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This paper is devoted to the study of long-time dynamics of a Cauchy problem 
related to extensible beam models with dissipative effects coming from the nonlocal 
Balakrishnan-Taylor and the localized weak damping terms in Rn. Our first main 
result features a new unique continuation property for models associated with 
extensible beams. Then, applying such a property and with the fundamental aid 
of the nonlocal Balakrishnan-Taylor damping term, we state and prove our second 
main result dealing with the existence, characterization and regularity of a compact 
global attractor for the corresponding nonlinear dynamical system.
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1. Introduction

In the recent approaching by Gomes Tavares et al. [10], supported by the relevant physical deployment 
in Balakrishnan & Taylor [4], and motivated by the work of Emmrich & Thalhammer [8], the authors have 
considered the following class of extensible beams with nonlocal Balakrishnan-Taylor and frictional damping 
in a bounded domain Ω ⊂ Rn, n ≥ 1,

utt + Δ2u−

⎡⎣β + γ

∫
Ω

|∇u|2dx + δ |Φ(u, ut)|q−2 Φ(u, ut)

⎤⎦Δu + κut + f(u) = h in Ω ×R+, (1.1)

with corresponding clamped boundary and initial conditions, where

Φ(u, ut) :=
∫
Ω

∇u · ∇ut dx = −
∫
Ω

Δuut dx. (1.2)
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As explained by the authors, when n = 1 the model (1.1) corresponds to transversal deflections of an 
extensible beam with length 2L, which means to take e.g. Ω = [−L, L] (cf. [4]). Additionally, the authors 
prove the existence of global and fractal exponential attractors for the dynamical system corresponding to 
(1.1) by exploring the global Lq-regularity (q ≥ 2) in time of the nonlocal Balakrishnan-Taylor damping 
term coming from δ |Φ(u, ut)|q−2 Φ(u, ut)Δu with Φ given in (1.2), cf. [10, Section 3]. Among all tools 
employed in [10], we highlight three important ones when dealing in bounded domains Ω ⊂ Rn, say with 
finite measure |Ω| < ∞,

(a) Technical estimates with upper bounds depending on |Ω|−1 everywhere;
(b) Poincaré’s inequality;
(c) Compactness properties when dealing with Sobolev spaces over bounded domains.

In the same spirit in what concerns Balakrishnan-Taylor extensible beam (still combined with viscoelastic 
Kirchhoff wave) problems in bounded domains Ω ⊂ Rn (|Ω| < ∞), there are several works dealing with 
stability and long time-behavior of solutions by assuming additional full frictional or viscoelastic damping, 
see e.g. [4,5,8,9,16,18,22,23,25] just to name a few. Since the additional full damping represents a kind of 
extra damping to the system, then the asymptotic or/and long-time results for the system in turn are quite 
expected in the current literature.

In the present paper, we are concerned with a Cauchy problem related to the semilinear extensible beam 
model (1.1) under localized frictional effects, namely, we consider the following Cauchy problem in Rn:

utt + Δ2u + λu−

⎡⎢⎣β + γ

∫
Rn

|∇u|2dx + δ

∣∣∣∣∣∣
∫
Rn

∇u · ∇ut dx

∣∣∣∣∣∣
q−2 ∫

Rn

∇u · ∇ut dx

⎤⎥⎦Δu (1.3)

+ α(x)ut + f(u) = h(x) in R+ ×Rn,

subject to initial data

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Rn, (1.4)

where β ∈ R, λ, γ, δ > 0, q ≥ 2, h(x) is an external force, α(x) is a localized function in Rn, and f(u)
is a nonlinear source term of lower order, whose assumptions will be properly given in Section 2. In order 
to simplify the notation as previously set in (1.1)-(1.2), we define the following representation to be used 
throughout this paper

Υ(u, ut) :=
∫
Rn

∇u · ∇ut dx = −
∫
Rn

Δuut dx, (1.5)

where the second equality in (1.5) is formally considered. However, it holds true for strong solutions as 
presented in the existence theorem (Section 2).

To our best knowledge, there is no approach on the dynamics concerning (1.3)-(1.4). It is worth mentioning 
that the results presented in [10] are no longer valid here for several reasons. Among them, we notice that 
one looses some useful compactness properties for functional spaces over the whole space Rn and stress that 
conditions the (a)-(c) aforementioned can not be employed in the present framework, even if we consider 
full frictional damping in (1.3) i.e. α(x) ≡ κ > 0 in Rn, which is not the case to be considered (see 
Assumption 2.1). Therefore, our main goal is to address the long-time behavior of the dynamical system 
corresponding to (1.3)-(1.4). To this purpose, we rely on a similar approach as given in [1,2,21], and provide 
a new unique continuation property for extensible beams that has been essential to ensure the gradient 
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and asymptotic smoothness properties for the related dynamical system. These statements are new for the 
Cauchy problem related to Balakrishnan-Taylor extensible beam models, namely, (1.3)-(1.4) which in turn 
can be considered as mathematical extension of (1.1) placed in the whole Euclidean domain Rn.

In what follows, we are going to deliver the state of the art as well as the main novelties of the present 
work when compared to previous literature related to (1.3)-(1.4).

We start with models in the absence of extensible parameters, mainly in the case β = γ = δ = 0 in (1.3), 
which in turn becomes to the simplified semilinear plate model:

utt + Δ2u + λu + α(x)ut + f(u) = h(x) in R+ ×Rn. (1.6)

With respect to asymptotic and long-time behavior of (fourth order) plate equations like (1.6) (and similar 
models) approached in unbounded domains with localized and nonlocal damping terms, we refer e.g. [1,
2,11,12,14,15,17,21,24] and references therein. For the sake of brevity, we do not mention (second order) 
wave models with localized damping in unbounded domains. As well as for wave problems, for these sort of 
plate models with localized weak damping (1.6) posed in Rn, there is also a considerable stability theory 
under proper assumptions on both the nonlinear source f(u) and localized damping coefficient α(x). See, 
for instance, [2,12,14,21], among others.

To clarify the ideas, one sees for example in [2,21] that an important property in the study of asymptotic 
and long-time behavior of solution for (1.6) is the property so-called Unique Continuation Property (UCP 
for short). More precisely, in [21] the authors prove the exponential stability of energy for (1.6) in the 
homogeneous case h ≡ 0. Due to the lack of UCP for weak solutions of (1.6) with non-smooth coefficients, 
the authors appealed to a combination of techniques from [7,12,26] by using the sequentially limit transition 
argument, point dissipativity property for the semilinear plate equation and suitable energy estimates. More 
recently, in [2] the authors prove the UCP for the weak solution of the plate equation with the low regular 
coefficient. As a consequence, they handle with global attractor for a semilinear plate model with localized 
damping encompassing (1.6). Nevertheless, the UCP proved in [2] can not be applied to the Balakrishnan-
Taylor model (1.3) due to its nonlinear extensible terms (γ, δ > 0). Therefore, to overcome this situation, 
our first main objective is to prove the UCP for an extensible beam model and, with the crucial help of the 
Balakrishnan-Taylor damping term, we apply the UCP to reach the properties for the associated dynamical 
system and, consequently, to prove the existence of a global attractor as well. As far as we know, there are no 
results in this direction for the Balakrishnan-Taylor extensible beam model (1.3)-(1.4) posed in unbounded 
domains. In Sections 3 and 4 we present the precise results and details on these statements. Moreover, as 
we also explain in Appendix A, the Balakrishnan-Taylor damping term −δ |Υ(u, ut)|q−2 Υ(u, ut)Δu alone 
(α ≡ 0) is not enough to produce the desired results on stability nor long-time behavior. Hence, the additional 
localized damping term α(x)ut (α(x) ≥ α0 > 0 only a portion of Rn (see Assumption 2.1) is regarded as 
a minimum amount of localized damping in order to study the long-time dynamics of the regarded model 
(1.3)-(1.4). On the other hand, in the lack of the Balakrishnan-Taylor damping term (δ = 0), equation (1.3)
is handled in [1] by assuming that the α(x) ≥ α0 > 0 for all x ∈ Rn. Hence, when the weak damping is 
efficient only in a portion of Rn and δ = 0 in equation (1.3), existence of the global attractor is still an open 
problem. In this paper, we weaken the strict positivity assumption of [1] imposed on α(x) with the help of 
the Balakrishnan-Taylor damping term.

Based on the above statements on plate equations in unbounded domains as well as on extensible models 
in bounded domains, we highlight that our main results (Proposition 3.1 and Theorem 4.1, respectively, 
in Sections 3 and 4) constitute a generalization/extension of the results presented in [2,10,12,14,21] to the 
setting of long-time dynamics for the Balakrishnan-Taylor beam model with localized weak damping in Rn, 
which has not been approached in the literature so far. For the sake of completeness, we also consider the 
Hadamard well-posedness of problem (1.3)-(1.4) in Section 2 and conclude this work with some remarks in 
Appendix A.
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2. Well-posedness

In this section we discuss the well-posedness of problem (1.3)-(1.4). The existence and uniqueness of 
global solution is based on theory of C0-semigroups of linear operators, see e.g. Cazenave [6] and Pazy [19]. 
We start by fixing some notations and assumptions that shall be used throughout this paper. The spaces 
Lp(Rn) stand for p-Lebesgue integrable functions with norm

‖u‖pLp(Rn) =
∫
Rn

|u(x)|pdx, u ∈ Lp(Rn),

and Wm,p(Rn) denote well-known Sobolev spaces. In particular, if p = 2, then L2(Rn) is a Hilbert space 
and Wm,2(Rn) := Hm(Rn). We set the following Hilbert phase space to the solution trajectories

H = H2(Rn) × L2(Rn),

equipped with the following inner product

〈(u, v), (ũ, ṽ)〉H×H =
∫
Rn

ΔuΔũdx + λ

∫
Rn

uũdx +
∫
Rn

vṽdx

and norm

‖(u, v)‖2
H = ‖Δu‖2

L2(Rn) + λ‖u‖2
L2(Rn) + ‖v‖2

L2(Rn),

for all (u, v), (ũ, ̃v) ∈ H. We also set the energy function E(t) := E(u(t), ut(t)) associated with problem 
(1.3)-(1.4), namely,

E(t) = 1
2‖(u(t), ut(t))‖2

H + β

2 ‖∇u(t)‖2
L2(Rn) + γ

4 ‖∇u(t)‖4
L2(Rn) +

∫
Rn

[F (u(t)) − hu(t) ] dx, (2.1)

where F (s) =
s∫
0
f (τ) dτ is the primitive of f .

Assumption 2.1. With respect to the coefficients λ, β, δ, γ, the exponent q and the functions α, h : Rn →
R, f : R → R considered in (1.3)-(1.4), we assume the following hypotheses:

β ∈ R, λ, δ, γ > 0, q ≥ 2, h ∈ L2 (Rn) , (2.2)

α ∈ L∞(Rn), α(x) ≥ 0 a.e. x ∈ Rn, (2.3)

α(x) ≥ α0 > 0 a.e. in {x ∈ Rn : |x| ≥ r0}, for some r0 > 0, (2.4)

f ∈ C1(R), f(0) = 0 and there exist constants C, C0 > 0 and C1 ∈ (0, λ) such that

C0|s|p−1 − C1 ≤ f ′(s) ≤ C
(
1 + |s|p−1 )

, ∀ s ∈ R, where
{

p ≥ 1 if 1 ≤ n ≤ 4,
1 ≤ p ≤ n

n−4 if n ≥ 5.
(2.5)

Remark 2.1. The geometric idea of condition (2.4) in the bi-dimensional case is presented in Fig. 1. Addi-
tionally, from (2.5) one can derive the following additional inequalities
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Fig. 1. Idea of assumption (2.4) in R2, where α can vanish in the ball B(0, r0) := {x ∈ R2 : |x| < r0} for some radius r0 > 0
that can be large enough.

C0

p
|s|p+1 − C1s

2 ≤ f(s)s ≤ C
(
s2 + |s|p+1) , ∀ s ∈ R, (2.6)

C0

p(p + 1) |s|
p+1 − C1

2 s2 ≤ F (s) ≤ C(s2 + |s|p+1), ∀ s ∈ R, (2.7)

f(s)s− F (s) ≤ −C1

2 s2, ∀ s ∈ R. (2.8)

2.1. Nonlinear semigroup setting

Let us rewrite problem (1.3) − (1.4) as a first order equation. Denoting the vector-valued function U =
(u, v) with v = ut, the problem (1.3)-(1.4) can be rewritten as the following abstract initial value problem⎧⎨⎩

d

dt
U(t) = AU(t) + Φ(U(t)), t > 0,

U(0) = (u (0) , ut (0)) = (u0, u1) := U0,
(2.9)

where A : D(A) ⊂ H → H is the linear operator

A (U) =
[

v

−Δ2u− λu

]
, U ∈ D(A) = H4(Rn) ×H2(Rn), (2.10)

and Φ : H → H is the nonlinear operator

Φ (U) =
[

0
h− f (u) + βΔu + γ ‖∇u‖2

L2(Rn) Δu + Ξ (U)Δu− α (x) v

]
(2.11)

with

Ξ (U) = δ

∣∣∣∣∣∣
∫
Rn

Δuvdx

∣∣∣∣∣∣
q−2 ∫

Rn

Δuvdx = δ|Υ(U)|q−2Υ(U),

for U = (u, v) ∈ H, where the notation Υ(U) is introduced in (1.5).

Under the above assumptions and notations, we have the following Hadamard well-posedness result.

Theorem 2.1. Let us consider Assumption 2.1 into account. Thus, we have:
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(i) If U0 = (u0, u1) ∈ H, then there exists Tmax > 0 such that problem (2.9) has a unique mild (weak) 
solution U ∈ C ([0, Tmax];H) given by

U(t) = eAtU0 +
t∫

0

eA(t−s)Φ(U(s))ds, t ∈ [0, Tmax). (2.12)

(ii) If U0 = (u0, u1) ∈ D(A), then U is a regular (strong) solution of (2.9), with U ∈ C ([0, Tmax];D(A))
and utt ∈ C

(
[0, Tmax];L2(Rn)

)
.

(iii) In both cases, we have that Tmax = +∞.
(iv) If U1 = (u1, v1), U2 = (u2, v2) ∈ C ([0,∞);H) are two (weak or strong) solutions of (2.9) with initial 

data U1
0 = (u1

0, v
1
0), U2

0 = (u2
0, v

2
0) ∈ H, respectively, then∥∥U1(t) − U2(t)

∥∥
H ≤ L

∥∥U1
0 − U2

0
∥∥
H , t ∈ R+, (2.13)

where L = L(‖U1
0 ‖H, ‖U2

0 ‖H).

Proof. (i) − (ii) We first prove that A : D(A) ⊂ H → H given in (2.10) is the infinitesimal generator of a 
C0-semigroup of contractions eAt. In fact, taking arbitrary U = (u, v) ∈ D(A), we have

Re 〈AU,U〉H×H =
∫
Rn

ΔvΔudx + λ

∫
Rn

vudx +
∫
Rn

(−Δ2u− λu)vdx = 0.

Which shows that A is dissipative. On the other hand, it is also easy to see that

R(I −A) = H,

where R(I −A) stands for range of the operator I −A. Therefore, from Lummer-Phillips Theorem (see e.g. 
[19, Chapter 1]), A is the infinitesimal generator of a C0-semigroup of contractions eAt in H. In addition 
Φ : H → H is locally Lipschitz continuous in H. Indeed, let us first define

Π(U) = h− f (u) + βΔu + γ ‖∇u‖2
L2(Rn) Δu + Ξ (U)Δu− α (x) v.

Let R > 0 and U1 = (u1, v1), U2 = (u2, v2) such that ||U1||H, ||U2||H ≤ R. Then, from (2.11), we infer

||Φ(U1) − Φ(U2)||H = ‖Π(U1) − Π(U2)‖L2(Rn) = sup
‖w‖L2(Rn)≤1

∣∣∣∣∣∣
∫
Rn

[ Π(U1) − Π(U2) ]wdx

∣∣∣∣∣∣ . (2.14)

In what follows, we shall give proper estimates on the right hand side of (2.14). Given w ∈ L2(Rn), adding 
and subtracting the terms γ‖∇u1‖2

L2(Rn)Δu2 and Ξ(U1)Δu2 in the expression Π(U1) − Π(U2), we denote

∣∣∣∣∣∣
∫
Rn

[ Π(U1) − Π(U2) ]wdx

∣∣∣∣∣∣ =
∣∣∣∣∣

6∑
i=1

Ii

∣∣∣∣∣ , (2.15)

where

I1 =
∫ [

β + γ‖∇u1‖2
L2(Rn)

]
(Δu1 − Δu2)wdx,
Rn
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I2 = γ

∫
Rn

[
‖∇u1‖2

L2(Rn) − ‖∇u2‖2
L2(Rn)

]
Δu2wdx,

I3 = δ

∫
Rn

Ξ(U1)
(
Δu1 − Δu2)wdx,

I4 = δ

∫
Rn

[
Ξ(U1) − Ξ(U2)

]
Δu2wdx,

I5 =
∫
Rn

[
f(u2) − f(u1)

]
wdx,

I6 =
∫
Rn

α(x)(v2 − v1)wdx.

Thus, it remains to estimate the terms I1, . . . , I6. Firstly, using interpolation theorem, there exists 	 > 0
such that

‖∇ui‖2
L2(Rn) ≤ 	

[
‖Δui‖2

L2(Rn) + λ‖ui‖2
L2(Rn)

]
≤ 	‖U i‖2

H, for i = 1, 2.

In order, the term I1 can be estimated as follows

| I1| ≤
[
|β| + γ‖∇u1‖2

L2(Rn)

]
‖Δu1 − Δu2‖L2(Rn)‖w‖L2(Rn)

≤
[
|β| + γ	‖U1‖2

H
]
||U1 − U2||H‖w‖L2(Rn)

≤
[
|β| + γ	R2 ] ||U1 − U2||H‖w‖L2(Rn).

Using that a2 − b2 = (a − b)(a + b) we can estimate I2 as follows

|I2| ≤ γ
∣∣∣ ‖∇u1‖2

L2(Rn) − ‖∇u2‖2
L2(Rn)

∣∣∣ ‖Δu2‖L2(Rn)‖w‖L2(Rn)

≤ γ
[
‖∇u1‖L2(Rn) + ‖∇u2‖L2(Rn)

]
‖∇u1 −∇u2‖L2(Rn)‖Δu2‖L2(Rn)‖w‖L2(Rn)

≤ γ	
[
‖U1‖H + ‖U2‖H

]
‖U1 − U2‖H‖U2‖H‖w‖L2(Rn)

≤ 2γ	R2‖U1 − U2‖H‖w‖L2(Rn).

The term I3 is estimated by

|I3| ≤ δ
[
‖Δu1‖L2(Rn)‖v1‖L2(Rn)

]q−1 ‖Δu1 − Δu2‖L2(Rn)‖w‖L2(Rn)

≤ δR2(q−1)||U1 − U2||H‖w‖L2(Rn).

Now, let F ∈ C1(R) be given by F (s) = |s|q−2s. From the Mean Value Theorem, one can easily prove that

|F (ϑ1) − F (ϑ2)| ≤ 22(q−2)(q − 1)
[
|ϑ1|q−2 + |ϑ2|q−2] |ϑ1 − ϑ2|, ϑ1, ϑ2 ∈ R.

Then, taking ϑi = Υ(U i) = −
∫
Rn

Δuividx, i = 1, 2, we have

|I4| ≤ 22(q−2)(q − 1)δ
[∣∣Υ(U1)

∣∣q−2 +
∣∣Υ(U2)

∣∣q−2
] ∣∣Υ(U1) − Υ(U2)

∣∣‖Δu2‖L2(Rn)‖w‖L2(Rn)

where
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∣∣Υ(U1)
∣∣q−2 +

∣∣Υ(U2)
∣∣q−2 ≤ [ ‖Δu1‖L2(Rn)‖v1‖L2(Rn) ]q−2 + [ ‖Δu2‖L2(Rn)‖v2‖L2(Rn) ]q−2

≤ 2R2(q−2).

Using that Υ(U1) − Υ(U2) = −
∫
Rn

[
(Δu1 − Δu2)v1 − Δu2 (v1 − v2) ] dx, we have

∣∣Υ(U1) − Υ(U2)
∣∣ ≤ ‖Δu1 − Δu2‖L2(Rn)‖v1‖L2(Rn) + ‖Δu2‖L2(Rn)‖v1 − v2‖L2(Rn)

≤ 2R‖U1 − U2‖H.

Thus, the term I4 can be estimated by

|I4| ≤
[√

2R
]2(q−1)(q − 1)δ||U1 − U2||H‖w‖L2(Rn).

From Mean Value Theorem, assumption (2.5), Hölder’s inequality with p−1
2p + 1

2p + 1
2 = 1 and embedding 

H2(Rn) ↪→ L2p(Rn), we get

|I5| =

∣∣∣∣∣∣
∫
Rn

[
f(u1) − f(u2)

]
w dx

∣∣∣∣∣∣
≤ C

∫
Rn

[
1 + 2p−1[|u1|p−1 + |u2|p−1]

]
|u1 − u2| |w| dx

= C

∫
Rn

|u1 − u2| |w| dx + C2p−1
∫
Rn

[ |u1|p−1 + |u2|p−1 ]|u1 − u2| |w| dx

≤ C‖u1 − u2‖L2(Rn)‖w‖L2(Rn)

+ C2p−1
[
‖u1‖p−1

L2p(Rn) + ‖u2‖p−1
L2p(Rn)

]
‖u1 − u2‖L2p(Rn)‖w‖L2(Rn)

≤ C

λ1/2 ‖U
1 − U2‖H‖w‖L2(Rn)

+ C2pCp−1
p

[
‖u1‖p−1

H2(Rn) + ‖u2‖p−1
H2(Rn)

]
‖u1 − u2‖H2(Rn)‖w‖L2(Rn)

≤ C

λ1/2 ‖U
1 − U2‖H‖w‖L2(Rn) + 2p+1Cp−1

p Rp−1C‖U1 − U2‖H‖w‖L2(Rn),

where Cp > 0 is the constant coming from the embedding inequality ‖ · ‖2p ≤ Cρ‖ · ‖H2(Rn). Last, using 
assumption (2.4), we have

|I6| ≤ ‖α‖L∞(Rn) ‖v1 − v2‖L2(Rn)‖w‖L2(Rn) ≤ ‖α‖L∞(Rn) ‖U1 − U2||H‖w‖L2(Rn).

Going back to (2.15) we obtain∣∣∣∣∣∣
∫
Rn

[ Π(U1) − Π(U2) ]wdx

∣∣∣∣∣∣ ≤ LR||U1 − U2||H‖w‖L2(Rn), (2.16)

where LR > 0 is given by

LR = |β| + 3γ	R2 + δR2(q−1) +
[√

2R
]2(q−1)(q − 1)δ

+ C + 2p+1Cp−1
p Rp−1C + ‖α‖L∞(Rn),
λ1/2
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and replacing (2.16) in (2.14), we arrive at the desired locally Lipschitz condition

‖Φ(U1) − Φ(U2)‖H ≤ LR‖U1 − U2‖H. (2.17)

Hence, applying the semigroup theory the existence and uniqueness of mild (respect. regular) solution 
U = (u, ut) ∈ C ([0, Tmax);H), for some Tmax > 0, (respect. U = (u, ut) ∈ C

(
[0, Tmax);H4 (Rn) ×H2 (Rn)

)
) 

for (2.9) on [0, Tmax) follows from Theorems 1.4 and 1.6 in Pazy’s book [19, Chapter 6]. This proves (i) and 
(ii).

Now let’s prove (iii), that is, that tmax = +∞. In fact, if Tmax < ∞, it well-known that

lim
t→T−

max

‖(u(t), ut(t))‖H = +∞. (2.18)

Multiplying (1.3) by ut and integrating over (0, t) ×Rn, t > 0, we obtain

E(t) +
t∫

0

∫
Rn

α (x) |ut (τ, x)|2 dxdτ + δ

t∫
0

∣∣∣∣12 d

dt
‖∇u (τ)‖2

L2(Rn)

∣∣∣∣q dτ = E(0). (2.19)

From Young’s inequality, (2.2) and (2.7), we get

β

2 ‖∇u(t)‖2
L2(Rn) ≥ −β2

4γ − γ

4 ‖∇u(t)‖4
L2(Rn), (2.20)∫

Rn

F (u(t))dx ≥ −C1

2 ‖u(t)‖2
L2(Rn) (2.21)

and

−
∫
Rn

hu(t)dx ≥ −‖h‖L2(R)‖u(t)‖L2(Rn) ≥ − 1
2ϑ‖h‖

2
L2(Rn) −

ϑ

2 ‖u(t)‖2
L2(Rn), (2.22)

where ϑ := λ−C1
2 > 0. Thus, from (2.20)-(2.22), we have

E(t) ≥ 1
2‖ut(t)‖2

L2(Rn) + 1
2‖Δu(t)‖2

L2(Rn) + ϑ

2 ‖u(t)‖2
L2(Rn) −

β2

4λ − 1
2ϑ‖h‖

2
L2(Rn)

≥ ϑ0‖(u(t), ut(t))‖2
H − β2

4λ − 1
2ϑ‖h‖

2
L2(Rn), where ϑ0 = min {1, ϑ} . (2.23)

Combining (2.19) and (2.23), we obtain

‖(u(t), ut(t))‖2
H ≤ 1

ϑ0

[
E(0) + β2

4λ + 1
2ϑ‖h‖

2
L2(Rn)

]
, ∀t ∈ [0, Tmax), (2.24)

which is a contradiction with (2.18) for Tmax < +∞. Therefore, Tmax = +∞. This completes the proof of 
(iii).

Remains proof (iv). We take two mild or strong solutions U1(t) = (u1(t), v1(t)) and U2(t) = (u2(t), v2(t))
with initial data U1

0 =
(
u1

0, v
2
0
)

and U2
0 =

(
u2

0, v
1
0
)
, respectively, and set W = U1 − U2 and W0 = U1

0 − U2
0 . 

Then, from (2.12) we have
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W (t) = eAtW0 +
t∫

0

et−s
[
Φ(U1(s)) − Φ(U2(s))

]
ds, ∀t ∈ R+.

Using (2.17) there exists a constant L = L(‖U1
0 ‖H, ‖U2

0 ‖H) such that

‖W (t)‖H ≤ ‖W0‖H + L

t∫
0

et−s‖W (s)‖Hds, ∀t ∈ R+. (2.25)

Therefore (2.13) is obtained after applying Gronwall inequality. This completes the proof of Theorem 2.1. �
As a consequence, Theorem 2.1 ensures that problem (1.3)-(1.4) generates a nonlinear C0-semigroup 

{S (t)}t≥0 in H := H2 (Rn) × L2 (Rn) through the formula

H � (u0, u1) �−→ S (t) (u0, u1) = (u(t), ut(t)) , (2.26)

where u is the weak solution of (1.3)-(1.4). Therefore, the pair (H, S(t)) designates the dynamical system 
corresponding to solutions of the Cauchy problem (1.3)-(1.4). In what follows, the main goal is to analyze 
the long-time behavior of solutions through the dynamical system (H, S(t)).

3. A unique continuation result

In this section we prove an important result, see Proposition 3.1 below, that provides a unique continu-
ation property for a n-dimensional problem related to (1.3)-(1.4). It extends somehow the result on unique 
continuation proved in [2] to the case of extensible beams. Then, we shall see that Proposition 3.1 is crucial 
to conclude that the dynamical system (H, S(t)) is gradient.

Proposition 3.1. Assume that q ∈ L∞ (R;L2
loc (Rn)

)
and v ∈ C

(
R;H2 (Rn)

)
∩ C1 (R;L2 (Rn)

)
is a weak 

solution of the following equation:

vtt (t, x) + Δ2v (t, x) − Δv (t, x) + q (t, x) v (t, x) = 0, (t, x) ∈ R×Rn. (3.1)

If for some r > 0, we have that

v (t, x) = 0, t ∈ R, x ∈ Rn \ C (r) , (3.2)

where C (r) = {x = (x1, . . . , xn) ∈ Rn : |xi| < r for all i = 1, . . . , n}, then

v (t, ·) = 0 a.e. in Rn, for all t ∈ R.

Proof. Testing the equation (3.1) with e
iπk
2

n∏
j=1

e
(
�+ iπk

2r
)
xj in Rn, where � > 0 and k ∈ Z+, and taking 

(3.2) into account, we get

d2

dt2

∫
C(r)

v (t, x) e iπk
2

n∏
j=1

e
(
�+ iπk

2r
)
xjdx + n2

(
� + iπk

2r

)4 ∫
C(r)

v (t, x) e iπk
2

n∏
j=1

e
(
�+ iπk

2r
)
xjdx

+ n

(
� + iπk

2r

)2

(β + γθ)
∫

v (t, x) e iπk
2

n∏
j=1

e
(
�+ iπk

2r
)
xjdx
C(r)
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+
∫

C(r)

q (t, x) v (t, x) e iπk
2

n∏
j=1

e
(
�+ iπk

2r
)
xjdx = 0.

Now, denoting by

Υk,� (t) :=
∫

C(r)

v (t, x) e iπk
2

n∏
j=1

e
(
�+ iπk

2r
)
xjdx,

we have

Υ′′
k,� (t) +

[
n2
(
� + iπk

2r

)4

+ n

(
� + iπk

2r

)2

(β + γθ)
]

Υk,� (t)

=
∫

C(r)

q (t, x) v (t, x) e iπk
2

n∏
j=1

e
(
�+ iπk

2r
)
xjdx. (3.3)

Addition, we define

Ak,� := n

(
� + iπk

2r

)2

(β + γθ) ,

Bk,� (t) =
∫

C(r)

q (t, x) v (t, x) e iπk
2

n∏
j=1

e
(
�+ iπk

2r
)
xjdx,

and

ck,� := −in

(
� + iπk

2r

)2

,

which satisfy the following conditions: ⎧⎪⎨⎪⎩
Re(ck,�) > 0,

|Ak,�| < |c|Re(c),
B ∈ L∞ (R;C) .

(3.4)

Hence, considering the above definitions in (3.3), we obtain the following ODE:

Υ′′
k,� (t) +

(
Ak,� − c2k,�

)
Υk,� (t) = Bk,� (t) , t ∈ R. (3.5)

Then, one can easily see that there exists �0 > 0 such that Ak,� (t), Bk,� (t) and ck,� satisfy the conditions 
of [2, Lemma 2.1] for all � ≥ �0 and k ∈ Z+. Hence, applying [2, Lemma 2.1] to (3.5), we obtain

|Υk,� (t)| ≤ 1
|ck,�|Re(ck,�) − ‖Ak,�‖L∞(R;C)

‖Bk,�‖L∞(R;C)

≤
‖Bk,�‖L∞(R;C)

n2πk�
r (�2 + π2k2

4r2 ) − n (β + γθ) (�2 + π2k2

4r2 )

≤ c̃1
�k3

⎡⎢⎣ ess sup
t∈R

∫
C(r)

|q (t, x) v (t, x)|
n∏

j=1
e�xjdx

⎤⎥⎦ ,
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for all t ∈ R, λ ≥ λ0, k ∈ Z+. This gives

∞∑
k=1

k4 |Υk,� (t)|2 ≤ c̃2
�2

⎡⎢⎣ ess sup
t∈R

∫
C(r)

|q (t, x) v (t, x) |
n∏

j=1
e�xjdx

⎤⎥⎦
2

< ∞,

for all t ∈ R, λ ≥ λ0. Thus, by the definition of Υk,� (t), we find

∞∑
k=1

k4

∣∣∣∣∣∣
r∫

−r

v (t, x)
n∏

j=1
e�xj

n∏
j=1

sin
( π

2r (xj + r) k
)
dx

∣∣∣∣∣∣
2

≤ c̃2
�2

⎡⎢⎣ ess sup
t∈R

∫
C(r)

|q (t, x) v (t, x)|
n∏

j=1
e�xjdx

⎤⎥⎦
2

< ∞,

for all t ∈ R and � ≥ �0. Since 

{
n∏

j=1

1√
r

sin
(

π
2r (xj + r) k

)}∞

k=1

is an orthonormal basis in L2 (C (r))

consisting of the eigenfunctions of the operator −Δ in L2 (C (r)) with the domain H2 (C (r)) ∩H1
0 (C (r)), 

by the last inequality, we find that v ∈ L∞ (R;H2 (C (r)) ∩H1
0 (C (r))

)
, and

∫
C(r)

∣∣∣∣∣∣Δ(v (t, x)
n∏

j=1
e�xj )

∣∣∣∣∣∣
2

dx ≤ c̃3
�2

⎡⎢⎣ ess sup
t∈R

∫
C(r)

|q (t, x)u (t, x)|
n∏

j=1
e�xjdx

⎤⎥⎦
2

, (3.6)

for all t ∈ R and � ≥ �0. Since, for any bounded set Ω ⊂ Rn, we have that

M1 ‖Δu‖L2(Ω) ≤ ‖u‖H2(Ω) ≤ M2 ‖Δu‖L2(Ω) , ∀u ∈ H2 (Ω) ∩H1
0 (Ω) ,

for some M2 ≥ M1 > 0, then (3.6) implies

‖v̂(t)‖H2(C(r)) ≤
c̃4
�

‖v̂‖L∞(R,L2(C(r))) , ∀ t ∈ R, ∀� ≥ �0,

where v̂(t, x) = v (t, x)
n∏

j=1
e�xj , from where we obtain

‖v̂ (t)‖L2(C(r)) ≤
c̃4
�

‖v̂‖L∞(R,L2(C(r))) , ∀ t ∈ R, ∀� ≥ �0.

Choosing � large enough in the above inequality, we obtain

v (t, x) = 0, a.e. in x ∈ Rn,

for all t ∈ R, which proves Proposition 3.1. �
3.1. Application: the gradient property

Corollary 3.2. Under the assumptions of Theorem 2.1, then the semigroup {S (t)}t≥0 defined in (2.26) has 
a strict Lyapunov functional. In other words, (H, S(t)) is a gradient dynamical system.
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Proof. We start by observing that, since the operator A is also maximal dissipative (A defined in (2.10)), 
one can extend the semigroup {S (t)}t≥0 set by the relation (2.26) to a group {S (t)}t∈R. In what follows, 
we consider ϕ ∈ H and set (u (t) , ut (t)) = S (t)ϕ, for all t ∈ R. From (2.19), we have

E (u(t), ut(t)) ≤ E (u(0), ut(0)) , ∀ t > 0,

which means that the function t �→ E (S (t)ϕ) is a non-increasing function, for any ϕ ∈ H. In order to show 
that the Lyapunov function E(ϕ) is strict, let us consider E (S (t)ϕ) = E (ϕ) for all t > 0 and for some ϕ. 
Then, from (2.19), it follows that

t∫
0

∫
Rn

α (x) |ut (τ, x)|2 dxdτ +
t∫

0

∣∣∣∣ ddt ‖∇u (τ)‖2
L2(Rn)

∣∣∣∣q dτ = 0, ∀ t ∈ R. (3.7)

Thus, from (2.3) and (2.4), identity (3.7) leads to

ut (t, x) = 0, a.e. in R× (Rn\B (0, r0)) , (3.8)

and

d

dt
‖∇u (t)‖2

L2(Rn) = 0, a.e. in (0,∞) , (3.9)

which gives

‖∇u (t)‖2
L2(Rn) = θ, a.e. in (0,∞) , (3.10)

where θ is a constant. In this way, defining v (t, x) := ut (t, x) and taking into account (3.8)-(3.10), we note 
that v is a solution of the following problem{

vtt + Δ2v − (β + γθ) Δv + (f ′ (u) + λ) v = 0 in R×Rn,

v (τ, x) = 0, a.e. in R× (Rn\B (0, r0)) .

Since B (0, r0) ⊂ C (r0), then applying Proposition 3.1, we deduce that

v (t, x) = 0, a.e. in Rn,

for all t ∈ R, which implies that ut(t) ≡ 0 in L2 (Rn). Therefore, S (t)ϕ = (u (t) , 0), from where one can 
prove that it is a stationary solution

S (t)ϕ = ϕ,

and, consequently, E (ϕ) is a strict Lyapunov functional. �
4. Long-time dynamics

Now we are in position to state and prove our main result on the existence and regularity of an attractor 
to the dynamical system given by (2.26). More precisely, we have:

Theorem 4.1. Under the assumptions of Theorem 2.1, we have:
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I. Global Attractor. The semigroup {S (t)}t≥0 defined in (2.26) possesses a compact global attractor A ⊂
H = H2 (Rn) × L2 (Rn).

II. Characterization. The global attractor A is precisely the unstable manifold A = Mu(N ) emanating from 
the set of stationary solutions N . In addition, A consists of full trajectories Γ = {U(t) = (u(t), ut(t)) :
t ∈ R} such that

lim
t→−∞

distH(U(t),N ) = 0 and lim
t→+∞

distH(U(t),N ) = 0. (4.1)

III. Regularity. The global attractor A is bounded in H4 (Rn) ×H2 (Rn).

The proof of Theorem 4.1 will be completed at the end of this section as a consequence of an asymptotic 
smoothness result (see Theorem 4.6 and Corollary 4.7 below) in combination with Corollary 3.2. However, 
to obtain such an asymptotic smoothness property for {S(t)}t≥0, we are going to prove some auxiliary 
technical lemmas as follows.

4.1. Technical lemmas

Lemma 4.2. Let the sequence {vm}∞m=1 be bounded in L∞ (0, T ;H2 (Rn)
)
∩ W 1,∞ (0, T ;L2 (Rn)

)
and the 

sequence 
{
‖∇vm (t)‖L2(Rn)

}∞

m=1
be convergent, for all t ∈ [0, T ]. We define zm,l := vm − vl and

Ẽ(zm,l(t)) := ‖(zm,l)t(t)‖2
L2(Rn) + ‖Δzm,l(t)‖2

L2(Rn) + λ‖zm,l(t)‖2
L2(Rn) + β‖∇zm,l(t)‖2

L2(Rn).

Then, for every μ > 0, there exists cμ > 0 such that

T∫
0

∫
Rn

t
[
‖∇vm (t)‖2

L2(Rn) Δvm(t, x) − ‖∇vl (t)‖2
L2(Rn) Δvl(t, x)

]
(zm,l)t (t, x) dxdt

≤ μ

T∫
0

tẼ (zm,l (t)) dt + C

T∫
0

Ẽ (zm,l (t)) dt (4.2)

+ cμ

T∫
0

t

∣∣∣∣ ddt ‖∇vm (t)‖2
L2(Rn)

∣∣∣∣q Ẽ (zm,l (t)) dt + Πm,l(T ), ∀T ≥ 0,

where C > 0, Πm,l ∈ C[0, ∞) and lim sup
m→∞

lim sup
l→∞

∣∣Πm,l (T )
∣∣ = 0, for all T ≥ 0.

Proof. Firstly, we have

T∫
0

∫
Rn

t
[
‖∇vm (t)‖2

L2(Rn) Δvm(t, x) − ‖∇vl (t)‖2
L2(Rn) Δvl(t, x)

]
((zm,l)t(t, x)) dxdt

= −1
2

T∫
0

t ‖∇vm (t)‖2
L2(Rn)

d

dt
‖∇zm,l (t)‖2

L2(Rn) dt + Πm,l (T ) , (4.3)

where
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Πm,l(T ) :=
T∫

0

t
[
‖∇vm (t)‖2

L2(Rn) − ‖∇vl (t)‖2
L2(Rn)

] ∫
Rn

Δvl(t, x) ((zm,l)t(t, x)) dxdt.

By the assumption of the lemma, we get

lim sup
m→∞

lim sup
l→∞

∣∣Πm,l (T )
∣∣ = 0. (4.4)

Now, let us estimate the first term on the right hand side of (4.3). Using integration by parts, it follows that

− 1
2

T∫
0

t ‖∇vm (t)‖2
L2(Rn)

d

dt
‖∇zm,l (t)‖2

L2(Rn) dt + T

2 ‖∇vm (T )‖2
L2(Rn) ‖∇zm,l (T )‖2

L2(Rn)

= 1
2

T∫
0

‖∇vm (t)‖2
L2(Rn) ‖∇zm,l (t)‖2

L2(Rn) dt + 1
2

T∫
0

t
d

dt
‖∇vm (t)‖2

L2(Rn) ‖∇zm,l (t)‖2
L2(Rn) dt.

Recalling again the assumption of the lemma and with the help of the Young inequality with μ > 0, we 
obtain from the last equality that

− 1
2

T∫
0

t ‖∇vm (t)‖2
L2(Rn)

d

dt
‖∇zm,l (t)‖2

L2(Rn) dt (4.5)

≤ C

T∫
0

Ẽ (zm,l (t)) dt + μ

T∫
0

tẼ (zm,l (t)) dt + cμ

T∫
0

t

∣∣∣∣ ddt ‖∇vm (t)‖2
L2(Rn)

∣∣∣∣q Ẽ (zm,l (t)) dt.

Hence, replacing (4.4) and (4.5) in (4.3), we conclude that the desired estimate (4.2) holds true, which 
proves Lemma 4.2. �
Lemma 4.3. Let the sequence {vm}∞m=1 be bounded in L∞ (0, T ;H2 (Rn)

)
∩ W 1,∞ (0, T ;L2 (Rn)

)
and the 

sequence 
{
‖∇vm (t)‖L2(Rn)

}∞

m=1
be convergent, for all t ∈ [0, T ]. Then, for every φ ∈ W 1,∞ (Rn) such that 

φ (x) ≥ 0 for all x ∈ Rn and sup (φxi
) ⊂ (B (0, 2r) \B (0, r)) for i = 1, . . . , n, the following limit holds

lim sup
m→∞

lim sup
l→∞

T∫
0

∫
Rn

t
[
‖∇vm (t)‖2

L2(Rn) Δvm(t, x) − ‖∇vl (t)‖2
L2(Rn) Δvl(t, x)

]
×φ (x) (zm,l (t, x)) dxdt = 0,

where zm,l = vm − vl and B (0, r) = {x ∈ Rn : |x| < r}.

Proof. First of all, using integration by parts, we have

T∫
0

∫
Rn

t
[
‖∇vm (t)‖2

L2(Rn) Δvm(t, x) − ‖∇vl (t)‖2
L2(Rn) Δvl(t, x)

]
φ (x) (zm,l (t, x)) dxdt

= Π̃m,l (T ) −
T∫
t ‖∇vl (t)‖2

L2(Rn)

∥∥∥√φ (∇zm,l (t))
∥∥∥2
L2(Rn)

dt
0
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−
∑n

i=1

T∫
0

∫
B(0,2r)\B(0,r)

t ‖∇vl (t)‖2
L2(Rn) (zm,l (t, x))xi

φxi
(x) (zm,l (t, x)) dxdt

≤ Π̃m,l (T ) + C T 2 ‖vm − vl‖C([0,T ];H1(B(0,2r)\B(0,r))) (4.6)

where

Π̃m,l (T ) :=
T∫

0

∫
Rn

t
[
‖∇vm (t)‖2

L2(Rn) − ‖∇vl (t)‖2
L2(Rn)

]
Δvm(t, x)φ (x) (zm,l (t, x)) dxdt.

In addition, under the assumptions of the lemma, it is easy to see that

sup
m,l

∥∥∥Π̃m,l
∥∥∥
C[0,T ]

< ∞ and lim sup
m→∞

lim sup
l→∞

∣∣∣Π̃m,l (T )
∣∣∣ = 0, ∀T ≥ 0. (4.7)

Furthermore, exploiting the compactness results in [20], we obtain that the sequence {vm}∞m=1 is relatively 
compact in C

(
[0, T ] ;H2−ε (B (0, r))

)
for every ε > 0, T > 0 and r > 0. This gives the convergence

vm → v strongly in C
(
[0, T ] ;H2−ε (B (0, r))

)
, (4.8)

for some v ∈ C
(
[0, T ] ;H2−ε (B (0, r))

)
. With the help of (4.7) and (4.8), passing to the limit in (4.6), we 

complete the proof of Lemma 4.3. �
Lemma 4.4. Under the condition (2.5) and assuming that the sequence {vm}∞m=1 is weakly star convergent 
in L∞ (0, T ;H2 (Rn)

)
∩W 1,∞ (0, T ;L2 (Rn)

)
, then there exists a constant c > 0 such that

lim sup
m→∞

lim sup
l→∞

T∫
0

∫
Rn

t [ f(vl (t, x)) − f(vm (t, x)) ] [ (zm,l)t (t, x) ] dxdt

≤ c lim sup
m→∞

T∫
0

‖vm (t)‖2
H2(Rn\B(0,r)) dt, ∀T ≥ 0 and ∀r ≥ 0. (4.9)

Proof. Using integration by parts, we have

lim sup
m→∞

lim sup
l→∞

T∫
0

∫
Rn

t [ f(vl (t, x)) − f(vm (t, x)) ] [ (zm,l)t (t, x) ] dxdt

≤ T lim sup
m→∞

lim sup
l→∞

⎡⎣− ∫
Rn

(F (vm (T, x)) + F (vl (T, x)) − 2F (v (T, x)) ) dx

⎤⎦
+ lim sup

m→∞
lim sup
l→∞

T∫
0

∫
Rn

(F (vm (t, x)) + F (vm (t, x)) − 2F (v (t, x))) dxdt

= − T lim inf
m→∞

lim inf
l→∞

∫
Rn

(F (vm (T, x)) + F (vl (T, x)) − 2F (v (T, x))) dx (4.10)

+ lim sup
m→∞

lim sup
l→∞

T∫ ∫
(F (vm (t, x)) + F (vl (t, x)) − 2F (v (t, x))) dxdt
0 B(0,r)
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+ lim sup
m→∞

lim sup
l→∞

T∫
0

∫
Rn\B(0,r)

(F (vm (t, x)) + F (vl (t, x)) − 2F (v (t, x))) dxdt.

Furthermore, under the conditions of the lemma and (2.5), one sees that

F (vm (t, x)) → F (v (t, x)) a.e. in (0, T ) ×B (0, r) , ∀r > 0.

On the other hand, since {F (vm)}∞m=1 is bounded in W 1,1 ((0, T ) ×Rn), the following limits happen{
F (vm) → F (v) strongly in L1 ((0, T ) ×B (0, r)) , ∀T > 0, ∀r > 0,
F (vm) → F (v) weakly in L

n+1
n ((0, T ) ×Rn) .

(4.11)

Thus, taking into account (4.11) in (4.10) and recalling the conditions of the lemma, we obtain

lim sup
m→∞

lim sup
l→∞

T∫
0

∫
Rn

t (f(vl (t, x)) − f(vm (t, x))) ((zm,l)t (t, x)) dxdt

≤ c lim sup
m→∞

T∫
0

‖vm (t)‖2
H2(Rn\B(0,r)) dt, ∀ T ≥ 0 and ∀ r ≥ 0,

as desired in (4.9). This concludes the proof of Lemma 4.4. �
Lemma 4.5. Let us consider (2.5) in force and assume that the sequence {vm}∞m=1 is weakly star convergent 
in L∞ (0, T ;H2 (Rn)

)
∩ W 1,∞ (0, T ;L2 (Rn)

)
. Then, for every ϕ ∈ C (Rn) such that ϕ (x) ≥ 0 for all 

x ∈ Rn, there hold the following inequality

lim sup
m→∞

lim sup
l→∞

T∫
0

∫
Rn

tϕ (x) [ f(vl (t, x)) − f(vm (t, x)) ] [ vm (t, x) − v (t, x) ] dxdt ≤ 0. (4.12)

Proof. First, we readily get

T∫
0

∫
Rn

tϕ (x) [ f (vl) (t, x) − f (vm (t, x)) ] [ zm,l (t, x) ] dxdt

=
T∫

0

∫
Rn

tϕ (x) [ f (vl (t, x)) vm (t, x) + f (vm (t, x)) vl(t, x) (4.13)

−f (vm (t, x)) vm (t, x) − f (vl (t, x)) vl (t, x) ] dxdt.

Then, recalling the assumptions of the lemma, for any r > 0 and T > 0, we have

vm → v strongly in L2 ((0, T ) ×B(0, r)) .

Thus, there exists a subsequence of {vm}∞m=1, still denoted by {vm}∞m=1, which is convergent to v almost 
everywhere in (0, T ) ×B(0, r) for all r > 0. Next, since f ∈ C1 (R), we obtain

f(vm(t, x))vm(t, x) → f(v(t, x))v(t, x) a.e. in (0, T ) ×B(0, r) for all r > 0.
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Moreover, by (2.5), the sequence {f(vm)vm}∞k=1 is bounded in L
2p

p+1 ((0, ∞) × Rn). Hence, since r > 0 is 
arbitrary, we infer that

f(vm)vm → f(v)v weakly in L
2p

p+1 ((0, T ) ×Rn) . (4.14)

Therefore, passing to the limit in (4.13), considering (4.14) and taking into account the assumptions of the 
lemma, we deduce

lim sup
m→∞

lim sup
l→∞

T∫
0

∫
Rn

tϕ (x) [ f (vl (t, x)) − f (vm (t, x)) ] [ zm,l (t, x) ] dxdt

= lim sup
m→∞

lim sup
l→∞

T∫
0

∫
Rn

tϕ (x)

⎡⎣ 2f (v (t, x)) v (t, x) −
∑

j=m,l

f (vj (t, x)) vj (t, x)

⎤⎦ dxdt
= − lim inf

m→∞
lim inf
l→∞

T∫
0

∫
Rn

tϕ (x)

⎡⎣ ∑
j=m,l

f (vj (t, x)) vj (t, x) − 2f (v(t, x)) v (t, x)

⎤⎦ dxdt ≤ 0,

which proves (4.12) and, therefore, Lemma 4.5. �
4.2. The asymptotic smoothness property

The next result plays a key role in the existence of the global attractor. As a matter of fact, it provides 
the Ladyzhenskaya condition for the semigroup {S(t)}t≥0 set in (2.26) and, consequently, the asymptotic 
smoothness property by using the general theory in dynamical systems, see for instance [7, Chapter 7].

Theorem 4.6. Let us assume that conditions (2.2)-(2.5) hold, with β ≥ −ζ, where ζ > 0 a small constant, 
and let B be a bounded subset of H. Then, every sequence of the form {S(tk)ϕk}∞k=1, with {ϕk}∞k=1 ⊂ B

and tk → ∞, has a subsequence that converges in H.

Proof. We will prove the theorem by establishing the following sequential limit

lim inf
k→∞

lim inf
m→∞

‖S (tk)ϕk − S (tm)ϕm‖H2(Rn)×L2(Rn) = 0, (4.15)

for every {ϕk}∞k=1 ⊂ B and tk → ∞. Therefore, combining (4.15) with the argument presented in [13, 
Lemma 4.5], we infer that the statement of Theorem 4.6 follows.

From now on, our goal is to prove (4.15). We start by observing that by (2.24) we have

sup
t≥0

sup
ϕ∈B

‖S (t)ϕ‖H < ∞. (4.16)

Since {ϕk}∞k=1 is bounded in H2 (Rn) × L2 (Rn), by (4.16), the sequence {S (.)ϕk}∞k=1 is bounded in 
Cb

(
0,∞;H2 (Rn) × L2 (Rn)

)
, where Cb

(
0,∞;H2 (Rn) × L2 (Rn)

)
is the space of continuously bounded 

functions from [0,∞) to H2 (Rn)×L2 (Rn). Then for any T0 ≥ 0 there exists a subsequence {km}∞m=1 such 
that tkm

≥ T0, and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
vm → v weakly star in L∞ (0,∞;H2 (Rn)

)
,

vmt → vt weakly star in L∞ (0,∞;L2 (Rn)
)
,

‖∇vm (t)‖2
L2(Rn) → q (t) weakly star in W 1,∞ (0,∞) ,

v (t) → v (t) weakly in H2 (Rn) , ∀t ≥ 0,

(4.17)
m
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for some q ∈ W 1,∞ (0,∞) and v ∈ L∞ (0,∞;H2 (Rn)
)
∩ W 1,∞ (0,∞;L2 (Rn)

)
, where we have 

(vm(t) , vmt (t)) = S(t + tkm
− T0)ϕkm

. By (1.3), we also have

(zm,l)tt(t, x) + Δ2zm,l(t, x) + λzm,l(t, x) − βΔzm,l(t, x)

− γ
[
‖∇vm (t)‖2

L2(Rn) Δvm(t, x) − ‖∇vl (t)‖2
L2(Rn) Δvl(t, x)

]
+ α(x)(zm,l)t(t, x) (4.18)

+ [ f (vm(t, x)) − f (vl(t, x)) ] − δ [ Ξ (vm (t)) Δvm(t, x) − Ξ (vl (t)) Δvl(t, x) ] = 0.

In what follows, we are going to establish the following estimates for the smooth solutions of (1.3)-(1.4)
with the initial data in H4 (Rn) ×H2 (Rn). By using standard density arguments, these estimates can be 
extended to the weak solutions with the initial data in H2 (Rn) × L2 (Rn). Firstly, considering (2.3)-(2.5)
in (2.19), we obtain that

T∫
0

‖vmt(t)‖2
L2(Rn\B(0,r0)) dt ≤ C, ∀T ≥ 0, (4.19)

T∫
0

∣∣∣∣ ddt ‖∇vm (t)‖2
L2(Rn)

∣∣∣∣q dt ≤ C, ∀T ≥ 0. (4.20)

Now, putting vm instead of v in (1.3), we have

vmtt(t, x) + Δ2vm(t, x) − βΔvm + λvm(t, x) − γ ‖∇vm (t)‖2
L2(Rn) Δvm

+ α(x)vmt(t, x) + f (vm) − δ Ξ(∇vm(t, x))Δvm = h (x) .

In the next computations, we are going to use the following cut-off function ηr (x) = η
(
x
r

)
, where

η ∈ C∞ (Rn) , 0 ≤ η (x) ≤ 1, η(x) =
{

0, |x| ≤ 1,
1, |x| ≥ 2.

(4.21)

Multiplying the previous equation by η2
rvm and integrating over (0, T ) ×Rn, we get

T∫
0

[
‖ηrΔvm(t)‖2

L2(Rn) + λ ‖ηrvm(t)‖2
L2(Rn) + β ‖ηr∇vm(t)‖2

L2(Rn)

]
dt

+ γ

T∫
0

‖∇vm (t)‖2
L2(Rn) ‖ηr∇vm(t)‖2

L2(Rn) dt +
T∫

0

∫
Rn

f (vm (t, x)) η2
rvm (t, x) dxdt

=
T∫

0

‖ηrvmt (t)‖2
L2(Rn) dt−

⎡⎣ ∫
Rn

η2
r (x) vmt (t, x) vm(t, x)dx

⎤⎦T

0

− 4
r

n∑
i=1

T∫
0

ηr (x) ηxi

(x
r

)
Δvm(t, x)vmxi

(t, x)dxdt−
T∫

0

∫
Rn

Δ
(
η2
r (x)

)
Δvm(t, x)vm(t, x)dxdt

− 2β
r

n∑
i=1

T∫
ηr (x) ηxi

(x
r

)
vm(t, x)vmxi

(t, x)dxdt− 1
2

⎡⎣ ∫ η2
r (x)α (x) (vm(t, x))2 dx

⎤⎦T
0 Rn 0
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− δ

T∫
0

Ξ (vm (t)) ‖ηr∇vm(t)‖2
L2(Rn) dt +

T∫
0

∫
Rn

h (x) η2
r (x) vm (t, x) dxdt,

where Ξ (v (t)) =
∣∣∣ ddt ‖∇v (t)‖2

L2(Rn)

∣∣∣q−2
d
dt ‖∇v (t)‖2

L2(Rn).

From assumption (2.6), we have

T∫
0

∫
Rn

f(vm(t, x))η2
rvm(t, x)dxdt ≥ −C1

T∫
0

‖ηrvm(t)‖2
L2(Rn)dt

= − C1

λ

T∫
0

λ‖ηrvm(t)‖2
L2(Rn)dt (4.22)

≥ − C1

λ

T∫
0

[
λ‖ηrvm(t)‖2

L2(Rn) + ‖ηrΔvm(t)‖2
L2(Rn)

]
.

Using that β ≥ −ζ, interpolation theorem and Young inequality, we obtain

β‖ηr∇vm(t)‖2
L2(Rn) ≥ −ζ

[
‖∇ (ηrvm(t)) ‖2

L2(Rn) + ‖∇ (ηr) vm(t)‖2
L2(Rn)

]
≥ −ζ	

[
λ‖ηrvm(t)‖2

L2(Rn) + ‖Δ (ηrvm(t)) ‖2
L2(Rn)

]
− ζ‖∇ (ηr) vm(t)‖2

L2(Rn)

≥ −ζ	
[
λ‖ηrvm(t)‖2

L2(Rn) + ‖ηrΔvm(t)‖2
L2(Rn)

]
− C

r
(4.23)

where 	 > 0 comes from the inequality

‖∇z‖2
L2(Rn) ≤ 	

[
λ‖z‖2

L2(Rn) + ‖Δz‖2
L2(Rn)

]
.

Thus, taking into account (4.16), (4.19), (4.20), (4.22) and (4.23) with ζ < ϑ
λ	 , we obtain

T∫
0

[
‖Δvm(t)‖2

L2(Rn\B(0,2r)) + λ ‖vm(t)‖2
L2(Rn\B(0,2r))

]
dt

+ γ

T∫
0

‖∇vm (t)‖2
L2(Rn) ‖∇vm(t)‖2

L2(Rn\B(0,2r)) dt (4.24)

≤ C

[
1 + T

r
+ T ‖h‖L2(Rn\B(0,r))

]
, ∀T ≥ 0 and ∀r ≥ r0.

Now, multiplying (4.18) by 
∑n

i=1 xi (1 − η2r) (vm − vl)xi
+ 1

2 (n− 1) (1 − η2r) (vm − vl), and integrating over 
(0, T ) ×Rn, we obtain

3
2

T∫
0

‖Δzm,l(t)‖2
L2(B(0,2r))dt + 1

2

T∫
0

‖(zm,l)t(t)‖2
L2(B(0,2r)) dt

≤
∑n

i=1

∫
| (1 − η2r (x))xi (zm,l)xi

(T, x)) (zm,l)t(T, x) | dx

B(0,4r)
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+
∑n

i=1

∫
B(0,4r)

| (1 − η2r (x))xi (zm,l)xi
(0, x)) (zm,l)t(0, x) | dx

+ 1
2 (n− 1)

∫
B(0,4r)

| (1 − η2r (x)) ((zm,l)t(T, x)) (zm,l(T, x)) | dx

+ 1
2 (n− 1)

∫
B(0,4r)

| (1 − η2r (x)) ((zm,l)t(0, x)) (zm,l(0, x)) | dx

+ 1
4r
∑n

i=1

T∫
0

∫
B(0,4r)\B(0,2r)

∣∣∣ ηxi

( x

2r

)
xi [ (zm,l)t (t, x) ]2

∣∣∣ dxdt

+ 1
4r
∑n

i=1

T∫
0

∫
B(0,4r)\B(0,2r)

∣∣∣ ηxi

( x

2r

)
xi [ Δzm,l (t, x) ]2

∣∣∣ dxdt

+
∑n

i=1

T∫
0

∫
B(0,4r)

∣∣∣Δ ((1 − η2r (x))xi) (zm,l (t, x))xi
Δ (zm,l (t, x))

∣∣∣ dxdt

+ 1
r

∑n

i,j=1

T∫
0

∫
B(0,4r)\B(0,2r)

∣∣∣ ηxj

( x

2r

)
xi (zm,l (t, x))xixj

Δ (zm,l (t, x))
∣∣∣ dxdt

+ 1
2 (n− 1)

T∫
0

∫
B(0,4r)\B(0,2r)

|Δ ((1 − η2r (x))) (zm,l (t, x)) Δ (zm,l (t, x))| dxdt

+ 1
2r (n− 1)

∑n

i=1

T∫
0

∫
B(0,4r)\B(0,2r)

∣∣∣ ηxi

( x

2r

)
(zm,l (t, x))xi

Δ (zm,l (t, x))
∣∣∣ dxdt

+ β
∑n

i=1

T∫
0

∫
B(0,4r)

∣∣∣ (1 − η2r (x))xi (zm,l (t, x))xi
Δ (zm,l (t, x))

∣∣∣ dxdt

+ β

2 (n− 1)
T∫

0

∫
B(0,4r)

| (1 − η2r) (zm,l(t, x))Δ (zm,l (t, x))| dxdt

+ λ
∑n

i=1

T∫
0

∫
B(0,4r)

∣∣∣ (1 − η2r (x))xi (zm,l (t, x))xi
(zm,l (t, x))

∣∣∣ dxdt

+ γ
∑n

i=1

T∫
0

∫
B(0,4r)

∣∣∣[ ‖∇vm (t)‖2
L2(Rn) Δvm (t, x) − ‖∇vl (t)‖2

L2(Rn) Δvl (t, x)
]

× (1 − η2r (x))xi (zm,l (t, x))xi

∣∣∣ dxdt
+ γ

2 (n− 1)
T∫ ∫ ∣∣∣[ ‖∇vm (t)‖2

L2(Rn) Δvm (t, x) − ‖∇vl (t)‖2
L2(Rn) Δvl (t, x)

]

0 B(0,4r)
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× (1 − η2r) (vm − vl)| dxdt

+
∑n

i=1

T∫
0

∫
B(0,4r)

∣∣∣ (1 − η2r (x))xi (zm,l (t, x))xi
a (x) ((zm,l)t (t, x))

∣∣∣ dxdt
+ 1

2 (n− 1)
T∫

0

∫
B(0,4r)

| (1 − η2r (x)) (zm,l (t, x)) a (x) ((zm,l)t (t, x)) | dxdt

+ δ
∑n

i=1

T∫
0

∫
B(0,4r)

|(Ξ (vm (t)) Δvm (t, x) − Ξ (vl (t)) Δvl (t, x))

× (1 − η2r (x))xi (zm,l (t, x))xi

∣∣∣ dxdt
+ δ

2 (n− 1)

∣∣∣∣∣∣∣
∑n

i=1

T∫
0

∫
B(0,4r)

(Ξ (vm (t)) Δvm (t, x) − Ξ (vl (t)) Δvl (t, x))

× (1 − η2r) (zm,l(t, x)) dxdt|

+
∑n

i=1

T∫
0

∫
B(0,4r)

∣∣∣ (1 − η2r (x))xi (zm,l (t, x))xi
(f (vm (t, x)) − f (vl (t, x)))

∣∣∣ dxdt
+ 1

2 (n− 1)
T∫

0

∫
B(0,4r)

| (1 − η2r (x)) (zm,l (t, x)) (f (vm (t, x)) − f (vl (t, x)))| dxdt.

Now we note that by (4.16),

‖Ξ (vm (t))Δvm (t) − Ξ (vl (t)) Δvl (t)‖L2(B(0,4r))

≤
∑

j=m,l

∣∣∣∣ ddt ‖∇vj (t)‖2
L2(Rn)

∣∣∣∣q−1

‖Δvj (t)‖L2(B(0,4r))

≤ 2
∑

j=m,l

[
‖Δvj (t)‖L2(Rn) ‖vjt (t)‖L2(Rn)

]q−1
‖Δvj (t)‖L2(B(0,4r)) ≤ C,

from where, along with the previous estimate, it follows that

3
2

T∫
0

‖Δzm,l (t)‖2
L2(B(0,2r)) dt + 1

2

T∫
0

‖(zm,l)t (t)‖2
L2(B(0,2r)) dt

≤ C r
[
‖∇zm,l (T )‖L2(B(0,4r)) + ‖∇zm,l (0)‖L2(B(0,4r))

]
× C ‖(zm,l)t‖2

L2(0,T ;L2(B(0,4r)\B(0,2r))) + C ‖zm,l‖2
L2(0,T ;H2(B(0,4r)\B(0,2r)))

+ C
√
T ‖∇zm,l‖L2((0,T )×B(0,4r)) . (4.25)

Since the sequence {vm}∞m=1 is bounded in C
(
[0, T ] ;H2 (Rn)

)
and the sequence {vmt}∞m=1 is bounded in 

C
(
[0, T ] ;L2 (Rn)

)
, by the generalized Arzela-Ascoli Theorem, the sequence {vm}∞m=1 is relatively compact 

in C
(
[0, T ] ;H1 (B (0, r))

)
for every r > 0. So, according to (4.17),
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vm → v strongly in C
(
[0, T ] ;H1 (B (0, r))

)
. (4.26)

Then, using (4.24) and (4.26) in (4.25), we get

lim sup
m→∞

lim sup
l→∞

T∫
0

[
‖Δzm,l (t)‖2

L2(B(0,2r)) + ‖(zm,l)t (t)‖2
L2(B(0,2r))

]
dt

≤ C

[
1 + T

r
+ T ‖h‖L2(Rn\B(0,r))

]
, ∀T ≥ 0, ∀ r ≥ r0.

Now, using (4.19), (4.24) and the last inequality, we obtain

lim sup
m→∞

lim sup
l→∞

T∫
0

[
‖zm,l (t)‖2

H2(Rn) + ‖(zm,l)t (t)‖2
L2(Rn)

]
dt

≤ C

[
1 + T

r
+ T ‖h‖L2(Rn\B(0,r))

]
, ∀T ≥ 0, ∀ r ≥ r0.

After passing the last inequality to the limit as r → ∞, we deduce

lim sup
m→∞

lim sup
l→∞

T∫
0

Ẽ (zm,l(t)) dt ≤ C, ∀T ≥ 0. (4.27)

Now, multiplying (4.18) by 2t(zm,l)t = 2t (vmt − vlt), integrating over (0, T )×Rn, using integration by parts 
and considering (2.4), we find

TẼ(zm,l(T )) + α0

T∫
0

t ‖(zm,l)t(t)‖2
L2(Rn\B(0,r)) dt ≤

T∫
0

Ẽ(zm,l(t))dt

+ 2γ
T∫

0

∫
Rn

[
‖∇vm (t)‖2

L2(Rn) Δvm (t, x) − ‖∇vl (t)‖2
L2(Rn) Δvl (t, x)

]
t(zm,l)t(t, x)dxdt

+ C

T∫
0

t

⎡⎣ ∑
j=m,l

∣∣∣∣ ddt ‖∇vj (t)‖2
L2(Rn)

∣∣∣∣q−2

+
∣∣∣∣ ddt ‖∇vl (t)‖2

L2(Rn)

∣∣∣∣q−1
⎤⎦ Ẽ(zm,l(t))dt

+ 2
T∫

0

∫
Rn

t (f(vl (t, x)) − f(vm (t, x))) (zm,l)t(t, x)dxdt. (4.28)

Multiplying (4.18) by εtηrzm,l, integrating over (0, T ) ×Rn and using integration by parts, we get

ε

T∫
0

t
[
‖Δzm,l(t)‖2

L2(Rn\B(0,2r)) + λ ‖zm,l(t)‖2
L2(Rn\B(0,2r)) + β ‖∇zm,l(t)‖2

L2(Rn\B(0,2r))

]
dt

≤ εC T Ẽ (zm,l(T )) + ε

T∫ ∫
n

t (zm,l(t))2t dxdt + εC

T∫
Ẽ (zm,l(t)) dt
0 R \B(0,r) 0
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+ εγ

T∫
0

∫
Rn

[
‖∇vm (t)‖2

L2(Rn) Δvm (t, x) − ‖∇vl (t)‖2
L2(Rn) Δvl (t, x)

]
tηr (x) (zm,l (t, x)) dxdt

+ εC

T∫
0

t

⎡⎣ ∑
j=m,l

∣∣∣∣ ddt ‖∇vj (t)‖2
L2(Rn)

∣∣∣∣q−2

+
∣∣∣∣ ddt ‖∇vl (t)‖2

L2(Rn)

∣∣∣∣q−1
⎤⎦ Ẽ (zm,l(t)) dt

+ εC
T 2

r
‖zm,l‖C([0,T ];H1(B(0,2r)\B(0,r)))

+ ε

T∫
0

∫
Rn

t (f (vl (t, x)) − f (vm (t, x))) ηr (x) (zm,l(t, x)) dxdt, (4.29)

for all T ≥ 0 and r ≥ r0.

Now, multiplying (4.18) by ε2∑n
i=1 txi (1 − η2r) (zm,l)xi

+ε2 t
2 (n− 1) (1 − η2r) zm,l, and integrating over 

(0, T ) ×Rn, we obtain

ε2

2

T∫
0

t
[
3 ‖Δzm,l(t)‖2

L2(B(0,2r)) dt + ‖(zm,l)t(t)‖2
L2(B(0,2r))

]
dt

≤ ε2C r
(
T + T 2) ‖zm,l‖C([0,T ];H1(B(0,4r))) + ε2C

T∫
0

t ‖(zm,l)t(t)‖2
L2(B(0,4r)\B(0,2r)) dt

+ ε2 C

T∫
0

t ‖zm,l(t)‖2
H2(B(0,4r)\B(0,2r)) dt. (4.30)

Summing (4.28)-(4.30), choosing ε sufficiently small, applying Young inequality and recalling Lemma 4.2, 
we infer

TẼ (zm,l(T )) + ε2

2

T∫
0

t
[
3 ‖Δzm,l(t)‖2

L2(B(0,2r)) dt + ‖(zm,l)t(t)‖2
L2(B(0,2r))

]
dt

+ ε

T∫
0

t
[
‖Δzm,l(t)‖2

L2(Rn\B(0,2r)) + λ ‖zm,l(t)‖2
L2(Rn\B(0,2r)) + β ‖∇zm,l(t)‖2

L2(Rn\B(0,2r))

]
dt

+ ε2

2

T∫
0

t
[
3 ‖Δzm,l(t)‖2

L2(B(0,2r)) dt + ‖(zm,l)t(t)‖2
L2(B(0,2r))

]
dt

≤ C

T∫
0

(1 + μt) Ẽ (zm,l(t)) dt + Πm,l(T ) + C

T∫
0

t

⎡⎣ ∑
j=m,l

∣∣∣∣ ddt ‖∇vj (t)‖2
L2(Rn)

∣∣∣∣q
⎤⎦ Ẽ (zm,l(t)) dt

+ C

T∫
0

∫
Rn

t (f(vl (t, x)) − f(vm (t, x))) ((zm,l)t (t, x)) dxdt

+ εC
T 2

‖zm,l‖ 1 + ε2Cr
(
T + T 2) ‖zm,l‖ 1
r C([0,T ];H (B(0,2r)\B(0,r))) C([0,T ];H (B(0,4r)))
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+ εγ

T∫
0

∫
Rn

(
‖∇vm (t)‖2

L2(Rn) Δvm (t, x) − ‖∇vl (t)‖2
L2(Rn) Δvl (t, x)

)
t ηr (x) (zm,l(t, x)) dxdt

+ εC

T∫
0

∫
Rn

t (f (vl) − f (vm)) ηr (x) (zm,l (t, x)) dxdt, ∀T ≥ 0, ∀ r ≥ r0

At this point, let us denote κm,l (T ) = TẼ (zm,l (T )) and

Λm,l (T ) =
T∫

0

Ẽ (zm,l (t)) dt + Πm,l(T )

+
T∫

0

∫
Rn

t (f(vl (t, x)) − f(vm (t, x))) ((zm,l)t (t, x)) dxdt

+
(
r + 1

r

)(
T + T 2) ‖vm,l‖C([0,T ];H1(B(0,4r)))

+ ε

T∫
0

∫
Rn

t (f (vl) − f (vm)) ηr (x) (zm,l (t, x)) dxdt

+ ε

T∫
0

∫
Rn

[
‖∇vm (t)‖2

L2(Rn) Δvm (t, x) − ‖∇vl (t)‖2
L2(Rn) Δvl (t, x)

]
× t ηr (x) (zm,l (t, x)) dxdt.

Then, we obtain

κm,l (T ) ≤ CΛm,l (T ) + C

T∫
0

⎡⎣ ∑
j=m,l

∣∣∣∣ ddt ‖∇vj (t)‖2
L2(Rn)

∣∣∣∣q
⎤⎦κm,l (t) dxdt,

and applying Gronwall inequality, it yields

κm,l (T ) ≤ CΛm,l (T ) e
C

T∫
0

[∑
j=m,l

∣∣∣ d
dt‖∇vj(t)‖2

L2(Rn)

∣∣∣q ]dt
.

Therefore, using Lemma 4.3, Lemma 4.4, Lemma 4.5, (4.4), (4.20), (4.26) and (4.27), there holds the estimate

lim sup
m→∞

lim sup
l→∞

κm,l (T ) ≤ C

⎡⎣ 1 + lim sup
m→∞

T∫
0

‖vm (t)‖2
H2(Rn\B(0,r)) dt

⎤⎦ .
Recalling (4.24) and the definition of the κm,l (T ), from the last estimate, it follows that

lim sup
m→∞

lim sup
l→∞

TẼ (zm,l (T )) ≤ C

[
1 + T

r
+ T ‖h‖L2(Rn\B(0,r))

]
, ∀T ≥ 0, ∀ r ≥ r0.

Hence, taking the limit as r → ∞ in the above inequality, there holds the estimate
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lim sup
m→∞

lim sup
l→∞

TẼ (zm,l (T )) ≤ C, ∀T ≥ 0,

which yields

lim sup
m→∞

lim sup
l→∞

‖S(T + tkm
− T0)ϕkm

− S(t + tkl
− T0)ϕkl

‖H ≤ C√
T
, ∀ T > 0.

Picking T = T0 in the last estimate, we deduce that

lim sup
m→∞

lim sup
l→∞

‖S(tkm
)ϕkm

− S(tkl
)ϕkl

‖H ≤ C√
T0

, ∀ T0 ≥ 1,

which proves (4.15), as desired. This completes the proof of Theorem 4.6. �
Corollary 4.7. Under the assumptions of Theorem 4.6, the dynamical system (H, S(t)) is asymptotically 
smooth.

Proof. It is an immediate consequence of Theorem 4.6 and [7, Proposition 7.1.6]. �
We are finally in position to conclude the proof of Theorem 4.1.

4.3. Proof of Theorem 4.1: items I and II

From Corollaries 3.2 and 4.7 we have obtained that (H, S(t)) is a gradient asymptotically smooth dy-
namical system. Moreover, it is not so difficult to prove the following additional properties:

(i) the Lyapunov function E(ϕ) is bounded from above on every bounded subset of H;
(ii) the set ER = {ϕ : E(ϕ) ≤ R} is bounded for every R;
(iii) the set of stationary solutions N is bounded.

Therefore, applying [7, Corollary 7.5.7], we can conclude that {S (t)}t≥0 defined in (2.26) has a compact 
global attractor A = Mu(N ) ⊂ H. In addition, the property (4.1) is a direct consequence of [7, Theorem 
7.5.6]. �
4.4. Proof of Theorem 4.1: item III

Let us consider (u0, u1) ∈ A. By the invariance of A, it follows that (see for instance [3, p. 159]) 
there exists an invariant trajectory Γ = {(u (t) , ut (t)) : t ∈ R} ⊂ A such that (u (0) , ut (0)) = (u0, u1). 
According to [3], an invariant trajectory is a curve Γ = {(u (t) , ut (t)) : t ∈ R} such that S (t) (u (τ) , ut (τ)) =
(u (t + τ) , ut (t + τ)) for all t ≥ 0 and τ ∈ R. As in (2.26), we denote S(t) (u0, u1) = (u (t) , ut (t)), and we 
also define

v (t, x) := u (t + τ, x) − u (t, x)
τ

, τ > 0.

Thus, using equation (1.3) and denoting, for simplicity, Υ(u) instead Υ(u, ut), we get

vtt(t, x) + Δ2v(t, x) + λv(t, x) − βΔv(t, x) + α(x)vt(t, x) − γ ‖∇u (t)‖2
L2(Rn) Δv (t, x)

− γ
‖∇u (t + τ)‖2

L2(Rn) − ‖∇u (t)‖2
L2(Rn) Δu(t + τ, x) − δ |Υ (u (t))|q−2 Υ (u (t)) Δv (t, x)
τ
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− δ
|Υ (u (t + τ))|q−2 Υ (u (t + τ)) − |Υ (u (t))|q−2 Υ (u (t))

τ
Δu(t + τ, x)

+ f (u(t + τ, x)) − f (u (t, x))
τ

= 0, (t, x) ∈ R+ ×Rn. (4.31)

From the definition of v and (2.24), we firstly observe that

‖v (s)‖L2(Rn) =
∥∥∥∥u (s + τ, x) − u (s, x)

τ

∥∥∥∥
L2(Rn)

≤ sup
0≤s<∞

‖ut (s)‖L2(Rn) < Ĉ. (4.32)

Additionally, there hold the following inequalities

|Υ (u (t + τ))|q−2 Υ (u (t + τ)) − |Υ (u (t))|q−2 Υ (u (t))
τ

≤ C
|Υ (u (t + τ)) − Υ (u (t))|

τ

[
|Υ (u (t + τ))|q−2 + |Υ (u (t))|q−2

]
= C

1
τ

∣∣∣∣∣∣
∫
Rn

Δ (u (t + τ, x))ut (t + τ, x) dx−
∫
Rn

Δ (u (t, x))ut (t, x) dx

∣∣∣∣∣∣
×
[
|Υ (u (t + τ))|q−2 + |Υ (u (t))|q−2

]
≤ C

∣∣∣∣∣∣
∫
Rn

Δ (u (t + τ, x)) vt (t, x) dx

∣∣∣∣∣∣
[
|Υ (u (t + τ))|q−2 + |Υ (u (t)) |q−2

]

+

∣∣∣∣∣∣
∫
Rn

Δv (t, x)ut (t, x) dx

∣∣∣∣∣∣
[
|Υ (u (t + τ))|q−2 + |Υ (u (t))|q−2

]
≤ C

[
‖vt (t)‖L2(Rn) + ‖Δv (t)‖L2(Rn)

] [
|Υ (u (t + τ))|q−2 + |Υ (u (t))|q−2

]
. (4.33)

Then, multiplying (4.31) by 2vt, integrating over Rn and exploiting (4.32)-(4.33), we find

d

dt

(
E(v(t))

)
+ 2α0 ‖vt (t)‖2

L2(Rn\B(0,r0))

≤ C |Υ (u (t))|E(v(t)) + C ‖∇v (t)‖L2(Rn) ‖vt (t)‖L2(Rn) + C |Υ (u (t))|q−1
E(v(t))

+ C
[
|Υ (u (t))|q−2 + |Υ (u (t + τ))|q−2

]
E(v(t)) + C ‖vt (t)‖L2(Rn) , (4.34)

where

E(v(t)) = ‖vt (t)‖2
L2(Rn) + ‖Δ (v (t))‖2

L2(Rn) + β ‖∇v (t)‖2
L2(Rn) + λ ‖v (t)‖2

L2(Rn)

+ γ ‖∇u (t)‖2
L2(Rn) ‖∇v (t)‖2

L2(Rn) .

Now, let η be the cut-off function as defined in (4.21). Multiplying the equation (4.31) by 
∑n

i=1 ε
2xi(1 −

η2r)vxi
+ ε2

2 (n− 1) (1 − η2r) v, integrating over Rn, and exploiting (4.32)-(4.33), and using (2.5) and (2.24), 
it follows that

3ε2
‖Δv (t)‖2

L2(B(0,2r)) + ε2
‖vt (t)‖2

L2(B(0,2r)) + ε2
β ‖∇v (t)‖2

L2(B(0,2r)) + ε2
λ ‖v (t)‖2

L2(B(0,2r))
2 2 2 2
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+ ε2

2 γ ‖∇u (t)‖2
L2(Rn) ‖∇v (t)‖2

L2(B(0,2r)) + ε2 (n− 1)
4

d

dt

⎡⎣ ∫
Rn

(1 − η2r (x)) a (x) |v (t, x)|2 dx

⎤⎦

+ ε2 d

dt

⎡⎣ n∑
i=1

∫
Rn

xi (1 − η2r (x)) vxi
(t, x) vt (t, x) dx + 1

2 (n− 1)
∫
Rn

(1 − η2r (x)) vt (t, x) v (t, x) dx

⎤⎦

+ ε2 (n− 1)
4

d

dt

⎡⎣ ∫
Rn

(1 − η2r (x)) a (x) |v (t, x)|2 dx

⎤⎦
≤ ε2C ‖vt (t)‖2

L2(B(0,4r)\B(0,2r)) ds + ε2C ‖Δv (t)‖2
L2(B(0,4r)\B(0,2r))

+ ε2C ‖∇v (t)‖2
L2(B(0,4r)\B(0,2r)) ds + ε2C ‖v (t)‖2

L2(B(0,4r)\B(0,2r))

+ ε2C
[
1 + r ‖v (t)‖H2(Rn) + r ‖v (t)‖1/2

H2(Rn)

]
+ ε2C (r + 1) |Υ (u (t))|q−1

E (v (t))

+ ε2C (r + 1)
[
|Υ (u (t))|q−2 + |Υ (u (t + τ))|q−2

]
E (v (t)) , ∀ t ≥ 0, ∀ r ≥ r0.

Next, a further multiplication of (4.31) by εη2
rv, with the help of (4.32) and (4.33), leads to

ε ‖Δv(t)‖2
L2(Rn\B(0,r)) + εβ ‖∇v(t)‖2

L2(Rn\B(0,r)) + ελ ‖v(t)‖2
L2(Rn\B(0,r))

+ εγ ‖∇u (t)‖2
L2(Rn) ‖∇v(t)‖2

L2(Rn\B(0,r))

+ ε
d

dt

⎡⎣ ∫
Rn

η2
r (x) vt (t, x) v(t, x)dx + 1

2

∫
Rn

η2
r (x)α (x) (v(t, x))2 dx

⎤⎦
≤ Cε

[
1 + ‖ηrvt (t)‖2

L2(Rn) + ‖v(t)‖3/2
H2(Rn\B(0,r)) + ‖v(t)‖H2(Rn\B(0,r)) + ‖v(t)‖1/2

H2(Rn)

]
+ εC

[
|Υ (u (t))|q−2 + |Υ (u (t + τ))|q−2

]
E (v (t)) , ∀ t ≥ 0, ∀ r ≥ r0. (4.35)

Adding the inequalities (4.34)-(4.35) and applying Young’s inequality with ε > 0 sufficiently small, we 
deduce

d

dt

(
E(v(t))

)
+ CE(v(t)

+ ε2 d

dt

⎡⎣ n∑
i=1

∫
Rn

xi (1 − η2r (x)) vxi
(t, x) vt (t, x) dx + 1

2 (n− 1)
∫
Rn

(1 − η2r (x)) vt (t, x) v (t, x) dx

⎤⎦

+ ε2 (n− 1)
4

d

dt

⎡⎣ ∫
Rn

(1 − η2r (x)) a (x) |v (t, x)|2 dx

⎤⎦

+ ε
d

dt

⎡⎣ ∫
Rn

η2
r (x) vt (t, x) v(t, x)dx + 1

2

∫
Rn

η2
r (x)α (x) (v(t, x))2 dx

⎤⎦
≤ C + C |Υ (u (t))|q E(v(t)), ∀ t ≥ 0. (4.36)

Now, let us define
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Θ (t) = E(v(t)) + ε2
∫
Rn

(1 − η2r (x)) a (x) |v (t, x)|2 dx

+ ε2
n∑

i=1

∫
Rn

xi (1 − η2r (x)) vxi
(t, x) vt (t, x) dx

+ ε2

2 (n− 1)
∫
Rn

(1 − η2r (x)) vt (t, x) v (t, x) dx

+ ε

⎡⎣ ∫
Rn

η2
r (x) vt (t, x) v(t, x)dx + 1

2

∫
Rn

η2
r (x)α (x) (v(t, x))2 dx

⎤⎦ .
Thus, from (4.36), it follows that

d

dt
Θ (t) + CE(v(t)) ≤ C + C |Υ (u (t))|q E(v(t)), ∀ t ≥ 0. (4.37)

It is easy to see that, choosing ε small enough, there exist constants c > 0, c̃ > 0 such that

cE (v (t)) ≤ Θ (t) ≤ c̃E (v (t)) . (4.38)

Then, by (4.37) and (4.38), we readily get

d

dt
Θ (t) + CΘ (t) ≤ C + C |Υ (u (t))|q Θ (t) ,

which yields

Θ (t) ≤ C + C

t∫
0

|Υ (u (s))|q Θ (s) ds, ∀ t ∈ [0, T ],

for every T > 0 and some C > 0. Applying Gronwall’s inequality in the last estimate, we obtain

Θ (t) ≤ Ce
C

t∫
0
|Υ(u(s))|qds

, ∀ t ∈ [0, T ], (4.39)

for every T ≥ 0 and some C > 0. On the other hand, recalling (2.19), we have the estimate

∞∫
0

|Υ (u (s))|q ds ≤ ĉ,

for some constant ĉ > 0. Therefore, taking into account the last estimate in (4.39) and using once more 
(4.38), we infer that

E (v (t)) ≤ C, ∀ t ∈ [0, T ], (4.40)

for every T ≥ 0 and some constant C > 0. Taking the limit as τ → 0 in (4.40) and regarding the definition 
of v, we eventually obtain that

E (ut (t)) ≤ C, ∀ t ≥ 0,
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for some constant C > 0. From this last estimate and (1.3), we also deduce that

‖u (t)‖H4(Rn) ≤ C,

for some constant C > 0. Therefore, the last two estimates are enough to conclude that

‖(u (t) , ut (t))‖H4(Rn)×H2(Rn) ≤ C,

for some constant C > 0. This finishes the proof of Theorem 4.1. �
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Appendix A. Final remarks

We finally highlight two interesting points to conclude the paper, namely, on the Balakrishnan-Taylor 
damping term (as a not so good stabilizer alone) and also on the exponential stabilization in the homogeneous 
framework.

A.1. Weakness of the Balakrishnan-Taylor damping

Although acting as a dissipative structure in the system, the Balakrishnan-Taylor damping seems to be 
not enough to produce “a good” stability to the homogeneous problem, say the exponential one. Indeed, 
just to fix the idea, let us formally take problem (1.3)-(1.4) with β = γ = 0, α, h ≡ 0 in Rn and f ≡ 0 in R, 
namely, the next simplified model

utt + Δ2u + λu− δ |Υ(u, ut)|q−2 Υ(u, ut)Δu = 0 in R+ ×Rn, (A.1)

where we have used the notation (1.5). Thus, the corresponding energy set in (2.1) becomes to the following

E(t) = 1
2‖Δu(t)‖2

L2(Rn) + λ

2 ‖u(t)‖2
L2(Rn) + 1

2‖ut(t)‖2
L2(Rn), t ≥ 0, (A.2)

whose derivative formally (and rigorously) satisfies

d

dt
E(t) = −δ |Υ(u(t), ut(t))|q = −δ |(Δu(t), ut(t))|q ≤ 0, ∀ t > 0. (A.3)

This shows that E is non-increasing and we can ask about its stability. For example, if E(t) does not go 
to zero as t goes to infinity, then nothing could be done in terms of stabilization. On the other, even if we 
have the strong stability E(t) → 0 as t → ∞, then one has

|Υ(u(t), ut(t))| ≤ E(t) → 0 as t → ∞. (A.4)

Accordingly, (A.4) implies that the damping coefficient in (A.1) becomes less and less effective as the 
parameter t goes to infinity and, consequently, no fast decay rate estimates could be expected. Moreover, 
from (A.3)-(A.4), one can easily see that
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E(t) ≥ 1
[(q − 1)δ t + E1−q(0)]

1
q−1

, t > 0, (A.5)

which clearly means that the Balakrishnan-Taylor damping term −δ |Υ(u, ut)|q−2 Υ(u, ut)Δu (alone) is 
no longer enough to conclude (uniform) exponential stability, once the energy is bounded from below 
polynomially as in (A.5). In conclusion, the additional localized damping term α(x)ut seems to be a minimum 
amount of damping necessary to recover uniform (exponential) decay patterns for (A.1) and, thus, in the 
study of long-time dynamics for the fuller model (1.3)-(1.4).

A.2. Exponential stabilization in the homogeneous case

By taking β = γ = δ = 0 and h ≡ 0 in (1.3)-(1.4), then it precisely reduces to the problem proposed 
by [21], see (1.1)-(1.2) therein. In such a case, under suitable assumptions on f , the authors show that the 
corresponding energy functional is exponentially stable, see [21, Theorem 1.1]. In the present article, if we 
only assume h ≡ 0 in (1.3)-(1.4), then it also consists a sort of more general homogeneous problem, by 
including extensible beams of Balakrishnan-Taylor type. In such a case, from (2.1) one sees that

E0(t) = 1
2‖(u(t), ut(t))‖2

H + β

2 ‖∇u(t)‖2
L2(Rn) + γ

4 ‖∇u(t)‖4
L2(Rn) +

∫
Rn

F (u(t)) dx, (A.6)

and from (2.19) it is also non-increasing. Moreover, by strengthening the assumptions on f (if necessary), 
taking advantage of the unique continuation property in the present setting, and following the same lines of 
[21], one can prove that E0(t) given in (A.6) (related to the homogeneous problem) is exponential stable, 
that is, there exist constants C, c > 0 such that

E0(t, u0, u1) ≤ CE0(0, u0, u1)e−ct, ∀ t ≥ 0, (A.7)

for initial data lying in bounded subsets (u0, u1) ∈ B ⊂ H2 (Rn) × L2 (Rn). In other words, the attractor 
A0 = {(0, 0)} would be the trivial one. To the proof of such statements, only computations on the extensible 
term

−
(
β + γ‖∇u(t)‖2

L2(Rn) + δ |Υ(u, ut)|q−2 Υ(u, ut)
)

Δu,

are necessary when compared to [21, Section 2], by consisting somehow very similar to those performed in 
the latter. Hence, we omit the details here.
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