to be done. Thus, to the next considerations we consider initial 
data (u0, u1) �= (0, 0). This implies that ‖�u0‖2

2 > 0 or else ‖u1‖2
2 > 0.

If we have ‖�u0‖2
2 > 0, then we choose ε0 > 0 small enough verifying ‖�u0‖2

2 > ε0 > 0. 
The uniform convergence (3.19) and the continuity of the map t �→ ‖�u(t)‖2

2 guarantee that for 
all η > 0 there exists T1 > 0 such that∣∣‖�un(t)‖2

2 − ‖�u0‖2
2

∣∣ < η, ∀ t ∈ [0, T1), ∀ n large enough.

In particular, considering η = ε0
2 > 0, we obtain

‖�un(t)‖2
2 >

ε0

2
> 0, ∀ t ∈ [0, T1), ∀ n large enough. (3.28)

Now, we observe that since un satisfies problem

un
tt + �2un − M

(
||∇un(t)||22

)
�un + ‖�un(t)‖2

2 un
t = 0, n ∈N, (3.29)

then, in view of (3.27), vn satisfies the following sequence of problems

vn
tt + �2vn − 1

αn

M
(
||∇un(t)||22

)
�un + ‖�un(t)‖2

2 vn
t = 0, n ∈N, (3.30)

with corresponding energies

Evn(t) = 1

2
‖�vn(t)‖2

2 + 1

2
‖vn

t (t)‖2
2 + 1

2αn
2 M̂

(
||∇un(t)||22

)
and linear one

El
vn(t) = 1

2
‖�vn(t)‖2

2 + 1

2
‖vn

t (t)‖2
2 = El

un(t)

αn
2 .

Similarly to (2.7) one can also check

d

dt
Evn(t) = −||�un(t)||22||vn

t (t)||22, t > 0. (3.31)

Firstly, we claim that there exists a constant 0 < C̃R < 1 such that

Evn(0) ≥ βC̃R > 0, ∀ n ∈ N. (3.32)

Indeed, using Assumption 2.1, (2.2) and (3.2), it follows that

Evn(t) ≥ β El
vn(t) = β

El
un(t)

2 ≥ β

(
1
)

El
un(t)

2 , ∀ t ≥ 0, n ∈N.

αn β0 αn

209



M.M. Cavalcanti, V.N. Domingos Cavalcanti, M.A. Jorge Silva et al. J. Differential Equations 290 (2021) 197–222
Thus, taking t = 0 in the above inequality and C̃R = 1
β0

> 0, the desired inequality (3.32) follows 
by noting that from (3.10) the constant β0 > 1 defined in (3.3) is finite.

On the other hand, combining (3.8) with (3.28) and definition of αn in (3.27), we infer

ε0

2

T1ˆ

0

‖vn
t (t)‖2

2 dt −→ 0 as n → ∞,

that is,

vn
t → 0 strongly in L2(0, T1;L2(�)). (3.33)

In addition, from inequality (3.2) and since Eun(t) ≤ Eun(0) we observe that

‖�vn(t)‖2
2 + ‖vn

t (t)‖2
2 = 2El

vn(t) = 2
El

un(t)

αn
2 ≤ 2

β

Eun(t)

αn
2 ≤ 2

β
, ∀ t ≥ 0, n ∈ N. (3.34)

Thus, passing to a subsequence if necessary, we have

vn ⇀ v weakly star in L∞(0, T1;H 2
0 (�)), (3.35)

vn
t ⇀ vt = 0 weakly star in L∞(0, T1;L2(�)), (3.36)

vn → v strongly in L2(0, T1;L2(�)). (3.37)

Now, multiplying (3.30) by ϕ(t)vn, where ϕ is defined in (3.44), and integrating over � ×(0, T1), 
we get the identity

−
T1ˆ

0

ˆ

�

ϕ′(t)vnvn
t dxdt −

T1ˆ

0

ˆ

�

ϕ(t)|vn
t |2 dxdt +

T1ˆ

0

ˆ

�

ϕ(t)|�vn|2 dxdt

+
T1ˆ

0

ˆ

�

ϕ(t)M(||∇un(t)||22)|∇vn|2 dxdt +
T1ˆ

0

ˆ

�

ϕ(t)‖�un(t)‖2
2 vnvn

t dxdt = 0,

where we omit the parameter (x, t) for convenience. Since {vn} is bounded in L2(0, T1; L2(�))

and {un} is bounded in L∞(0, T ; H 2
0 (�)), then passing the above expression to the limit and 

taking into account (3.33) we obtain

T1ˆ

0

ϕ(t)
[||�vn(t)||22 + M(||∇un(t)||22)||∇vn(t)||22

]
dt −→ 0.

Applying again Assumption 2.1 and (2.2) one has
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β

T1−εˆ

ε

||�vn(t)||22 dt ≤
T1ˆ

0

ϕ(t)
[||�vn(t)||22 − β1λ

−1/2
1 ||�vn(t)||22

]
dt

≤
T1ˆ

0

ϕ(t)
[||�vn(t)||22 + M(||∇un(t)||22)||∇vn(t)||22

]
dt −→ 0,

from where it follows

vn → 0 strongly in L2(0, T1;H 2
0 (�)). (3.38)

The strong limits (3.33) and (3.38) along with Assumption 3.1 are enough to obtain

T1ˆ

0

Evn(t) dt → 0 when n → ∞.

Going back to (3.31) and integrating it on [0, T1] it follows that

T1Evn(0) =
T1ˆ

0

Evn(t) dt +
T1ˆ

0

tˆ

0

||�un(s)||22||vn
t (s)||22 ds dt,

and from (3.8) it is easy to see that the last term of the above equality goes to zero when n → ∞. 
Therefore, Evn(0) → 0 which is a contradiction with (3.32).

It remains to analyze the situation ‖u1‖2
2 > 0. We will proceed similarly as above.

If ‖u1‖2
2 > 0, we choose ε1 > 0 such that ‖u1‖2

2 > ε1. From (3.20) and since the map t �→
‖ut (t)‖2

2 is also continuous, for all η > 0 there exists T1 > 0 such that

∣∣‖un
t (t)‖2

2 − ‖u1‖2
2

∣∣ < η, ∀ t ∈ [0, T1), ∀ n large enough.

In particular, choosing η = ε1
2 > 0, we obtain

‖un
t (t)‖2

2 >
ε1

2
> 0, ∀ t ∈ [0, T1), ∀ n large enough. (3.39)

Let us consider the same sequences (αn) and (vn) as defined in (3.27). Thus, we remember that 
(3.32) still holds once we are considering the same sequence vn. On the other hand, combining 
(3.8) and (3.39), and observing definitions of αn, vn in (3.27), it results

ε1

2

T1ˆ
‖�vn(t)‖2

2 dt −→ 0 when n → ∞,
0
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that is,

vn → 0 strongly in L2(0, T1;H 2
0 (�)). (3.40)

In addition, Evn(t) is bounded for all t ≥ 0 (see (3.34)) and then

vn ⇀ v = 0 weakly* in L∞(0, T1;H 2
0 (�)),

vn
t ⇀ vt weakly* in L∞(0, T1;L2(�)),

vn → 0 strongly in L2(0, T1;L2(�)).

Multiplying the following sequence of problems (namely, problem (3.30))

vn
tt + �2vn − 1

αn

M
(
||∇un(t)||22

)
�un + ‖�un(t)‖2

2 vn
t = 0

by ϕ(t)vn, where ϕ is defined in (3.44), and integrating over � × (0, T1), we have

−
T1ˆ

0

ˆ

�

ϕ′(t)vnvn
t dxdt −

T1ˆ

0

ˆ

�

ϕ(t)|vn
t |2 dxdt +

T1ˆ

0

ˆ

�

ϕ(t)|�vn|2 dxdt

+
T1ˆ

0

ˆ

�

ϕ(t)M(||∇un(t)||22)|∇vn|2 dxdt +
T1ˆ

0

ˆ

�

ϕ(t)‖�un(t)‖2
2 vnvn

t dxdt = 0.

Similar to (3.48) and from (3.40) we infer

T1ˆ

0

ˆ

�

ϕ(t)|�vn|2 dxdt +
T1ˆ

0

ˆ

�

ϕ(t)M(||∇un(t)||22)|∇vn|2 dxdt −→ 0,

and

T1ˆ

0

ˆ

�

ϕ′(t)vnvn
t dx,

T1ˆ

0

ˆ

�

ϕ(t)‖�un(t)‖2
2 vnvn

t dxdt −→ 0,

from where we conclude

vn
t → 0 strongly in L2(0, T1;L2(�)). (3.41)

The convergences (3.40)-(3.41) ensure that Evn(0) → 0, which is a contradiction with (3.32).
Hence, in both situations within the Case 1, we conclude that estimate (3.7) holds true.

Case 2. Limit solution with energy non identically zero. This is the easier case to be analyzed 
and from (3.26)-(3.27) one gets αn → α > 0 with α := [Eu(0)]1/2. We still note that for null 
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initial data, there is nothing to do. Thus, let us consider non-null initial data so that ‖�u0‖2
2 > 0

or ‖u1‖2
2 > 0.

If ‖�u0‖2
2 > 0, we pick up ε0 > 0 small enough so that ‖�u0‖2

2 > ε0 > 0. Then we remem-
ber that (3.28) can be taken into account and, therefore, going back to (3.11) and choosing T1
sufficiently small such that 0 < T1 ≤ T , we infer from (3.28) that

ε0

2

T1ˆ

0

‖un
t (t)‖2

2 dt −→ 0 when n → ∞,

that is,

un
t → 0 strongly in L2(0, T1;L2(�)). (3.42)

In this case, we just take the sequence of problems in un (no normalization is necessary)

un
tt + �2un − M

(
||∇un(t)||22

)
�un + ‖�un(t)‖2

2 un
t = 0, n ∈N, (3.43)

and the cut-off function ϕ ∈ C∞
0 (0, T1) satisfying

ϕ(t) ≥ 0, ϕ(t) = 1, t ∈ (ε, T1 − ε), 0 < ε < T1. (3.44)

Multiplying (3.43) by ϕ(t)un and integrating on � × (0, T1), we get

−
T1ˆ

0

ˆ

�

ϕ′(t)unun
t dxdt −

T1ˆ

0

ˆ

�

ϕ(t)|un
t |2 dxdt +

T1ˆ

0

ˆ

�

ϕ(t)|�un|2 dxdt

+
T1ˆ

0

ˆ

�

ϕ(t)M(||∇un(t)||22)|∇un|2 dxdt +
T1ˆ

0

ˆ

�

ϕ(t)‖�un(t)‖2
2 unun

t dxdt = 0,

where we omit the parameter (x, t) for convenience. Passing the above expression to the limit 
when n → ∞, noting that {un} is bounded in L2(0, T1; L2(�)) and in L∞(0, T1; H 2

0 (�)) and 
applying convergence (3.42), then it holds for every ε > 0 that

T1ˆ

0

ϕ(t)
[||�un(t)||22 + M(||∇un(t)||22)||∇un(t)||22

]
dt −→ 0.

From Assumption 2.1 we have M(||∇un(t)||22) ≥ −β1 on [0, ∞). Thus, using (2.2) and regarding 

that β = 1 − β1λ
−1/2

> 0, we obtain
1
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β

T1−εˆ

ε

||�un(t)||22 dt ≤
T1ˆ

0

ϕ(t)
[||�un(t)||22 − β1λ

−1/2
1 ||�un(t)||22

]
dt

≤
T1ˆ

0

ϕ(t)
[||�un(t)||22 + M(||∇un(t)||22)||∇un(t)||22

]
dt −→ 0,

as n goes to infinity. Therefore, due to arbitrariness of ε we conclude

un → 0 strongly in L2(0, T1;H 2
0 (�)). (3.45)

The limits (3.42) and (3.45), along with Assumption 3.1 and embedding H 2
0 (�) ↪→ H 1

0 (�), 
are sufficient to conclude that

T1ˆ

0

Eun(t) dt → 0 when n → ∞.

On the other hand, since (3.6) holds true for every solution un and time t > 0, then integrating 
it over [0, T1] we have

T1Eun(0) =
T1ˆ

0

Eun(t) dt +
T1ˆ

0

tˆ

0

‖�un(s)‖2
2‖un

t (s)‖2
2 ds dt. (3.46)

Taking into account (3.11) it is possible to check that the last term of (3.46) also goes to zero when 
n → ∞. This implies that Eun(0) → 0, which contradicts the condition Eun(0) = α2

n → α2 > 0.

If ‖u1‖2
2 > 0, we also choose ε1 > 0 such that ‖u1‖2

2 > ε1. In such case, we can also regard 
(3.39) to the next estimates. Indeed, from (3.39), returning to (3.11) and choosing (without loss 
of generality) 0 < T1 ≤ T , then

ε1

2

T1ˆ

0

‖�un(t)‖2
2 dt −→ 0 when n → ∞,

that is to say

un → 0 strongly in L2(0, T1;H 2
0 (�)). (3.47)

In addition, multiplying the sequence of problems

un
tt + �2un − M

(
||∇un(t)||22

)
�un + ‖�un(t)‖2

2 un
t = 0, n ∈N,

by ϕ(t)un, where the cut-off function ϕ is defined in (3.44) and integrating over � × (0, T1), 
yields
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−
T1ˆ

0

ˆ

�

ϕ′(t)unun
t dxdt −

T1ˆ

0

ˆ

�

ϕ(t)|un
t |2 dxdt +

T1ˆ

0

ˆ

�

ϕ(t)|�un|2 dxdt

+
T1ˆ

0

ˆ

�

ϕ(t)M(||∇un(t)||22)|∇un|2 dxdt +
T1ˆ

0

ˆ

�

ϕ(t)‖�un(t)‖2
2 unun

t dxdt = 0.

Since {un
t } is bounded in L2(0, T1; L2(�)) and {un} is bounded in L∞(0, T1; H 2

0 (�)), and taking 
the convergence (3.47) into account, then the first and last terms in the above identity go to zero 
when n → ∞. Moreover, from (2.2), Assumption 2.1 and (3.10), we obtain

0 ≤
T1ˆ

0

ˆ

�

ϕ(t)|�un|2 dxdt +
T1ˆ

0

ˆ

�

ϕ(t)M(||∇un(t)||22)|∇un|2 dxdt

=
T1ˆ

0

ϕ(t)
[||�un(t)||22 + M(||∇un(t)||22)||∇un(t)||22

]
dt (3.48)

≤ CR

T1ˆ

0

‖�un(t)‖2
2 dt −→ 0,

for some constant CR > 0. Then, it holds that

T1ˆ

0

ˆ

�

ϕ(t)|�un|2 dxdt +
T1ˆ

0

ˆ

�

ϕ(t)M(||∇un(t)||22)|∇un|2 dxdt −→ 0.

From the above convergences and due to the arbitrariness of ε it follows that

un
t → 0 strongly in L2(0, T1;L2(�)). (3.49)

Therefore, from (3.47)-(3.49) we obtain Eun(0) → 0 when n → ∞, which also contradicts the 
fact Eun(0) = α2

n → α2 > 0.
Hence, in both situations within the Case 2, we can also conclude that (3.7) holds true.

Completion of the proof. Fix T0 > 0. Then, from inequality (3.7) there exists a constant C =
C(R, T0) such that

Eu(0) ≤ C(R,T0)

T0ˆ

0

||�u(t)||22||ut (t)||22 dt. (3.50)

From the energy identity (2.7) yields
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T0ˆ

0

||�u(t)||22||ut (t)||22 dt = −Eu(T0) + Eu(0). (3.51)

Combining (3.50) and (3.51) and since Eu(T0) ≤ Eu(0) we infer

Eu(T0) (1 + C(R,T0)) ≤ C(R,T0)Eu(0),

from which we conclude that

Eu(T0) ≤
(

C(R,T0)

1 + C(R,T0)

)
Eu(0),

and, consequently, since the map t �→ Eu(t) is non-increasing we deduce

Eu(T ) ≤ γ1Eu(0), ∀T > T0, where γ1 :=
(

1

C̃0 + 1

)
, (3.52)

and C̃0 = C̃0(R, T0). From the boundedness ||(u(T ), ut (T ))||H1 ≤ C1(T ) and proceeding as 
above we can conclude that

Eu(2T ) ≤ γ2Eu(T ), ∀ T > T0, where γ2 :=
(

1

C̃1 + 1

)
(3.53)

and C̃1 = C̃1(C1(T ), T0). Thus, from (3.52) and (3.53) we arrive at

Eu(2T ) ≤ (γ1γ2)Eu(0), ∀ T > T0, with γ1, γ2 < 1,

and, recursively, we obtain the following estimate for all n ∈N:

Eu(nT ) ≤ (γ1γ2 · · ·γn)Eu(0), ∀ T > T0, with γ1, γ2, · · · , γn < 1. (3.54)

Therefore, we claim that (3.5) holds true. Indeed, if we assume by contradiction that it does 
not happen, then Eu(t) is bounded from below by a positive constant γ0 > 0, that is, Eu(t) ≥ γ0
for all t > 0. But from (3.54) it follows that Eu(nT ) ≤ ξn Eu(0) for some ξ < 1, from where 
we obtain a contradiction for n large enough. Consequently, Eu(t) goes to zero when t goes to 
infinity.

In the particular case when one has M(s) = c > 0, we note that similar to (3.16) we have the 
uniform boundedness

||(u(T ),ut (T )||H1 ≤ C(||(u0, u1)||H1) ≤ CR < ∞, ∀ T > 0,

where CR is a positive constant depending only on the size of initial data in the strong topology of 
H1, but it does not depend on T . In this case, the exponential decay (3.4) follows easily. Indeed, 
from the above estimate (3.54) we deduce

Eu(nT ) ≤ ξnEu(0), ∀ T > T0,
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for some 0 < ξ < 1 depending only on R, T0. Thus, for any t > T0, we can write t = nT0 + r for 
0 ≤ r < T0 and, therefore,

Eu(t) ≤ Eu(t − r) = Eu(nT0) ≤ ξnEu(0) = ξ
t−r
T0 Eu(0) = e

t−r
T0

ln ξ
Eu(0),

which implies the desired exponential stability. �
Remark 2. The same results (Theorems 2.1 and 3.1) can be easily extended to the original prob-
lem with Balakrishnan-Taylor (strong) damping⎧⎪⎨⎪⎩

utt + �2u − M
(
||∇u||22

)
�u − ||�u||22 �ut = 0 in � × (0,∞),

u = ∂νu = 0 or u = �u = 0 on ∂� × (0,∞),

u(x,0) = u0(x), ut (x,0) = u1(x), x ∈ �.

(3.55)

Indeed, to the existence part we can use Faedo-Galerkin method whereas in the stability part we 
have essentially the same estimates by achieving the convergence of the velocity un

t (and vn
t ) in 

L2(0, T ; H 1
0 (�)) which implies, in particular, the desired limit for such sequences in the energy 

space for the velocity, namely, in L2(0, T ; L2(�)), T > 0.

Remark 3. We can also conclude our main results at an abstract level encompassing problems 
(2.1) and (3.55) in the case of hinged boundary condition. Indeed, let V and H be Hilbert spaces 
such that V is dense in H and V ↪→ H is compactly embedding. Consider the linear operator A
defined by the triple {V, H, a(u, v)}, where a(u, v) is the inner product in V , and the fractional 
powers operators Aθ, θ ∈ R, defined through spectral theory in functional analysis. Thus, the 
same methodology used in this paper can be easily extended to the following abstract problem⎧⎨⎩utt (t) + Au(t) + M

(
||A1/4u||22

)
A1/2u + ||A1/2u(t)||2H Aθut (t) = 0, t > 0,

u(0) = u0, ut (0) = u1,

(3.56)

for 0 ≤ θ ≤ 1
2 . A more challenging problem related to (3.56) is to consider the same results by 

taking a lower power in the damping coefficient such as ||Aκu||2H Aθut for 0 ≤ κ < 1/2.

Appendix A. Looking for multipliers

Motivated by the statements on multipliers given in Section 1 we shall conclude below that the 
usual multipliers technique are not enough to deal with degenerate (in time) nonlocal problems.

A.1. The wave model

We start with the simple case of degenerate wave models. Let us consider the following 
damped problem ⎧⎪⎨⎪⎩

utt − �u + ||∇u||22 ut = 0 in � × (0,∞),

u = 0 on ∂� × (0,∞),

u(x,0) = u (x), u (x,0) = u (x), x ∈ �.

(A.1)
0 t 1
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The total energy is defined by

E(t) = 1

2

ˆ

�

[
|ut (x, t)|2 + |∇u(x, t)|2

]
dx, t ≥ 0.

Similarly to the case of localized (on space) problems, we are going to try the combination of the 
multipliers u and m · ∇u, where m(x) := x − x0 for a fixed x0, but we will see that the resulting 
multiplier does solve our case. Indeed, let us take the usual multiplier Nu := 2(m · ∇u) + (N −
1)u in (A.1) and integrating over � × (0, T ), T > 0, we infer

T̂

0

Eu(t) dt ≤ |χ(t)|T0 +
T̂

0

||∇u(t)||22
ˆ

�

∂tu(m · ∇u)dxdt

+ N − 1

2

T̂

0

||∇u(t)||22
ˆ

�

∂tudxdt + 1

2

T̂

0

ˆ

�(x0)

(m(x) · ν(x)) (∂νu)2 dγ dt,

(A.2)

where ν(x) is the unit outward normal vector field,

χ(t) :=
ˆ

�

∂tu(m · ∇u)dx + N − 1

2

ˆ

�

∂tuudx,

and

�(x0) := {x ∈ ∂�; m(x) · ν(x) > 0}.
In Fig. 1 we give an example of a domain � satisfying the above geometric set, where ω is a 

neighborhood of the boundary containing the closure of �(x0).

�(x0)

�\�(x0)ω �\ω x0
�����������

�������������

�����������������������������

�
x − x0

���
ν(x)

�
�	x − x0 ν(x)

��•

Fig. 1. Illustrative example of � satisfying the geometric set �(x0), where ω is a neighborhood of the boundary contain-

ing �(x0).
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The next step is to estimate the term 
´ T

0

´
�(x0)

(∂νu)2dγ dt in terms of the damping term ´ T

0 ||∇u(t)||22||ut (t)||22 dt . As stated in Lions [36, Lemma 2.3] we construct a neighborhood ωε

of �(x0) such that (ωε ∩ �) ⊂ ω, and a vector field h ∈ (C1(�))N satisfying

h = ν on �(x0), h · ν ≥ 0 a.e. in � := ∂�, h = 0 on �\ωε. (A.3)

See Fig. 2 below.

�(x0)

�\�(x0)ω\ωε

h = 0

ωε �\ω

��	

h · ν = 1


�

��	

h · ν ≥ 0

h · ν ≥ 0

h = 0 ���������������

�����������������

• x0

Fig. 2. An illustrative neighborhood ωε of �(x0) such that (ωε ∩ �) ⊂ ω, and a vector field h ∈ (C1(�))N satisfying 
(A.3).

A straightforward computation shows that

1

2

T̂

0

ˆ

�(x0)

(∂νu)2dγ dt

≤ 1

2

T̂

0

ˆ

�(x0)

(h · ν)︸ ︷︷ ︸
=1

(∂νu)2dγ dt + 1

2

T̂

0

ˆ

�\�(x0)

(h · ν)︸ ︷︷ ︸
≥0

(∂νu)2dγ dt

+
⎡⎣ ˆ

ωε

ut (h · ∇u)dx

⎤⎦T

0

+
T̂

0

ˆ

ωε

∇u · ∇h · ∇udx dt (A.4)

+1

2

T̂

0

ˆ

ωε

div(h)[u2
t − |∇u|2]dx dt

+
T̂ ˆ

||∇u(t)||L2(�)ut (h · ∇u)dx dt.
0 ωε
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The multipliers technique will work if we are able to quantify the term 1
2

´ T

0

´
ωε

div(h) u2
t dx dt

in terms of the damping 
´ T

0 ||∇u(t)||22||ut (t)||22 dt in the identity (A.4), which is not the case in 
our problem. The same occurs if we try to use the unusual multiplier ||∇u(t)||22u. Therefore, in 
any case, we are not able to recover the energy in the right hand side of the equation (A.2).

A.2. The beam model

The situation is much more delicate for the beam model (2.1). In fact, in order to consider a 
suitable multiplier similar to Nu defined above we still need to estimate the problematic term 
1
2

´ T

0

´
�

div(h) u2
t dx dt as in (A.4). To illustrate this case we tried the same multiplier as in 

Tucsnak [49]. See also Lions [36].

Let us consider a vector field h = (h1, . . . , hN) ∈ (W 2,∞(�))N . Multiplying (2.1) by h(x) ·
∇u(x, t), integrating by parts over � × (0, T ), T > 0, and arguing similar to [49, Lemma 3.1]
or [36, p. 244], we arrive at

(ut (t), h · ∇u(t))

∣∣∣∣T
0

+ 1

2

T̂

0

ˆ

�

div(h)
[
|ut (t)|2 − |�u(t)|2

]
dx dt

+ 2
∑
j,k

T̂

0

ˆ

�

∂hk

∂xj

�u(t)
∂2u(t)

∂xk∂xj

dx dt +
T̂

0

ˆ

�

(�h · ∇u(t))�u(t) dx dt

−
T̂

0

M
(
||∇u(t)||22

)ˆ
�

(h · ∇u(t))�u(t) dx dt

+
T̂

0

||�u(t)||22
ˆ

�

(h · ∇u(t)) ut (t) dx dt

= 1

2

T̂

0

ˆ

∂�

(h · ν)(�u(t))2 dS dt.

Therefore, even for particular choices of the vector field h in the above identity, we need to 
quantify the term 1

2

´ T

0

´
�

div(h)u2
t dxdt in terms of the damping term ́ T

0 ||�u(t)||22||ut (t)||22 dt , 
which is not the case again. The same problem also appears when we try to apply the (spatial) 
multipliers considered by Pazoto et al. [46] (see Lemmas 4.2 and 4.3 therein) or Bortot et al. [15, 
Section 5]. This means that we have the same difficulty to recover the energy by using multipliers 
in this case.
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