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1. Introduction

The classical conservative Timoshenko system3 from [29],

{
ρ1ϕtt − k(ϕx + ψ)x = 0 in (0,L) ×R+,

ρ2ψtt − bψxx + k(ϕx + ψ) = 0 in (0,L) ×R+,
(1.1)

for the vertical displacement ϕ and the rotation angle ψ modeling a beam of length L > 0, has 
been studied intensively concerning possible damping mechanisms. Two damping terms, one in 
each equation, of frictional type ϕt resp. ψt are easily seen to lead to an exponentially stable 
system, of course here and in the sequel with added initial and boundary conditions. Only one 
damping ψt in the second equation of (1.1) is sufficient for exponential stability if and only if the 
condition of equality of the wave speeds (EWS), given by

k

ρ1
= b

ρ2
, (1.2)

is assumed to hold,4 cf. [27].
Damping through a memory term, replacing the second equation in (1.1),

⎧⎪⎪⎨
⎪⎪⎩

ρ1ϕtt − k(ϕx + ψ)x = 0 in (0,L) ×R+,

ρ2ψtt − bψxx + k(ϕx + ψ) +
t∫

0

g(t − s)ψxxds = 0 in (0,L) ×R+,
(1.3)

with an exponentially decaying positive kernel g, also leads to exponential stability if and only 
if the EWS condition (1.2) is satisfied, see [6].

Another type of damping consists in taking into account thermal effects – as will be later one 
main aspect of our paper – having been studied first in [22],

⎧⎪⎨
⎪⎩

ρ1ϕtt − k(ϕx + ψ)x = 0 in (0,L) ×R+,

ρ2ψtt − bψxx + k(ϕx + ψ) + σθx = 0 in (0,L) ×R+,

ρ3θt − βθxx + σψxt = 0 in (0,L) ×R+,

(1.4)

where θ denotes the temperature (difference to a fixed constant reference temperature). Again, 
exponential stability is given if and only if the EWS condition (1.2) is satisfied. For more recent 
results related to (1.4) we quote [2] and the references therein.

A third type of damping effect is given by a history term, similar to the memory term in (1.3), 
resulting in the system

3 Recent work strongly suggests the notion of Timoshenko-Ehrenfest system, see [10].
4 The EWS condition is physically never satisfied but demonstrates already the sensitivity of the Timoshenko systems.
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⎧⎪⎪⎨
⎪⎪⎩

ρ1ϕtt − k(ϕx + ψ)x = 0 in (0,L) ×R+,

ρ2ψtt − bψxx + k(ϕx + ψ) +
∞∫

0

g(t − s)ψxxds = 0 in (0,L) ×R+,
(1.5)

with an exponentially decaying positive kernel g, also becoming exponentially stable if and only 
if the EWS condition (1.2) is satisfied, see [14,21]. A short survey of references containing more 
recent generalized results concerning the models (1.3) and (1.5) can be found in [3].

Combining history and thermal effects, in [14], the thermo-(visco-)elastic system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ1ϕtt − k(ϕx + ψ)x = 0 in (0,L) ×R+,

ρ2ψtt − bψxx + k(ϕx + ψ) +
∞∫

0

g(t − s)ψxxds + σθx = 0 in (0,L) ×R+,

ρ3θt − βθxx + σψxt = 0 in (0,L) ×R+,

(1.6)

was considered and once more, for exponentially decaying kernels g, the exponential stability of 
the system was obtained if and only if the EWS condition (1.2) is satisfied.

A final aspect in the above mentioned system with temperature and history concerns the be-
havior, if one replaces the Fourier type heat conduction law

q + βθx = 0 (1.7)

for the heat flux q , leading to the classical heat equation visible in its main part

ρ3θt − βθxx · · · = 0

above, by the Cattaneo (Maxwell) law

τqt + q = −βθx, (1.8)

with a positive relaxation parameter τ > 0 (τ = 0 corresponds to the Fourier law (1.7), combined 
with the conservation law

ρ3θt + qx + σψxt = 0.

Here the interesting effect appears that the Cattaneo law leads to non-exponential stability for the 
system

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρ1ϕtt − k(ϕx + ψ)x = 0 in (0,L) ×R+,

ρ2ψtt − bψxx + k(ϕx + ψ) +
∞∫

0

g(t − s)ψxxds + σθx = 0 in (0,L) ×R+,

ρ3θt + qx + σψxt = 0 in (0,L) ×R+,

τq + q = −βθ , in (0,L) ×R+,

(1.9)
t x
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even if the EWS condition (1.2) is satisfied, see again [14]. We also refer to [11] where a new sta-
bility number involving the coefficients, based on the development for Cattaneo’s system without 
history [25], is still regarded in the uniform stabilization of (1.9).

Thus one has the surprising fact that the Timoshenko system plus history but without thermal 
effect, i.e. system (1.5), is exponentially stable under the EWS condition, it remains exponen-
tially stable as expected if we add the (dissipative) effect of heat conduction under the Fourier 
law in system (1.6), but it loses the exponential stability when adding the (still dissipative?) ther-
mal effect in form of the Cattaneo law in system (1.9). In other words, Cattaneo may destroy 
exponential stability, while Fourier preserves it. See [14] for detailed (and precise) results on 
these statements.

In all the thermoelastic models above, the thermal damping is assumed in the bending moment
by leading to the couplings in (1.4), (1.6), (1.9).

Here, we shall consider a coupling in the shear moment leading partially to new results with 
respect to the EWS condition (1.2) – this condition can be avoided under history terms –. In 
particular, we will have an unexpected very different result (cf. Theorem 4.1), where now we 
obtain an exponential stability result also under the Cattaneo law.

The thermal damping in the shear force – possibly combined with history in the bending 
moment – leads to the following thermo-(visco-)elastic system

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρ1ϕtt − k(ϕx + ψ)x + σθx = 0 in (0,L) ×R+,

ρ2ψtt − bψxx + k(ϕx + ψ) + α

∞∫
0

g(s)ψxx(s)ds − σθ = 0 in (0,L) ×R+,

ρ3θt + qx + σ(ϕx + ψ)t = 0 in (0,L) ×R+,

τqt + βq + θx = 0 in (0,L) ×R+,

(1.10)

where we have α = 0 (without history) or α = 1 (with history), and τ = 0 (Fourier law) or 
τ > 0 (Cattaneo law). For the derivation of these possible dissipative hybrid models generated by 
(1.10), we refer to [2,3] where physical justifications are provided on thermo-(visco-)elasticity.

The remaining constants are assumed to be positive constants,

ρ1, ρ2, ρ3, k, σ, b,β > 0, (1.11)

and further conditions on the exponentially decaying kernel g will be specified later on.
The case α = 0, τ = 0, meaning without history and with Fourier’s law, i.e.

⎧⎪⎨
⎪⎩

ρ1ϕtt − k(ϕx + ψ)x + σθx = 0 in (0,L) ×R+,

ρ2ψtt − bψxx + k(ϕx + ψ) − σθ = 0 in (0,L) ×R+,

ρ3θt − βθxx + σ(ϕx + ψ)t = 0 in (0,L) ×R+,

(1.12)

with initial-boundary conditions

ϕx(0, t) = ϕx(L, t) = ψ(0, t) = ψ(L, t) = θ(0, t) = θ(L, t) = 0, t ≥ 0, (1.13)

and
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ϕ(x,0) = ϕ0(x),ϕt (x,0) = ϕ1(x),ψ(x,0) = ψ0(x),

ψt (x,0) = ψ1(x), θ(x,0) = θ0(x), x ∈ (0,L), (1.14)

has already been addressed in the literature, cp. [1,4,5]. Accordingly, it is known that 
(1.12)-(1.14) is exponentially stable if and only if the mathematical assumption EWS (1.2) is 
taken into account, and polynomially stable with optimal decay rate t−1/2 ([4, Sect. 4]). This 
result corresponds to the one for system (1.4) (coupling with bending moment, without history, 
Fourier’s law).

Here, we first show in Section 2 the exponential stability if additionally a history term is 
present, i.e. (1.10) with τ = 0 (Fourier law) but α = 1,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ1ϕtt − k(ϕx + ψ)x + σθx = 0 in (0,L) ×R+,

ρ2ψtt − bψxx + k(ϕx + ψ) +
∞∫

0

g(s)ψxx(s)ds − σθ = 0 in (0,L) ×R+,

ρ3θt − βθxx + σ(ϕx + ψ)t = 0 in (0,L) ×R+,

(1.15)

without assuming EWS (1.2), see e.g. Theorem 2.2. This result provides the correct stabilization 
for (1.15); and essentially improves [12,28], where the case of non-EWS remained open. It also 
brings up a different result when compared to (1.6) (thermal coupling on the bending moment) 
where the EWS condition (1.2) must be regarded for its exponential stabilization. In Section 2
we also provide more precise details on improvements in this case.

In Section 3, we look at Cattaneo’s law without history, α = 0 and τ > 0,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ1ϕtt − k(ϕx + ψ)x + σθx = 0 in (0,L) ×R+,

ρ2ψtt − bψxx + k(ϕx + ψ) − σθ = 0 in (0,L) ×R+,

ρ3θt + qx + σ(ϕx + ψ)t = 0 in (0,L) ×R+,

τqt + βq + θx = 0 in (0,L) ×R+.

(1.16)

It will be proved (cf. Theorem 3.1) that there is no exponential stability no matter if EWS (1.2)
is true or not. This result is new and corresponds to the known result for the case of damping in 
the bending moment given in [14].

Finally, we discuss in Section 4 the situation of Cattaneo’s law with history, α = 1, τ > 0, 
namely,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρ1ϕtt − k(ϕx + ψ)x + σθx = 0 in (0,L) ×R+,

ρ2ψtt − b̃ψxx + k(ϕx + ψ) +
∞∫

0

g(s)ψxx(s)ds − σθ = 0 in (0,L) ×R+,

ρ3θt + qx + σ(ϕx + ψ)t = 0 in (0,L) ×R+,

τqt + βq + θx = 0 in (0,L) ×R+.

(1.17)

It will be proved that (1.17) is exponentially stable without needing the EWS condition (1.2) on 
the coefficients, see Theorem 4.1. Unlike the previous case, this is a strong contrast and, maybe, 
unexpected in comparison to the result for the bending moment damping mentioned above with 
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respect to (1.9), where we lose exponential stability going from the Fourier to the Cattaneo model, 
as presented in [14]. Sections 3 and 4 will bring all specific and concrete proofs.

As a consequence for the quite different results obtained (in comparison to bending moment 
damping), quite new sequences of a priori estimates will have to be provided.

Summarizing our contributions, we present:

• a first discussion of several thermoelastic Timoshenko systems involving history terms and 
both Fourier and Cattaneo models (main Theorems 2.2, 3.1, 4.1);

• new insight into possible roles of history and heat conduction models strongly contrasting 
expectations from earlier works, in particular Theorems 2.2, 4.1, also answering an open 
question from [12,28];

• combination of methods requiring new sequences of a priori estimates not given before, 
under less assumptions on the kernel g as e.g. in [14] (no lower bound required).

We denote by L2, L1, H 1, H 1
0 (mainly on the domain (0, L)) the usual Sobolev spaces, and by 

〈·, ·〉2 and ‖ · ‖2 the inner product resp. the norm in L2. Unless otherwise specified, the letter C
will denote a generic positive constant.

2. Fourier and history: exponential stability

We start by considering the thermoelastic Fourier case with history (1.15). Introducing as 
usual (cf. [14]) for the history setting

η(x, t, s) := ψ(x, t) − ψ(x, t − s), t, s ≥ 0, (2.1)

we consider the following system

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρ1ϕtt − k(ϕx + ψ)x + σθx = 0 in (0,L) ×R+,

ρ2ψtt − b̃ψxx + k(ϕx + ψ) −
∞∫

0

g(s)ηxx(s)ds − σθ = 0 in (0,L) ×R+,

ρ3θt − βθxx + σ(ϕx + ψ)t = 0 in (0,L) ×R+,

ηt + ηs − ψt = 0 in (0,L) ×R+ ×R+,

(2.2)

where

b̃ := b −
∞∫

0

g(s) ds,

with initial-boundary conditions

{
ϕx(0, t) = ϕx(L, t) = ψ(0, t) = ψ(L, t) = θ(0, t) = θ(L, t) = 0,

η(0, t, s) = η(L, t, s) = 0, t, s ≥ 0,
(2.3)

and
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{
ϕ(x,0) = ϕ0(x), ϕt (x,0) = ϕ1(x), ψ(x,0) = ψ0(x), ψt (x,0) = ψ1(x),

θ(x,0) = θ0(x), η(x,0, s) = η0(x, s), η(x, t,0) = 0, x ∈ (0,L), t, s ≥ 0.
(2.4)

The assumptions on g are given by

Assumption 2.1. We assume that g ∈ L1(R+) ∩ C1(R+) is a positive function satisfying

b̃ = b −
∞∫

0

g(s)ds > 0 and g′(s) ≤ −k1g(s), s ∈ R+, (2.5)

for some constant k1 > 0.

We remark that we do not require any lower bound of type −k0g(s) ≤ g′(s) or a bound 
on second derivatives like |g′′(s)| ≤ k2 for some k0, k2 > 0 as in [14]. Instead of using these 
additional assumptions, we can give an improvement using a technique from [16], see below.

Without the history term it corresponds to system (1.12), where the EWS condition (1.2) is 
still crucial, see the comments above following (1.12). Now, with history, we will be able to 
remove this condition and still get exponential stability. This improves [12,28], answering an 
open question, and it is in contrast to the corresponding result for systems with thermal damping 
in the bending moment as in [14], where the EWS condition was also necessary for exponential 
stability.

To address problem (2.2)-(2.4), we first consider the phase (Hilbert) space

HF = H 1∗ (0,L) × L2∗(0,L) × H 1
0 (0,L) × L2(0,L) × L2(0,L) × L2

g(R
+,H 1

0 (0,L)),

where

L2∗(0,L) := {w ∈ L2(0,L) |
L∫

0

w(x)dx = 0}, H 1∗ := H 1(0,L) ∩ L2∗(0,L),

L2
g(R

+,H 1
0 (0,L)) := {w | √g w ∈ L2(R+,H 1

0 (0,L))},

endowed with the norm

‖U‖2
HF

≡ ρ1‖�‖2
2 +ρ2‖�‖2

2 + k‖ϕx +ψ‖2
2 + b̃‖ψx‖2

2 +ρ3‖θ‖2
2 +

∞∫
0

g(s)‖ηx(s)‖2
2ds (2.6)

and corresponding inner product 〈·, ·〉HF
, for all U = (ϕ, �, ψ, �, θ, η) ∈ HF . Thus, denoting 

� := ϕt and � := ψt , we can transform problem (2.2)-(2.4) into the first-order system{
Ut = AF U, t > 0,

U(0) = (ϕ0, ϕ1,ψ0,ψ1, θ0, η0) =: U0,
(2.7)

where AF : D(AF ) ⊂ HF →HF is given by
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AF U :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�

k

ρ1
(ϕx + ψ)x − σ

ρ1
θx

�

1

ρ2

(
b̃ψ + ∫∞

0 g(s)η(s)ds
)

xx
− k

ρ2
(ϕx + ψ) + σ

ρ2
θ

β

ρ3
θxx − σ

ρ3
(�x + �)

� − ηs

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.8)

with domain

D(AF ) :=
{
U ∈HF | � ∈ H 1∗ (0,L),ϕx,�, θ ∈ H 1

0 (0,L), ηs ∈ L2
g(R

+,H 1
0 (0,L)),

ϕ, θ, b̃ψ +
∞∫

0

g(s)η(s)ds ∈ H 2(0,L), η(·,0) = 0

}
.

It is not difficult to prove that 0 ∈ (AF ), with the arguments in [14]. Moreover, AF is dissi-
pative with

Re(AF U,U)HF
= −β‖θx‖2

2 + 1

2

∞∫
0

g′(s)‖ηx(s)‖2
2ds. (2.9)

This identity would follow easily assuming −k0g(s) ≤ g′(s) as in [14]. But without this assump-
tion, we can guarantee (2.9) as follows, using arguments given in [16]. The only point to justify 
is the integration by parts in

−Re

∞∫
0

g(s)〈ηsx(s), ηx(s)〉2 ds = 1

2

∞∫
0

g′(s)‖ηx(s)‖2
2 ds. (2.10)

Using ηx(·, 0) = 0 and denoting by the finite number Z the left-hand side of (2.10), we have

Z = lim
0<y→0

⎛
⎜⎜⎜⎜⎜⎜⎝−g(1/y)‖ηx(1/y)‖2

2︸ ︷︷ ︸
=:f1(y)

+
1/y∫
y

g′(s)‖ηx(s)‖2
2 ds

︸ ︷︷ ︸
=:f2(y)

⎞
⎟⎟⎟⎟⎟⎟⎠ .

Since the integrand in f2(y) is negative, lim0<y→0 f2(y) exists and is either a finite negative 
number or −∞. But the latter is excluded since f1(y) cannot compensate this to a finite num-
ber because it is also negative. Hence f1(y) also converges to a finite number which must 
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be zero, otherwise U = (. . . , η) would not belong to the domain of AF . Altogether we have 
Z = lim0<y→0 f2(y) proving (2.10) and hence (2.9).

Now using Assumption 2.1 we obtain

Re〈AF U,U 〉HF
= −β‖θx‖2

2 + 1

2

∞∫
0

g′(s)‖ηx(s)‖2
2ds

≤ −β‖θx‖2
2 − k1

2

∞∫
0

g(s)‖ηx(s)‖2
2ds

≤ 0, ∀ U ∈ D(AF ). (2.11)

Therefore, by using the Lumer & Phillips Theorem, AF is the infinitesimal generator of a 
C0-semigroup of contractions {SF (t)}t≥0 = {eAF t }t≥0 on HF , and the existence and uniqueness 
the solution U(t) = eAF tU0, t ≥ 0, to problem (2.7) follows in the class

U ∈ C1([0,∞),HF ) ∩ C0([0,∞),D(AF )).

As main result we have that the semigroup is exponentially stable no matter whether the EWS 
condition (1.2) is satisfied or not:

Theorem 2.2. Under the Assumption 2.1, there exist constants C, γ > 0, being independent of 
U0 ∈HF , such that for all t ≥ 0

‖U(t)‖HF
≤ C‖U0‖HF

e−γ t . (2.12)

In other words, the thermo-viscoelastic Timoshenko system under the Fourier law (2.2)-(2.4) is 
exponentially stable independent of any relation between the coefficients.

To prove Theorem 2.2 we use the well-known characterization of exponential stability for 
C0-semigroups established in [15,17,26], cf. [18].

Theorem 2.3. Let {T (t)}t≥0 = {eAt }t≥0 be a C0-semigroup of contractions on a Hilbert space 
H . Then, the semigroup is exponentially if and only if

iR ⊂ (A) (resolvent set) (2.13)

and

lim sup
|λ|→∞

‖(iλId − A)−1‖ < ∞. (operator norm) (2.14)

The conditions (2.13) and (2.14) will be shown in the next subsections.
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2.1. Verifying (2.13): the resolvent set (AF ) contains the imaginary axis

Let us prove that

iR ⊂ (AF ). (2.15)

For this purpose we argue by contradiction, and we suppose that iR �⊂ (AF ). Then, there exist a 
constant ω > 0, w.l.o.g., and a sequence λn ∈R, with 0 < λn → w from below and iλn ∈ (AF ), 
and a sequence of functions

Un = (ϕn,�n,ψn,�n, θn, ηn) ∈ D(AF ) with ‖Un‖HF
= 1, (2.16)

such that

iλnUn −AF Un → 0 in HF . (2.17)

Using the expression for AF given in (2.8), then (2.17) can be rewritten in terms of its compo-
nents

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iλnϕn − �n → 0 in H 1∗ (0,L),

iλnρ1�n − k(ϕn,x + ψn)x + σθn,x → 0 in L2∗(0,L),

iλnψn − �n → 0 in H 1
0 (0,L),

iλnρ2�n + k(ϕn,x + ψn)

−
⎛
⎝b̃ψn +

∞∫
0

g(s)ηn(s)ds

⎞
⎠

xx

− σθn → 0 in L2(0,L),

iλnρ3θn − βθn,xx + σ(�n,x + �n) → 0 in L2(0,L),

iλnηn + ηn,s − �n → 0 in L2
g(R

+,H 1
0 (0,L)).

(2.18)

Lemma 2.4. Under the assumptions of Theorem 2.2 we have:

‖θn,x‖2
2 → 0, as n → ∞, (2.19)

∞∫
0

[−g′(s)]‖ηn,x(s)‖2
2ds → 0, as n → ∞, (2.20)

∞∫
0

g(s)‖ηn,x(s)‖2
2ds → 0, as n → ∞. (2.21)

Proof. This is an immediate consequence of (2.11) and (2.17). �
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Observing Lemma 2.4, the convergence in (2.18) turns into

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iλnϕn − �n → 0 in H 1∗ (0,L), (a)

iλnρ1�n − k(ϕn,x + ψn)x → 0 in L2∗(0,L), (b)

iλnψn − �n → 0 in H 1
0 (0,L), (c)

iλnρ2�n + k(ϕn,x + ψn) −
⎛
⎝b̃ψn +

∞∫
0

g(s)ηn(s)ds

⎞
⎠

xx

→ 0 in L2(0,L), (d)

iλnηn + ηn,s − �n → 0 in L2
g(R

+,H 1
0 (0,L)). (e)

(2.22)

Lemma 2.5. Under the assumptions of Theorem 2.2 we have:

‖�n,x‖2, ‖ψn,x‖2 → 0, as n → ∞. (2.23)

Proof. First, from (2.22c) one gets

iλn〈ψn,x,�n,x〉2 − ‖�n,x‖2
2 → 0. (2.24)

Using Cauchy-Schwarz and Young inequalities, we get

‖�n,x‖2
2 ≤ 2

∣∣iλn〈ψn,x,�n,x〉2 − ‖�n,x‖2
2

∣∣+ λ2
n‖ψn,x‖2

2. (2.25)

Combining (2.24)-(2.25), and since and ‖ψn,x‖2
2 ≤ 1

b̃
‖Un‖2

HF
, it follows that (‖�n,x‖2)n∈N is 

bounded.
On the other hand, since ηn ∈ L2

g(R
+, H 1

0 (0, L)), we have g‖ηn,x(·)‖2
2 ∈ L1(R+), and

lim
z→∞g(z)‖ηn,x(z)‖2

2 = 0, (2.26)

as explained in deriving (2.10).
Now, the mapping s �→ 1

λn
�n ∈ L2

g(R
+, H 1

0 (0, L)) for all n ∈ N . Taking the multiplier 
1
λ2

n
g(s)�n in (2.22e) and taking into account (2.21), we have

1

λ2
n

〈ηn,s,�n〉L2
g(R+,H 1

0 (0,L))︸ ︷︷ ︸
=:Pn

−
∫∞

0 g(s)ds

λ2
n

‖�n,x‖2
2 → 0. (2.27)

Integrating Pn by parts with respect to s, using Lemma 2.4 (see (2.20)), the fact that (�n)n∈N is 
bounded in H 1

0 (0, L), we infer

|Pn| =
∣∣∣∣∣∣

1

λ2
n

∞∫
g(s)〈ηn,sx(s),�n,x〉)2ds

∣∣∣∣∣∣

0
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=
∣∣∣∣∣∣

1

λ2
n

∞∫
0

g′(s)〈ηn,x(s),�n,x〉2 ds

∣∣∣∣∣∣
≤ 1

λ2
n

‖�n,x‖2

∥∥∥∥∥∥
∞∫

0

g′(s)ηn,x(s)ds

∥∥∥∥∥∥
2

≤ 1

λ2
n

⎛
⎝ ∞∫

0

[−g′(s)]ds

⎞
⎠

1
2
⎛
⎝ ∞∫

0

[−g′(s)]‖ηn,x(s)‖2
2ds

⎞
⎠

1
2

‖�n,x‖2 → 0.

Thus, (2.27) and Lemma 2.4 imply �n → 0 in H 1
0 (0, L) and, consequently, (2.22c) yields ψn →

0 in H 1
0 (0, L) as well. Therefore, the proof of (2.23) is completed. �

Lemma 2.6. Under the assumptions of Theorem 2.2 and the above notations, we have:

‖ϕn,x + ψn‖2, ‖�n‖2 → 0, as n → ∞. (2.28)

Proof. We start by taking the multiplier k(ϕn,x + ψn) in (2.22d) to get

iλnρ2k〈�n,ϕn,x + ψn〉2 −
〈⎛⎝b̃ψn +

∞∫
0

g(s)ηn(s)ds

⎞
⎠

xx

, k(ϕn,x + ψn)

〉
2

+k2‖ϕn,x + ψn‖2
2 → 0.

Performing integration by parts, using (2.21), (2.23), the boundedness of (ϕn,x + ψn)n∈N in 
L2(0, L) and regarding boundary condition, we obtain

k2‖ϕn,x + ψn‖2
2 +

〈
b̃ψn,x +

∞∫
0

g(s)ηn,x(s)ds, k(ϕn,x + ψn)x

〉
2

→ 0. (2.29)

On the other hand, taking the multiplier b̃ψn,x + ∫∞
0 g(s)ηn,x(s)ds in (2.22b), we have

iρ1λn

〈
b̃ψn,x +

∞∫
0

g(s)ηn,x(s)ds,�n

〉
2

−
〈
b̃ψn,x +

∞∫
0

g(s)ηn,x(s)ds, k(ϕn,x + ψn)x

〉
2

→ 0.

Using that (‖�n‖2)n∈N is bounded and 
∥∥∥b̃ψn,x + ∫∞

0 g(s)ηn,x(s)ds

∥∥∥
2
→ 0, we conclude from 

the previous limit that

−
〈
b̃ψn,x +

∞∫
g(s)ηn,x(s)ds, k(ϕn,x + ψn)x

〉
→ 0. (2.30)
0 2
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Combining (2.29) and (2.30), we conclude the first convergence in (2.28).
Now, taking the multipliers ρ1�n in (2.22a) and ϕn in (2.22b) and adding the resulting ex-

pressions, we have

iρ1λn[〈ϕn,�n〉2 + 〈�n,ϕn〉2] − ρ1‖�n‖2
2 − k〈(ϕn,x + ψn)x,ϕn〉2 → 0.

Integrating by parts and taking the real part, we get

−ρ1‖�n‖2
2 + kRe 〈ϕn,x + ψn,ϕn,x〉2 → 0. (2.31)

On the other hand, taking the multiplier ρ2�n in (2.22c) and ψn in (2.22d), and adding the 
resulting expressions, we obtain

iρ2λn[〈ψn,�n〉2 + 〈�n,ψn〉2] −
〈⎛⎝b̃ψn +

∞∫
0

g(s)ηn(s)ds

⎞
⎠

xx

,ψn

〉
2

+ k〈ϕn,x + ψn,ψn〉2 − ρ2‖�n‖2
2 → 0.

Integrating by parts, using boundary conditions, and also Lemmas 2.4 and 2.5, we arrive at

kRe 〈ϕn,x + ψn,ψn〉2 → 0. (2.32)

Adding the limits in (2.31) and (2.32), we get

−ρ1‖�n‖2
2 + k‖ϕn,x + ψn‖2

2 → 0,

from where (2.28) follows. Thus the proof of Lemma 2.6 is finished. �
We are finally in the position to give the proof of (2.15). In fact, from (2.19), (2.21), (2.23)

and (2.28), we conclude

‖Un‖HF
→ 0,

which is a contradiction to (2.16). �
We remark that, in the proof of (2.15) we use an approach similar to [14, Sect. 4]. However, 

it is worth mentioning that our refined arguments are different in detail, in particular we do not 
require a boundedness of the memory kernel from below.

2.2. Verifying (2.14): boundedness of (iλId −AF )−1

We will prove that there exists a constant C > 0 independent of λ ∈R such that, as |λ| → ∞,

‖(iλId −AF )−1‖L(HF ) ≤ C. (2.33)

Let ϒ = (f1, . . . , f6) ∈ HF be given, and let
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iλU −AF U = ϒ, (2.34)

which in terms of its components is given by

iλϕ − � = f1, (2.35a)

iλρ1� − k(ϕx + ψ)x + σθx = ρ1f2, (2.35b)

iλψ − � = f3, (2.35c)

iλρ2� − b̃ψxx −
∞∫

0

g(s)ηxx(s)ds + k(ϕx + ψ) − σθ = ρ2f4, (2.35d)

iλρ3θ − βθxx + σ(�x + �) = ρ3f5, (2.35e)

iλη + ηs − � = f6. (2.35f)

To prove (2.33) we have to show that there exists a constant C > 0, independent of λ, such 
that, as |λ| → ∞,

‖U‖HF
≤ C‖ϒ‖HF

. (2.36)

The estimate (2.36) will be proved in different steps estimating the different components.

Lemma 2.7. Under the assumptions of Theorem 2.2, there exists a constant C > 0 independent 
of λ such that

‖θx‖2
2 ,

∞∫
0

[−g′(s)]‖ηx(s)‖2
2ds ≤ C‖U‖HF

‖ϒ‖HF
. (2.37)

In particular, there exists a constant C > 0, independent of λ, such that

ρ3‖θ‖2
2 +

∞∫
0

g(s)‖ηx(s)‖2
2ds ≤ C‖U‖HF

‖ϒ‖HF
. (2.38)

Proof. Estimate (2.37) follows immediately by taking the inner product of (2.34) with U in HF

and using (2.11). �
Lemma 2.8. Under the assumptions of Theorem 2.2 and given any ε > 0, there exists a constant 
Cε > 0, independent of λ, such that

k‖ϕx + ψ‖2
2 ≤ ε‖U‖2

HF
+ Cε‖ϒ‖2

HF
, (2.39)

for |λ| > 1 large enough.
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Proof. From the resolvent equations (2.35a), (2.35c) and (2.35e), we have

iλρ3θ − β θxx + iλσ (ϕx + ψ) = ρ3f5 + σ(f1,x + f3). (2.40)

Multiplying (2.40) by k(ϕx + ψ) and integrating over (0, L), we infer

iλσk

L∫
0

|ϕx + ψ |2 dx =−β

L∫
0

θx[k(ϕx + ψ)x] dx

︸ ︷︷ ︸
=:R1

+ρ3k

L∫
0

θ [iλ(ϕx + ψ)] dx

︸ ︷︷ ︸
=:R2

(2.41)

+ k

L∫
0

[
ρ3f5 + σ(f1,x + f3)

]
(ϕx + ψ) dx.

Let us rewrite the terms R1 and R2 as follows. First, using (2.35b) we get

R1 = iλβρ1

L∫
0

θx�dx − βσ

L∫
0

|θx |2 dx + βρ1

L∫
0

θxf2 dx.

Next, applying (2.35a), (2.35c), and integration by parts, we obtain

R2 = −kρ3

L∫
0

θx�dx + kρ3

L∫
0

θ�dx + kρ3

L∫
0

θ(f1,x + f3) dx.

Replacing the above expressions for R1 and R2 in (2.41), and denoting by

R3 := − βσ

L∫
0

|θx |2 dx − kρ3

L∫
0

θx�dx + kρ3

L∫
0

θ�dx

+ kρ3

L∫
0

θ(f1,x + f3) dx + βρ1

L∫
0

θxf2 dx

+ k

L∫
0

[
ρ3f5 + σ(f1,x + f3)

]
(ϕx + ψ) dx,

it follows that

iλσk‖ϕx + ψ‖2
2 = iλβρ1

L∫
0

θx�dx + R3. (2.42)
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Now, from the estimate (2.37) and Poincaré’s inequality there exists a constant C > 0 such that

|R3| ≤ C‖U‖HF
‖ϒ‖HF

+ C‖θx‖2‖U‖HF
+ C‖θx‖2‖ϒ‖HF

.

Returning to the identity (2.42), one sees that

k‖ϕx + ψ‖2
2 ≤ βρ1

σ
‖θx‖2‖�‖2 + 1

σ |λ| |R3|

≤ C‖θx‖2‖�‖2 + C

|λ| ‖θx‖2‖U‖HF
(2.43)

+ C

|λ| ‖U‖HF
‖ϒ‖HF

+ C

|λ| ‖θx‖2‖ϒ‖HF
.

From (2.43), using again the previous estimate (2.37) and Young’s inequality with ε > 0 several 
times, we conclude (2.39) for |λ| > 1. �
Lemma 2.9. Under the assumptions of Theorem 2.2 and given any ε > 0, there exists a constant 
Cε > 0, independent of λ, such that

ρ1‖�‖2
2 ≤ ε‖U‖2

HF
+ Cε‖ϒ‖2

HF
, (2.44)

for |λ| > 1 large enough.

Proof. Multiplying (2.35b) by −ϕ, integrating on (0, L) and observing (2.35a), we get

ρ1

L∫
0

|�|2 dx = k

L∫
0

|ϕx + ψ |2 dx − k

L∫
0

(ϕx + ψ)ψ dx + R4, (2.45)

where we have added and subtracted the term k
∫ L

0 (ϕx + ψ)ψ dx and denoted

R4 := i

λ
σ

L∫
0

θx(� + f1) dx − ρ1

L∫
0

(�f1 + f2ϕ)dx.

Obviously we have

|R4| ≤ C

|λ| ‖θx‖2‖U‖HF
+ C

|λ| ‖θx‖2‖ϒ‖HF
+ C‖U‖HF

‖ϒ‖HF
.

Then, going back to (2.45), using this latter estimate, the resolvent equation (2.35c) and also 
(2.43) along with Young’s inequality, one has
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ρ1‖�‖2
2 ≤ k‖ϕx + ψ‖2

2 + k‖ϕx + ψ‖2‖ψ‖2 + |R4|

≤ C‖ϕx + ψ‖2
2 + C

|λ| ‖θx‖2‖U‖HF
+ C

|λ| ‖θx‖2‖ϒ‖HF

+ C‖U‖HF
‖ϒ‖HF

+ C

|λ| ‖U‖2
HF

+ C‖ϒ‖2
HF

,

for |λ| > 1 and some constant C > 0. Using again the estimates (2.43), (2.37), and Young’s 
inequality with ε > 0 several times, we conclude (2.44) for |λ| > 1 large enough. �
Lemma 2.10. Under the assumptions of Theorem 2.2 and given any ε > 0, there exists a constant 
Cε > 0, independent of λ, such that

ρ2‖�‖2
2 ≤ ε‖U‖2

HF
+ Cε‖ϒ‖2

HF
, (2.46)

for |λ| > 1 large enough.

Proof. Multiplying (2.35d) by 
∫∞

0 g(s)η(s)ds and integrating over (0, L), we get

−ρ2

L∫
0

∞∫
0

g(s)�[iλη(s)]dsdx

︸ ︷︷ ︸
=:R5

−σ

L∫
0

∞∫
0

g(s)θη(s)dsdx + b̃

L∫
0

∞∫
0

g(s)ηx(s)ψxdsdx

+
L∫

0

∣∣∣∣∣∣
∞∫

0

g(s)ηx(s)ds

∣∣∣∣∣∣
2

dx + k

L∫
0

∞∫
0

g(s)(ϕx + ψ)η(s)dsdx

︸ ︷︷ ︸
=:R6

= ρ2

L∫
0

∞∫
0

g(s)f4η(s)dsdx.

Now, using the identity (2.35f) in R5 and the expressions (2.35a) and (2.35c) in R6, results in

−ρ2

=:b0︷ ︸︸ ︷⎛
⎝ ∞∫

0

g(s)ds

⎞
⎠ L∫

0

|�|2dx = σ

L∫
0

∞∫
0

g(s)θη(s)dsdx − b̃

L∫
0

∞∫
0

g(s)ηx(s)ψxdsdx

+ ρ2

L∫
0

∞∫
0

g(s)f4η(s)dsdx + ρ2

L∫
0

∞∫
0

g(s)�f6dsdx

+ R7 + R8 + R9 (2.47)

where we denote

R7 := −ρ2

L∫ ∞∫
g(s)�[ηs(s)]dsdx, R8 := −

L∫ ⎛
⎝ ∞∫

g(s)ηx(s)ds

⎞
⎠2

dx,
0 0 0 0
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and

R9 := − ik

λ

L∫
0

∞∫
0

g(s)ηx(s)ds�dx + ik

λ

L∫
0

∞∫
0

g(s)η(s)ds�dx

+ ik

λ

L∫
0

∞∫
0

g(s)η(s)ds(f1,x + f3)dx.

We obtain for R7, R8 and R9:

|R7| ≤ ρ2b0
1/2‖�‖2

⎛
⎝ ∞∫

0

[−g′(s)]‖η(s)‖2
2ds

⎞
⎠1/2

.

Next,

|R8| ≤ b0‖η‖2
L2

g
,

remembering the notation ‖η‖2
L2

g
= ∫∞

0 g(s)‖ηx(s)‖2
2ds. Moreover, there exists a constant C > 0

such that

|R9| ≤ C

|λ| ‖η‖L2
g
‖�‖2 + C

|λ| ‖η‖L2
g
‖�‖2 + C

|λ| ‖η‖L2
g
‖f1,x + f3‖2.

Using these last three estimates in (2.47) and also (2.38), we arrive at

ρ2‖�‖2
2 ≤ C‖η‖L2

g
‖θ‖2 + C‖η‖L2

g
‖ψx‖2 + C‖U‖HF

‖ϒ‖HF

+C‖�‖2

⎛
⎝ ∞∫

0

[−g′(s)]‖ηx(s)‖2
2ds

⎞
⎠1/2

(2.48)

+ C

|λ| ‖η‖L2
g
‖�‖2 + C

|λ| ‖η‖L2
g
‖�‖2,

for come constant C > 0 and |λ| > 1. From (2.37) and (2.38) we deduce

ρ2‖�‖2
2 ≤ C‖U‖HF

‖ϒ‖HF
+ C‖η‖L2

g
‖ψx‖2 + C

|λ| ‖η‖L2
g
‖�‖2, (2.49)

for come constant C > 0 and |λ| > 1. Finally, from (2.49), using again the estimate (2.38), we 
conclude (2.46) for |λ| > 1 large enough. �
Lemma 2.11. Under the assumptions of Theorem 2.2 and given any ε > 0, there exists a constant 
Cε > 0, independent of λ, such that
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b̃‖ψx‖2
2 ≤ ε‖U‖2

HF
+ Cε‖ϒ‖2

HF
, (2.50)

for |λ| > 1 large enough.

Proof. Multiplying (2.35d) by ψ and integrating on (0, L), we have

−ρ2

L∫
0

�(iλψ)dx

︸ ︷︷ ︸
=:R10

+b̃

L∫
0

|ψx |2dx +
L∫

0

∞∫
0

g(s)ηx(s)ψxdsdx

+ k

L∫
0

(ϕx + ψ)ψdx

︸ ︷︷ ︸
=:R11

−σ

L∫
0

θψdx = ρ2

L∫
0

f4ψdx.

Replacing ψ given by the resolvent equation (2.35c) in both R10 and R11, one has

b̃

L∫
0

|ψx |2dx = −
L∫

0

∞∫
0

g(s)ηx(s)ψxdsdx + ik

λ

L∫
0

(ϕx + ψ)�dx

+ σ

L∫
0

θψdx + ρ2

L∫
0

|�|2dx + R12, (2.51)

where

R12 := ik

λ

L∫
0

(ϕx + ψ)f3dx + ρ2

L∫
0

f4ψdx + ρ2

L∫
0

�f3dx.

It is easy to see that

|R12| ≤ C‖U‖HF
‖ϒ‖HF

,

for some constant C > 0, if |λ| > 1. Thus, using (2.43) and (2.49), we obtain from (2.51)

b̃‖ψx‖2
2 ≤ C‖U‖HF

‖ϒ‖HF
+ C‖η‖L2

g
‖U‖HF

+ C‖θx‖2‖U‖HF
+ ‖θx‖2‖ϒ‖HF

,

for come constant C > 0 and |λ| > 1. Last, observing the useful estimates (2.37)-(2.38), we 
finally conclude (2.50) for |λ| > 1. �

Finally, taking into account the Lemmas 2.7–2.11 and choosing ε > 0 small enough, there 
exists a constant C > 0 independent of λ such that (2.36) holds true.

This completes the proof of Theorem 2.2. �
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Remark 2.12. Let us finish this section with some comments as follows.

1. Theorem 2.2 is addressed for the mixed Dirichlet-Neumann boundary condition (2.3) only, 
but the same result holds true for other different boundary conditions as well, such as the 
Dirichlet-Dirichlet ones

ϕ(x, t) = ψ(x, t) = θ(x, t) = ηt (x, s) = 0 for x = 0,L, t, s ≥ 0. (2.52)

Indeed, for the latter and its proper spaces for solutions, we still follow the same spirit of 
computations as done in the proof of Theorem 2.2, by noting that the only difference comes 
from the (possible) point-wise boundary terms. However, to handle with them we can use the 
same point-wise estimates as provided in [1,21] or else introduce useful cut-off functions and 
work with local estimates instead, as considered e.g. in [4,5], and then extend the estimate 
to the whole range (0, L) by means of an observability analysis for Timoshenko systems. 
In conclusion, problem (2.2)-(2.4) is also exponential stable subject to any other different 
boundary condition instead of (2.3) where well-posedness is ensured.

2. Theorem 2.2 gives the answer to a question raised in [28, Rem. 3.8] with respect to thermo-
viscoelastic Timoshenko systems under Fourier’s law and memory in a history setting, 
improving significantly some results presented in [12] (see Theorems 2.2 and 2.3 therein), 
once Theorem 2.2 has revealed that the uniform exponential stability is achieved with no ne-
cessity of the EWS assumption (1.2) nor higher regularity of initial data. Moreover, even for 
memory with null history the result on exponential stability keeps unchanged for (2.2)-(2.4), 
including boundary condition (2.52), and the proof could be done through perturbed energy 
method by combining similar arguments as given in [21,22] and refining the computations 
of [7,19,20] in the case where the function ξ therein is constant. Therefore, the exponen-
tial stability result correspondingly also holds for Timoshenko problems with null history 
and Fourier’s law under exponential memory kernels without regarding EWS, which gives a 
different view of the stability result in [20, Thm. 2.5] for exponential kernels, i.e. ξ(·) ≡ ξ

constant in [20]. It also complements the statements in [7, Rem. 3.4] since the shear ther-
mal coupling is the responsible for neutralizing the requirement of EWS assumption, not the 
Neumann condition considered in [7] (without EWS) in comparison to the Dirichlet condi-
tions (2.52) in [20] (with EWS).

3. Cattaneo without history: non-exponential stability

In this section we consider the model (1.16), with Cattaneo type heat conduction and without 
a history term,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ1ϕtt − k(ϕx + ψ)x + σθx = 0 in (0,L) ×R+,

ρ2ψtt − bψxx + k(ϕx + ψ) − σθ = 0 in (0,L) ×R+,

ρ3θt + qx + σ(ϕx + ψ)t = 0 in (0,L) ×R+,

τqt + βq + θx = 0 in (0,L) ×R+,

(3.1)

where τ > 0, and with initial-boundary conditions

ϕx(0, t) = ϕx(L, t) = ψ(0, t) = ψ(L, t) = θ(0, t) = θ(L, t) = 0, t ≥ 0, (3.2)
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and {
ϕ(x,0) = ϕ0(x), ϕt (x,0) = ϕ1(x), ψ(x,0) = ψ0(x), ψt (x,0) = ψ1(x),

θ(x,0) = θ0(x), q(x,0) = q0(x), x ∈ (0,L).
(3.3)

The corresponding system with Fourier type heat conduction (τ = 0) is exponentially stable if 
and only if the EWS condition (1.2) is satisfied, as explained in the Introduction. Now we shall 
see that the system above is not exponentially stable even if the EWS condition is satisfied. 
That means, the system loses the property of being exponentially stable when taking Cattaneo’s 
instead of Fourier’s law. This corresponds to the situation of thermal damping in the bending 
moment considered in [14], while we have the damping in the shear moment.

To address problem (3.1)-(3.3), we consider the phase (Hilbert) space

HC1 := H 1∗ (0,L) × L2∗(0,L) × H 1
0 (0,L) × L2(0,L) × L2(0,L) × L2(0,L),

equipped with the norm

‖U‖2
HC1

≡ ρ1‖�‖2
2 + ρ2‖�‖2

2 + k‖ϕx + ψ‖2
2 + b‖ψx‖2

2 + ρ3‖θ‖2
2 + τ‖q‖2

2, (3.4)

for U = (ϕ, �, ψ, �, θ, q) ∈ HC1 . Thus, denoting � = ϕt and � = ψt , we can transform prob-
lem (3.1)-(3.3) into the first-order system{

Ut = AC1U, t > 0,

U(0) = (ϕ0, ϕ1,ψ0,ψ1, θ0, q0) =: U0,
(3.5)

where AC1 : D(AC1) ⊂ HC1 → HC1 is given by

AC1U :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�

k

ρ1
(ϕx + ψ)x − σ

ρ1
θx

�

b

ρ2
ψxx − k

ρ2
(ϕx + ψ) + σ

ρ2
θ

− 1

ρ3
qx − σ

ρ3
(�x + �)

−β

τ
q − 1

τ
θx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.6)

with domain

D(AC1) :=
{
U ∈HC1 | � ∈ H 1∗ , ϕx,�, θ ∈ H 1

0 , q ∈ H 1, ϕ,ψ ∈ H 2
}
.

It is not difficult to prove that 0 ∈ (AC1) and that AC1 is dissipative,

Re〈AC U,U 〉H = −β‖q‖2 ≤ 0.. (3.7)
1 C1 2
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Therefore, using the Lumer-Phillips Theorem again, AC1 is the infinitesimal generator of a C0-
semigroup of contractions {SC1(t)}t≥0 = {eAC1 t }t≥0 on HC1 , and the existence and uniqueness 
of solutions to problem (3.5) follows.

We are going to show that the semigroup is not exponentially stable even assuming condition 
(1.2).

Theorem 3.1. The C0-semigroup of contractions {SC1(t)}t≥0 is not exponentially stable. In other 
words, the thermoelastic Timoshenko system under the Cattaneo law without history, (3.1)-(3.3), 
is not exponentially stable, whether condition (1.2) holds or not.

Proof. We start by noting that it is relatively simple to prove that D(AC1) is compactly embed-
ded into HC1 , and also that the operator iλId −AC1 is injective for any given λ ∈R. Therefore, 
one can conclude that iR ⊂ ρ(AC1). That is, condition (2.13) in Theorem 2.3 is satisfied. Conse-
quently, semigroup converges strongly (i.e. for any fixed initial value) to zero, see e.g. [8,9]. But, 
as we are going to see below, the second necessary condition for exponential stability (2.14) is 
no longer valid. To this end, it is enough to show the existence of a sequence (λn)n∈N ⊂ R, with 
|λn| → ∞, and Un ∈ D(AC1), n ∈ N , such that

lim
n→∞‖Un‖Hc

≡ lim
n→∞

∥∥∥(iλnId −AC1)
−1Fn

∥∥∥
Hc

= ∞, (3.8)

for some bounded sequence (Fn)n∈N ⊂ HC1 bounded. Indeed, let us consider

Fn := (0,0,0, sin(αλnx),0,0) with α :=
√

ρ2

b
, λn := nπ

αL
, n ∈N.

In order to simplify the notations, let us omit the index n in the sequel. Let U ≡ (ϕ, �, ψ, �, θ, q)

be the solution of the resolvent equation (iλId −AC1)U = F , which in terms of its components 
reads

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iλϕ − � = 0,

iλ� − k

ρ1
(ϕx + ψ)x + σ

ρ1
θx = 0,

iλψ − � = 0,

iλ� − b

ρ2
ψxx + k

ρ2
(ϕx + ψ) − σ

ρ2
θ = sin(αλx),

iλθ + 1

ρ3
qx + σ

ρ3
(�x + �) = 0,

iλq + β

τ
q + 1

τ
θx = 0.

(3.9)

From (3.9)1 and (3.9)3 we get the following reduced system
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−λ2ϕ − k

ρ1
(ϕx + ψ)x + σ

ρ1
θx = 0,

−λ2ψ − b

ρ2
ψxx + k

ρ2
(ϕx + ψ) − σ

ρ2
θ = sin(αλx),

iλθ + 1

ρ3
qx + iλσ

ρ3
(ϕx + ψ) = 0,

iλq + β

τ
q + 1

τ
θx = 0.

(3.10)

Now, by virtue of the boundary conditions in (3.2), we look for solutions of (3.10) given by

ϕ(x) = A cos(αλx), ψ(x) = B sin(αλx), θ(x) = C sin(αλx), q(x) = D cos(αλx),

where A = Aλ, B = Bλ, C = Cλ, D = Dλ are to be determined. Thus, to solve problem (3.10) is 
equivalent to find A, B, C, D to the following algebraic system:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−ρ1 + kα2)λ2A − kαλB + σαλC = 0,

−kαλA + ((−ρ2 + bα2)λ2 + k)B − σC = ρ2,

−iσαλA + iσB + iρ3C − αD = 0,

αλC + (iτλ + β)D = 0.

(3.11)

We can rewrite this system as

⎡
⎢⎣ p1(λ) −kαλ σαλ

−kαλ p2(λ) −σ

−iσαλ iσ p3(λ)

⎤
⎥⎦

︸ ︷︷ ︸
:=M

⎡
⎣A

B

C

⎤
⎦=

⎡
⎣ 0

ρ2
0

⎤
⎦ , (3.12)

where we set ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p1(λ) = (−ρ1 + kα2)λ2,

p2(λ) = (−ρ2 + bα2)λ2 + k,

p3(λ) = iρ3 + α2λ

iτλ + β
.

(3.13)

A simple computation leads to

detM = [
p1(λ)p2(λ) − k2α2λ2]p3(λ) + iσ 2α2λ2[p2(λ) − 2k

]+ iσ 2p1(λ),

and

B = ρ2
[
p1(λ)p3(λ) + iσ 2α2λ2

]
detM

.

Here we observe that detM �= 0, since
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Re detM = − ρ1kβα2λ2

β2 + τ 2λ2 �= 0.

Thus, noting that p1(λ) = k
(

ρ2
b

− ρ1
k

)
λ2, p2(λ) = k, we obtain

B = ρ2k
(

ρ2
b

− ρ1
k

)
λ2p3(λ) + iρ2σ

2α2λ2

−ρ1kλ2p3(λ) − ikσ 2α2λ2 + ikσ 2
(

ρ2
b

− ρ1
k

)
λ2

,

from where we obtain that |B| = |Bλn | behaves like a constant as n → ∞, no matter whether 
(1.2) holds or not, that is,

|B| ≈ c0 > 0, as n → ∞.

Having in mind that �(x) = iλnψ(x) = iλBλn sin(αλnx), we obtain

‖Un‖2
HC1

≥ ρ2

L∫
0

|�(x)|2 dx = ρ2|Bλn |2λ2
n

L∫
0

sin2(αλnx) dx = ρ2L

2
|Bλn |2λ2

n,

which is enough to reach the desired limit (3.8).
Therefore, the proof of Theorem 3.1 is completed. �

Remark 3.2. This kind of loss of exponential stability when going from Fourier’s to Cattaneo’s 
has been observed in [14] under damping on the bending moment, but also for thermoelastic 
plates in [23,13]. In [24] it was outlined that this phenomenon might be more likely than not 
losing the exponential stability.

This loss of exponential stability was also, surprisingly, observed in [14] if, additionally, a 
history term is present, meaning an unexpected “destruction” by the Cattaneo heat conduction, 
as explained in the Introduction. Now, in the next Section 4 we will add the history term, but, 
interestingly, the system remains exponentially stable as in the Fourier case, in contrast to [14].

4. Cattaneo with history: exponential stability

In this section we study the case of Cattaneo’s heat conduction law with a history term (1.17),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ1ϕtt − k(ϕx + ψ)x + σθx = 0 in (0,L) ×R+,

ρ2ψtt − b̃ψxx + k(ϕx + ψ) −
∞∫

0

g(s)ηxx(s)ds − σθ = 0 in (0,L) ×R+,

ρ3θt + qx + σ(ϕx + ψ)t = 0 in (0,L) ×R+,

τqt + βq + θx = 0 in (0,L) ×R+,

ηt + ηs − ψt = 0 in (0,L) ×R+ ×R+,

(4.1)

with initial-boundary conditions
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{
ϕx(0, t) = ϕx(L, t) = ψ(0, t) = ψ(L, t) = θ(0, t) = θ(L, t) = 0,

ηt (0, s) = ηt (L, s) = 0, ηt (·,0) = 0, t ≥ 0, s > 0,
(4.2)

and {
ϕ(x,0) = ϕ0(x), ϕt (x,0) = ϕ1(x), ψ(x,0) = ψ0(x), ψt (x,0) = ψ1(x),

θ(x,0) = θ0(x), q(x,0) = q0(x), η0(x, s) = η0(x, s), x ∈ (0,L), s > 0.
(4.3)

The assumption on the kernel g will be again Assumption 2.1, as in Section 2.
To address problem (4.1)-(4.3), we consider the phase (Hilbert) space

HC2 := H 1∗ × L2∗ × H 1
0 × L2 × L2 × L2 × L2

g(R
+,H 1

0 ),

equipped with the norm

‖U‖2
HC2

≡ ρ1‖�‖2
2 + ρ2‖�‖2

2 + k‖ϕx + ψ‖2
2 + b̃‖ψx‖2

2 + ρ3‖θ‖2
2 + τ‖q‖2

2 + ‖η‖2
L2

g
, (4.4)

for U := (ϕ, �, ψ, �, θ, q, η) ∈ HC2 . Thus, denoting � = ϕt and � = ψt , we can transform 
problem (4.1)-(4.3) into the first-order system{

Ut = AC2U, t > 0,

U(0) = (ϕ0, ϕ1,ψ0,ψ1, θ0, q0, η0) =: U0,
(4.5)

where AC2 : D(AC2) ⊂ HC2 → HC2 is given by

AC2U :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�

k

ρ1
(ϕx + ψ)x − σ

ρ1
θx

�

1

ρ2

(
b̃ψ + ∫∞

0 g(s)η(s)ds
)

xx
− k

ρ2
(ϕx + ψ) + σ

ρ2
θ

− 1

ρ3
qx − σ

ρ3
(�x + �)

−β

τ
q − 1

τ
θx

� − ηs

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.6)

with domain

D(AC2) :=
{
U ∈HC2 | � ∈ H 1∗ , ϕx,�, θ ∈ H 1

0 , ηs ∈ L2
g(R

+,H 1
0 ),

q ∈ H 1, ϕ, b̃ψ +
∞∫

0

g(s)η(s)ds ∈ H 2, η(·,0) = 0

}
.
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It is not difficult to prove that 0 ∈ (AC2) and AC2 is dissipative, with

Re(AC2U,U)HC2
= −β‖q‖2

2 + 1

2

∞∫
0

g′(s)‖ηx(s)‖2
2ds

≤ −β‖q‖2
2 − k1

2
‖η‖2

L2
g

≤ 0, ∀ U ∈ D(AC2), (4.7)

and we have again a unique solution to problem (4.5) as in Section 2, U(t) ≡ eAC2 tU0. We shall 
prove that the semigroup {eAC2 t }t≥0 is exponentially stable.

Theorem 4.1. Under the Assumption 2.1, there exist constants C, γ > 0 independent of U0 ∈
HC2 such that for all t ≥ 0

‖U(t)‖HC2
≤ C‖U0‖HC2

e−γ t . (4.8)

In other words, the thermo-viscoelastic Timoshenko system under the Cattaneo law (4.1)-(4.3) is 
exponentially stable independent of any relation between the coefficients.

To the proof of Theorem 4.1, we still use Theorem 2.3. It will follow as a consequence of the 
following steps.

4.1. Verifying (2.13): the resolvent set (AF ) contains the imaginary axis

In order to prove that

iR⊂ (AC2), (4.9)

let us argue again by contradiction argument. We assume that iR �⊂ (AC2) and conclude the 
existence of a constant ω > 0, w.l.o.g., and a sequence λn ∈ R, with 0 < λn → w from below 
and iλn ∈ (AF ), and a sequence of functions

Un = (ϕn,�n,ψn,�n, θn, qn, ηn) ∈ D(AC2) with ‖Un‖HC2
= 1, (4.10)

such that

iλnUn −AC2Un → 0 in HC2 . (4.11)

In view of AC defined in (4.6), the limit (4.11) yields
2
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iλnϕn − �n → 0 in H 1∗ (0,L),

iλnρ1�n − k(ϕn,x + ψn)x + σθn,x → 0 in L2∗(0,L),

iλnψn − �n → 0 in H 1
0 (0,L),

iλnρ2�n + k(ϕn,x + ψn)

−
⎛
⎝b̃ψn +

∞∫
0

g(s)ηn(s)ds

⎞
⎠

xx

− σθn → 0 in L2(0,L),

iλnρ3θn + qn,x + σ(�n,x + �n) → 0 in L2(0,L),

iλnτqn + βqn + θn,x → 0 in L2(0,L),

iλnηn + ηn,s − �n → 0 in L2
g(R

+,H 1
0 (0,L)).

(4.12)

Lemma 4.2. Under the assumptions of Theorem 4.1 we have, as n → ∞:

‖qn‖2 → 0, (4.13)
∞∫

0

[−g′(s)]‖ηn,x(s)‖2
2ds → 0, (4.14)

‖ηn‖L2
g
→ 0, (4.15)

‖θn,x‖2 → 0. (4.16)

Proof. The limits (4.13)-(4.15) arise directly from (4.7) and (4.11). Additionally, (4.16) is a 
consequence of (4.13) and (4.12). �

Using the limits given in Lemma 4.2, (4.12) can be reduced to the following,

iλnϕn − �n → 0 in H 1∗ (0,L),

iλnρ1�n − k(ϕn,x + ψn)x → 0 in L2∗(0,L),

iλnψn − �n → 0 in H 1
0 (0,L),

iλnρ2�n + k(ϕn,x + ψn) −
(
b̃ψn + ∫∞

0 g(s)ηn(s)ds
)

xx
→ 0 in L2(0,L),

iλnηn + ηn,s − �n → 0 in L2
g(R

+,H 1
0 (0,L)),

which are precisely the same limits as given in (2.22a)-(2.22e). Therefore, in what follows, the 
arguments are the same as presented previously.

Lemma 4.3. Under the assumptions of Theorem 4.1 we have:

‖�n,x‖2
2, ‖ψn,x‖2

2, ‖ϕn,x + ψn‖2
2, ‖�n‖2

2 → 0, as n → ∞. (4.17)

Proof. It follows verbatim with the same arguments as in the proofs of Lemmas 2.5 and 2.6. �
Therefore, combining (4.13), (4.15), (4.16) and (4.17), we conclude that

‖Un‖H → 0,

C2
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yielding the desired contradiction with (4.10). This finishes the proof of (4.9). �
4.2. Verifying (2.14): boundedness of (iλId −AF )−1

Let us prove that there exists a constant C > 0, independent of λ, such that, as |λ| → ∞,

‖(iλId −AC2)
−1‖L(HC2 ) ≤ C. (4.18)

To this end, let ϒ = (f1, . . . , f7) ∈ HC2 be given, and let U ∈ D(AC2) be the solution of

iλU −AC2U = ϒ, (4.19)

which in terms of its components reads

iλϕ − � = f1, (4.20a)

iλρ1� − k(ϕx + ψ)x + σθx = ρ1f2, (4.20b)

iλψ − � = f3, (4.20c)

iλρ2� − b̃ψxx −
∞∫

0

g(s)ηxx(s)ds + k(ϕx + ψ) − σθ = ρ2f4, (4.20d)

iλρ3θ + qx + σ(�x + �) = ρ3f5, (4.20e)

iλτq + βq + θx = τf6, (4.20f)

iλη + ηs − � = f7. (4.20g)

We have to show that there exists a constant C > 0, independent of λ, such that, as |λ| → ∞,

‖U‖HC2
≤ C‖ϒ‖HC2

. (4.21)

Lemma 4.4. Under the assumptions of Theorem 4.1, there exists a constant C > 0, independent 
of λ, such that

‖q‖2
2 ,

∞∫
0

[−g′(s)]‖ηx(s)‖2
2ds ≤ C‖U‖HC2

‖ϒ‖HC2
. (4.22)

In particular, there exists a constant C > 0, independent of λ, such that

‖η‖2
L2

g
≤ C‖U‖HC2

‖ϒ‖HC2
. (4.23)

Proof. As before in Section 2, this follows promptly from the dissipativity (4.7). �
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Lemma 4.5. Under the assumptions of Theorem 4.1, there exists a constant C > 0, independent 
of λ, such that

ρ3‖θ‖2
2 ≤ C‖U‖HC2

‖ϒ‖HC2
+ C‖q‖2‖�‖2 + C‖q‖2‖�‖2. (4.24)

In particular, given any ε > 0, there exists a constant Cε > 0, independent of λ, such that

ρ3‖θ‖2
2 ≤ ε‖U‖2

HC2
+ Cε‖ϒ‖2

HC2
. (4.25)

Proof. Integrating (4.20f) over (0, x) ⊂ (0, L) and taking the multiplier θ in the resulting ex-
pression, we get

L∫
0

|θ |2dx = τ

L∫
0

x∫
0

q(y) dy (iλθ(x)) dx

︸ ︷︷ ︸
=:S1

−β

L∫
0

x∫
0

q(y) dy θ(x) dx +

τ

L∫
0

x∫
0

f6(y) dy θ(x) dx. (4.26)

From (4.20e) we can rewrite S1 as follows

S1 = τ

ρ3

L∫
0

|q|2dx − τ

ρ3

(
q(L) + σ�(L)

) L∫
0

qdx

+ τσ

ρ3

L∫
0

q�dx − τσ

ρ3

L∫
0

x∫
0

q(y)dy�(x)dx + τ

L∫
0

x∫
0

q(y) dy f5(x) dx.

Replacing this in (4.26) we obtain

ρ3

L∫
0

|θ |2dx = τ

L∫
0

|q|2dx − ρ3β

L∫
0

x∫
0

q(y) dy θ(x) dx −

=:S2︷ ︸︸ ︷
τ
(
q(L) + σ�(L)

) L∫
0

qdx

+ τσ

L∫
0

q�dx − τσ

L∫
0

x∫
0

q(y)dy�(x)dx (4.27)

+ ρ3τ

L∫
0

x∫
0

q(y) dy f5(x) dx + ρ3τ

L∫
0

x∫
0

f6(y) dy θ(x) dx.
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In what follows we are going to estimate S2. Indeed, integrating (4.20e) on (x, L), taking the 
multiplier 

∫ L

0 qdx in the resulting expression and then rearranging the terms, we obtain

[q(L) + σ�(L)]
L∫

0

qdx = ρ3

L∫
x

f5(s)ds

L∫
0

q(z)dz + [q(x) + σ�(x)]
L∫

0

q(z)dz (4.28)

+ ρ3

L∫
x

θ(s)ds

L∫
0

(iλq)(z)dz

︸ ︷︷ ︸
=:S3

−σ

L∫
x

�(s)ds

L∫
0

q(z)dz.

Now, using the identity (4.20f) in S3 and noting that θ ∈ H 1
0 (0, L), we can rewrite (4.28) as 

follows.

=S2︷ ︸︸ ︷
[q(L) + σ�(L)]

L∫
0

q(z)dz = ρ3

L∫
x

f5(s)ds

L∫
0

q(z)dz + [q(x) + σ�(x)]
L∫

0

q(z)dz

+ ρ3

τ

L∫
x

θ(s)ds

L∫
0

(τf6 − βq)(z)dz − σ

L∫
x

�(s)ds

L∫
0

q(z)dz,

and integrating this expression with respect to x on (0, L), we easily deduce by (4.22)

|S2| ≤ C‖U‖HC2
‖ϒ‖HC2

+ C‖q‖2‖�‖2 + C‖q‖2‖�‖2 + C‖q‖2‖θ‖2, (4.29)

for some constant C > 0. Thus, going back to (4.27) we arrive at

ρ3‖θ‖2
2 ≤ C‖U‖HC2

‖ϒ‖HC2
+ C‖q‖2‖�‖2 + C‖q‖2‖�‖2 + C‖q‖2‖θ‖2,

for some constant C > 0. Therefore, using (4.22), we conclude that (4.24) holds true and, conse-
quently, (4.25). �
Lemma 4.6. Under the assumptions of Theorem 4.1 and given any ε > 0, there exists a constant 
Cε > 0, independent of λ, such that

k‖ϕx + ψ‖2
2 ≤ ε‖U‖2

HC2
+ Cε‖ϒ‖2

HC2
, (4.30)

for |λ| > 1.

Proof. Substituting the resolvent equations (4.20a) and (4.20c) in (4.20e), we have

iλρ3θ + qx + iλσ (ϕx + ψ) = ρ3f5 + σ(f1,x + f3). (4.31)
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Multiplying (4.31) by k(ϕx + ψ) and integrating over (0, L), we get

iλσk

L∫
0

|ϕx + ψ |2 dx =
L∫

0

q[k(ϕx + ψ)x] dx

︸ ︷︷ ︸
=:S4

−iλρ3k

L∫
0

θ(ϕx + ψ) dx (4.32)

+ k

L∫
0

[
ρ3f5 + σ(f1,x + f3)

]
(ϕx + ψ) dx.

Let us rewrite the terms S4 as follows. Using (4.20b) and then (4.20f), we infer

S4 = − iλρ1

L∫
0

q�dx + σ

L∫
0

qθx dx − ρ1

L∫
0

qf2 dx

= − iλρ1

L∫
0

q�dx + iλτσ

L∫
0

|q|2 dx − βσ

L∫
0

|q|2 dx

+ τσ

L∫
0

qf6 dx − ρ1

L∫
0

qf2 dx.

Replacing this in (4.32) it follows that

iλσk‖ϕx + ψ‖2
2 = − iλρ1

L∫
0

q�dx − iλρ3k

L∫
0

θ(ϕx + ψ) dx

+ (iλτ − β)σ‖q‖2
2 + S5, (4.33)

where we denote

S5 := τσ

L∫
0

qf6 dx − ρ1

L∫
0

qf2 dx + k

L∫
0

[
ρ3f5 + σ(f1,x + f3)

]
(ϕx + ψ) dx.

We have

|S5| ≤ C‖U‖HC2
‖ϒ‖HC2

.

Now, from the identity (4.33), estimates (4.22) and (4.24), Young’s inequality and |λ| > 1, we 
obtain
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k‖ϕx + ψ‖2
2 ≤ C‖q‖2‖�‖2 + C‖q‖2‖�‖2 + C‖θ‖2‖U‖HC2

+ C‖U‖HC2
‖ϒ‖HC2

,

(4.34)

for some constant C > 0. Finally, from (4.34) and combining again (4.22), (4.24) and Young’s 
inequality with ε > 0, we conclude (4.30) for |λ| > 1. �
Lemma 4.7. Under the assumptions of Theorem 4.1 and given any ε > 0, there exists a constant 
Cε > 0, independent of λ, such that

ρ1‖�‖2
2 ≤ ε‖U‖2

HC2
+ Cε‖ϒ‖2

HC2
, (4.35)

for |λ| > 1 large enough.

Proof. Multiplying (4.20b) by −ϕ, integrating on (0, L), using (4.20a), adding and subtracting 
k
∫ L

0 (ϕx + ψ)ψ dx, we get

ρ1

L∫
0

|�|2 dx = k

L∫
0

|ϕx + ψ |2 dx − k

L∫
0

(ϕx + ψ)ψ dx

+ σ

L∫
0

[
i

λ
θx

]
(� + f1) dx

︸ ︷︷ ︸
:=S6

−ρ1

L∫
0

(�f1 + f2ϕ)dx. (4.36)

Using (4.20f) for S6, one has

ρ1

L∫
0

|�|2 dx = k

L∫
0

|ϕx + ψ |2 dx − k

L∫
0

(ϕx + ψ)ψ dx

+ σ

(
τ − iβ

λ

) L∫
0

q�dx + S7, (4.37)

where

S7 := iσ τ

λ

L∫
0

f6(� + f1) dx + σ

(
τ − iβ

λ

) L∫
0

qf1 dx − ρ1

L∫
0

(�f1 + f2ϕ)dx.

We have

|S5| ≤ C‖U‖HC2
‖ϒ‖HC2

+ C‖ϒ‖2
HC2

,

for some constant C > 0 and |λ| > 1. Returning to (4.37), using (4.20c) and (4.34), one gets
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ρ1‖�‖2
2 ≤ C‖q‖2‖U‖HC2

+ C‖θ‖2‖U‖HC2

+ C‖U‖HC2
‖ϒ‖HC2

+ C

|λ|2 ‖U‖2
HC2

+ C‖ϒ‖2
HC2

,

for |λ| > 1 and some constant C > 0. Therefore, the conclusion of (4.35) follows analogously as 
in the previous lemmas and taking |λ| > 1 sufficiently large. �
Lemma 4.8. Under the assumptions of Theorem 4.1 and given any ε > 0, there exists a constant 
Cε > 0, independent of λ, such that

ρ2‖�‖2
2 ≤ ε‖U‖2

HC2
+ Cε‖ϒ‖2

HC2
, (4.38)

for |λ| > 1 large enough.

Proof. Multiplying (4.20d) by 
∫∞

0 g(s)η(s)ds and integrating on (0, L), we get

−ρ2

L∫
0

∞∫
0

g(s)�[iλη(s)]dsdx

︸ ︷︷ ︸
=:S8

−σ

L∫
0

∞∫
0

g(s)θη(s)dsdx + b̃

L∫
0

∞∫
0

g(s)ηx(s)ψxdsdx

+
L∫

0

∣∣∣∣∣∣
∞∫

0

g(s)ηx(s)ds

∣∣∣∣∣∣
2

dx + k

L∫
0

∞∫
0

g(s)(ϕx + ψ)η(s)dsdx

︸ ︷︷ ︸
=:S9

= ρ2

L∫
0

∞∫
0

g(s)f4η(s)dsdx.

Now, using the identity (4.20g) in S8 and the expressions (4.20a) and (4.20c) in S9, we obtain

−ρ2

=b0︷ ︸︸ ︷⎛
⎝ ∞∫

0

g(s)ds

⎞
⎠ L∫

0

|�|2dx = σ

L∫
0

∞∫
0

g(s)θη(s)dsdx − b̃

L∫
0

∞∫
0

g(s)ηx(s)ψxdsdx

+ ρ2

L∫
0

∞∫
0

g(s)f4η(s)dsdx + ρ2

L∫
0

∞∫
0

g(s)�f7dsdx

+ S10 + S11 + S12, (4.39)

where we denote

S10 := −ρ2

L∫
0

∞∫
0

g(s)�[ηs(s)]dsdx, S11 := −
L∫

0

⎛
⎝ ∞∫

0

g(s)ηx(s)ds

⎞
⎠2

dx,

and
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S12 := − ik

λ

L∫
0

∞∫
0

g(s)ηx(s)ds�dx + ik

λ

L∫
0

∞∫
0

g(s)η(s)ds�dx

+ ik

λ

L∫
0

∞∫
0

g(s)η(s)ds(f1,x + f3)dx.

Let us estimate S10, S11 and S12 as follows.

|S10| ≤ ρ2b0
1/2‖�‖2

⎛
⎝ ∞∫

0

[−g′(s)]‖η(s)‖2
2ds

⎞
⎠1/2

,

|S11| ≤ b0‖η‖2
L2

g
,

|S12| ≤ C

|λ| ‖η‖L2
g
‖�‖2 + C

|λ| ‖η‖L2
g
‖�‖2 + C

|λ| ‖η‖L2
g
‖f1,x + f3‖2.

Using these last three estimates in (4.39) and using (4.23), we arrive at

ρ2‖�‖2
2 ≤ C‖η‖L2

g
‖θ‖2 + C‖η‖L2

g
‖ψx‖2 + C‖U‖HC2

‖ϒ‖HC2

+C‖�‖2

⎛
⎝ ∞∫

0

[−g′(s)]‖ηx(s)‖2
2ds

⎞
⎠1/2

(4.40)

+ C

|λ| ‖η‖L2
g
‖�‖2 + C

|λ| ‖η‖L2
g
‖�‖2,

for come constant C > 0 and |λ| > 1. Using Young’s inequality once more and the estimates 
(4.22)-(4.23) we finally obtain

ρ2‖�‖2
2 ≤ C‖U‖HC2

‖ϒ‖HC2
+ C‖η‖L2

g
‖U‖HC2

, (4.41)

for come constant C > 0 and |λ| > 1. Finally, from (4.41), using again the estimate (4.23) and 
Young’s inequality with ε > 0, we conclude (4.38). �
Lemma 4.9. Under the assumptions of Theorem 4.1 and given any ε > 0, there exists a constant 
Cε > 0, independent of λ, such that

b̃‖ψx‖2
2 ≤ ε‖U‖2

HC2
+ Cε‖ϒ‖2

HC2
, (4.42)

for |λ| > 1 large enough.
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Proof. Multiplying (4.20d) by ψ and integrating, we get

−ρ2

L∫
0

�(iλψ)dx

︸ ︷︷ ︸
=:S13

+b̃

L∫
0

|ψx |2dx +
L∫

0

∞∫
0

g(s)ηx(s)ψxdsdx

+ k

L∫
0

(ϕx + ψ)ψdx

︸ ︷︷ ︸
=:S14

−σ

L∫
0

θψdx = ρ2

L∫
0

f4ψdx.

Replacing ψ , given in the component equation (4.20c), in both S13 and S14, we have

b̃

L∫
0

|ψx |2dx = −
L∫

0

∞∫
0

g(s)ηx(s)ψxdsdx − ik

λ

L∫
0

(ϕx + ψ)�dx

+ σ

L∫
0

θψdx + ρ2

L∫
0

|�|2dx + S15, (4.43)

where

S15 := − ik

λ

L∫
0

(ϕx + ψ)f3dx + ρ2

L∫
0

f4ψdx + ρ2

L∫
0

�f3dx,

hence

|S15| ≤ C‖U‖HC2
‖ϒ‖HC2

,

for some constant C > 0 and |λ| > 1. From the latter and in combination with (4.34) and (4.41), 
we obtain from (4.43) the estimate

b̃‖ψx‖2
2 ≤ C‖η‖L2

g
‖U‖HC2

+ C‖q‖2‖U‖HC2
+ C‖θ‖2‖U‖HC2

+ C‖U‖HC2
‖ϒ‖HC2

,

for come constant C > 0 and |λ| > 1. Finally, applying Young’s inequality several times and 
observing the useful estimates (4.22), (4.23) and (4.24), we conclude the estimate (4.42). �

Last, combining the Lemmas 4.4–4.9 and choosing ε > 0 small enough, one can easily con-
clude (4.21).

This finishes the proof of Theorem 4.1. �
Remark 4.10. Let us finally stress some technical aspects concerning the result provided by The-
orem 4.1 when compared to [14] (see Sections 3 and 4 therein) and [11, Section 3]. Here, unlike 
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[14,11], our main result in this section features the exponential stability for (4.1)-(4.3) indepen-
dent of any relation between the coefficients. The main technical reason for this achievement is 
that we can estimate the shear component (see Lemma 4.6) by means of the shear force damping, 
which leads to a new way of getting a priori estimates in comparison to bending moment damp-
ing, see e.g. [14, Lemma 4.4] and [11, Lemma 3.5]. Moreover, the same result (Theorem 4.1) can 
probably be extended to other boundary conditions instead of (4.2) so that the existence of solu-
tion is ensured in proper spaces. Although additional computations are necessary to this purpose, 
they can be done by following similar ideas as given in [21,25] to control possible point-wise 
boundary terms or else we can follow the same lines as [4,5] by introducing cut-off functions 
and get local estimates that could be globally expanded by means of a resolvent observability.
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