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Abstract
This paper is concerned with well-posedness and long-time dynamics for a class extensi-
ble beams with nonlocal Balakrishnan–Taylor and frictional damping. The related model
describes vibrations in nonlinear extensible beams arising in connection with models of
oscillation in pipes and supersonic panel flutter. Our main results feature the study of the
nonlinear dynamical system generated by the problem. The main novelty is to explore the
global Lq -regularity (q ≥ 2) in time of the nonlocal Balakrishnan–Taylor term and show
how it generates a dissipative term that plays an important role in the asymptotic behavior
of solutions, mainly in what concerns to achieve the useful property of quasi-stability in the
theory of infinite-dimensional dynamical systems.

Keywords Extensible beam · Balakrishnan–Taylor damping · Long-time dynamics · Global
attractor · Fractal dimension
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1 Introduction

In 1989 Balakrishnan and Taylor [2] proposed the following new model for flight structures
with viscous and nonlinear nonlocal damping in the one dimensional case

�utt + E I uxxxx − cuxxt

−
[

H + E A

2L

∫ L

0
|ux |2dx + τ

(∫ L

0
ux uxt dx

)2(N+η)+1 ]
uxx = 0, (1.1)

B M. A. Jorge Silva
marcioajs@uel.br

1 Institute of Mathematical and Computer Sciences, University of São Paulo, São Carlos, SP
13566-590, Brazil

2 Department of Mathematics, State University of Londrina, Londrina, PR 86057-970, Brazil

3 Center of Exact Sciences, State University of Mato Grosso do Sul, Dourados, MS 79804-970, Brazil

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10884-019-09766-x&domain=pdf
http://orcid.org/0000-0002-4806-886X


1158 Journal of Dynamics and Differential Equations (2020) 32:1157–1175

where u = u(x, t) represents the transversal deflection of an extensible beam with length
2L > 0 in the rest position,� > 0 is themass density, E is theYoung’smodulus of elasticity, I
is the cross-sectional moment of inertia, H is the axial force (either traction or compression),
A is the cross-sectional area, c > 0 is the coefficient of viscous damping, τ > 0 is the
Balakrishnan–Taylor damping coefficient, 0 ≤ η < 1

2 and N ∈ N. We refer to [2, Sect. 4]
for the precise modeling of (1.1). See also Bass and Zes [3, Eqs.(14a–c)]. We still encourage
the reader to see the reference [5] where a nice tribute to the memory of A .V. Balakrishnan
brings up his career and contributions.

In the case N = η = 0, Eq. (1.1) arises in connection with models of oscillation in
pipes and supersonic panel flutter, whose derivation is known since 1970s with the works
by Dowell [10] and Holmes [15]. In this context, global existence and asymptotic stability
under some hypotheses about the aerodynamic pressure were first considered by Marsden et
al. [16,17] and You [29]. Later, the asymptotic behavior of solutions was studied by Clark
in [9], where the structural (viscous) damping −cuxxt is replaced by the strong damping
νuxxxxt , ν > 0. Going back to the case 0 ≤ η < 1

2 and N ∈ N, the well-posedness and
long-time dynamics of solutions for (1.1) were first treated by You [30], where exponential
stabilization and inertial manifolds are established.

In 2011Emmrich andThalhammer [12] considered a class of integro-differential equations
with applications in nonlinear elastodynamics. They proposed a generalmodel for description
of nonlinear extensible beams incorporating weak, viscous, strong and Balakrishnan–Taylor
damping as follows (see [12, Eq. (1.1)]):

utt + α�2u + ξu + κut − λ�ut + μ�2ut

−
[

β + γ

∫


|∇u|2dx + δ

∣∣∣∣
∫



∇u · ∇ut dx

∣∣∣∣
q−2 ∫



∇u · ∇ut dx

]
�u = h (1.2)

in  × (0, T ), where  ⊂ R
n is a bounded domain and T > 0. The constants have the

physical meaning: α > 0 is the elasticity coefficient, γ > 0 is the extensibility coefficient,
λ ≥ 0 is the viscous damping coefficient, μ ≥ 0 is the strong damping coefficient, δ ≥ 0
is the Balakrishnan–Taylor damping coefficient, β ∈ R is the axial force coefficient (β > 0
traction or β < 0 compression), κ ∈ R is the weak damping coefficient (although without
sign condition), ξ ∈ R is a source coefficient and the exponent q belongs to [2,∞). We refer
to [12, Sect. 1] for a nice survey on references with special cases of Eq. (1.2).

In the presence of the interesting nonlinear Balakrishnan–Taylor term (δ > 0), the exis-
tence of a weak solution (in the sense of [12, Def. 2.1]) for (1.2) is only established by
the authors (via time discretization) in either cases: in the presence of viscous and strong
damping (λ,μ > 0) and arbitrary q ∈ [2,∞) or else neglecting viscous and strong damping
(λ = μ = 0) with the restriction q = 2. See Theorem 4.1 in [12] for more details. However,
as remarked by the authors in [12] (see the seventh line on page 2526), they were not able to
prove the existence if λ = μ = 0 and q > 2 in (1.2). Such a case seems to be not addressed up
to now in what concerns the existence and stability of solutions. In fact, the case approached
by Clark [9] corresponds to analyze Eq. (1.2) when κ = λ = 0, μ > 0 (strong damping)
and q = 2. The same case is considered by Tatar and Zaraï [24], where ξu is replaced by
a nonlinear source like |u|pu on the right hand side of (1.2). They also analyzed blow up
phenomena in finite time. The case considered by You [30] matches the system (1.2) with
κ = μ = 0, λ > 0 (viscous damping) and q > 2. There are also some more recent works
dealingwithKirchhoff’s wavemodels (α = μ = 0 in (1.2)) with Balakrishnan–Taylor damp-
ing in the case q = 2 and memory term of second order, see e.g. Tatar and Zaraï [23,25,26],
Wu [28], Lee et al. [20] and Park [21]. General stability (depending on the memory kernel)
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and blow up in finite time are the main issues approached in these latter. Therefore, we can
not compare our long-time dynamics result for extensible beam models to their results for
viscoelastic Kirchhoff’s wave models. It is worth mentioning that in the presence of viscous
damping with λ > 0 in (1.2) (c > 0 in (1.1), respectively) the velocity ut has the following
regularity ut ∈ L2(0, T ; H1

0 ()) and the dissipative term λ
∫


|∇ut |2 dx gives a way to
control more easily the terms generated by the nonlinear Balakrishnan–Taylor term (mainly
in the case q = 2) as in the previous works. The same happens in the presence of strong
damping when μ > 0 in (1.2). Moreover, even in the presence of these stronger dissipa-
tions, the Balakrishnan–Taylor damping seems to be not a locally Lipschitz operator in the
pattern weak phase space in the representative case q > 0. Therefore, the global existence
and asymptotic behavior of (1.2) in the intrigued case λ = μ = 0, κ > 0 (weak damping)
and q > 2 seems to be a much more delicate case, once we only have the poor regularity
ut ∈ L2(0, T ; L2()) and the dissipative term κ

∫


|ut |2 dx is not enough to control nonlin-
ear bad terms coming from the Balakrishnan–Taylor component. This requires to take into
account some regularity of the own Balakrishnan–Taylor damping in some sense. To the best
of our knowledge, this latter case was not approached in the literature so far.

Motivated by the above scenario, the main aim of the present article is to complement
and extend the works [9,12,24,30] by proving the existence of a unique mild (and strong)
solution for (1.2) when λ = μ = 0, κ ∈ R and q ≥ 2. Moreover, we also analyze the long-
time dynamics of solutions (in the referred case) if κ > 0 and β is bounded from below by a
negative term.We also consider amore general (standard) nonlinear source than the linear one
ξu.To this end, wework with an alternative expression of the following Balakrishnan–Taylor
term

�(u, ut ) :=
∫



∇u · ∇ut dx = −
∫



�u ut dx, (1.3)

where the last equality in (1.3) is formally obtained. Obviously, it holds true for strong
solutions (u, ut ) ∈ L∞ (

0, T ; (H4() ∩ H2
0 ()) × H2

0 ()
)
after a simple integration by

parts. In this case, from (1.2) we have the following regularity for the Balakrishnan–Taylor
term

�(u, ut ) ∈ Lq(0, T ), q ≥ 2, T > 0.

Since we shall only consider frictional damping in our model, then the above Lq -regularity
in time of �(u, ut ) will play an important role in the asymptotic behavior of solutions
as well as the term |�(u, ut )|q will be used to control bad terms generated by the own
Balakrishnan–Taylor damping, mainly if q > 2, which features the main difference from the
above mentioned papers. This assertion will be clarified in our technical results presented in
Sect. 3.

Now, in light of the aforementioned remarks, we consider our main problem. More pre-
cisely, we shall study well-posedness and long-time dynamics to the following class of
extensible beams with Balakrishnan–Taylor and frictional damping

utt +�2u − [β + γ ‖∇u‖22 + δ |�(u, ut )|q−2 �(u, ut )
]
�u + κut + f (u) = h in ×R

+,

(1.4)
where is a bounded domain ofRn with smooth boundary � = ∂. Hereafter, the notations
(·, ·) and ‖ · ‖p shall stand for the L2-inner product and L p-norm, respectively. The precise
assumptions on the constants and functions of the system will be given later. We study
Eq. (1.4) with clamped boundary condition

u = ∂u

∂ν
= 0 on � × R

+, (1.5)
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where ν is the unit exterior normal to �, and initial data

u(x, 0) = u0(x) and ut (x, 0) = u1(x), x ∈ . (1.6)

In Sect. 2we introduce the notations and assumptions on the problem (1.4)–(1.6) aswell as
its Hadamardwell-posedness. In Sect. 3 we study the long-time behavior of solutions through
the dynamical system associated with problem (1.4)–(1.6). We first provide some important
technical results and then our main theorems with respect to the existence of attractors and
their properties like quasi-stable systems, finite fractal dimension, geometrical structure and
regularity from the attractor. The concept of fractal exponential attractor is also addressed.

2 Well-Posedness

The well-posedness of problem (1.4)–(1.6) will be made by means of the general theory on
C0-semigroups. See, for instance, Pazy’s book [22]. We consider initially the Hilbert phase
space to the solution trajectories

H = H2
0 () × L2()

with norm

||(u, v)||2H = ‖�u‖22 + ‖v‖22, (u, v) ∈ H.

Denoting the vector-valued function U = (u, v), with v = ut , let us rewrite the system
(1.4)–(1.6) as the following abstract Cauchy problem{

Ut = AU + B(U ), t > 0,
U (0) = (u0, u1) := U0,

(2.1)

where A : D(A) ⊂ H → H is the linear differential operator

AU =
[

v

−�2u

]
, U ∈ D(A) = (H4() ∩ H2

0 ()) × H2
0 (), (2.2)

and B : H → H is the nonlinear operator

B(U ) =
[

0
�(U )

]
, U = (u, v) ∈ H, (2.3)

where

�(U ) = [
β + γ ‖∇u‖22 + δ |�(U )|q−2 �(U )

]
�u − f (u) − κv + h

with �(U ) = − (�u, v) . Under the above notations, the existence and uniqueness result for
(1.4)–(1.6) shall be given upon the equivalent problem (2.1). Next, we give the assumptions
on the problem.

Assumption 2.1 Let us assume that h ∈ L2(), f ∈ C1(R) and there exist constants
C f , C f ′ > 0 such that

| f ′(u)| ≤ C f ′(1 + |u|ρ), ∀ u ∈ R, (2.4)

−C f − α

2
u2 ≤ f̂ (u) :=

∫ u

0
f (τ )dτ ≤ f (u)u + α

2
u2, ∀ u ∈ R, (2.5)
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where α ∈ [0, λ1) with λ1 > 0 denoting the first eigenvalue of the bi-harmonic operator �2

with boundary condition (1.5), and growth exponent ρ satisfies

ρ > 0 if 1 ≤ n ≤ 4 or 0 < ρ ≤ 4

n − 4
if n ≥ 5. (2.6)

Remark 2.1 Under the definition of λ1 and since α ∈ [0, λ1), one has

‖u‖22 ≤ 1

λ1
‖�u‖22, ‖∇u‖22 ≤ 1

λ
1/2
1

‖�u‖22, ∀ u ∈ H2
0 (),

and ω := 1 − α

λ1
> 0. In addition, from (2.6) it holds the standard continuous Sobolev

embedding H2
0 () ↪→ L2(ρ+1)(), which is compact when we take

ρ > 0 if 1 ≤ n ≤ 4 or 0 < ρ <
4

n − 4
if n ≥ 5. (2.7)

Also, some standard examples on the nonlinear source f (u) can be found in [18].

Theorem 2.1 (Hadamard Well-Posedness). Let us consider q ≥ 2, γ, δ > 0, β, κ ∈ R, and
take Assumption 2.1 into account. Thus:

(i) If U0 ∈ H, then there exists Tmax > 0 such that problem (2.1) has a unique mild solution
U ∈ C([0, Tmax),H) given by

U (t) = eAtU0 +
∫ t

0
eA(t−s) B(U (s)) ds, t ∈ [0, Tmax). (2.8)

(ii) If U0 ∈ D(A), then the mild solution U is the strong solution of (2.1) on [0, Tmax).
(iii) In both cases, we have that Tmax = +∞.
(iv) If U 1 = (u1, v1) and U 2 = (u2, v2) are two mild (or strong) solutions corresponding to

initial data U 1
0 = (u1

0, u1
1) and U 2

0 = (u2
0, u2

1), respectively, then

‖U 1(t) − U 2(t)‖H ≤ eCt‖U 1
0 − U 2

0 ‖H, ∀ t ∈ [0,∞), (2.9)

for some positive constant C(||Ui
0||H), i = 1, 2.

Proof (i)-(ii) It is very well-known (and easy) to prove that A : D(A) ⊂ H → H defined in
(2.2) is the infinitesimal generator of a C0-semigroup of contractions eAt on H, see e.g. [4,
Proposition 1]. In addition, we claim that B : H → H defined in (2.3) is a locally Lipschitz
continuous operator. Indeed, let us first take R > 0 and U = (u, v), V = (̃u, ṽ) such that
||U ||H, ||V ||H ≤ R. Then, from (2.3), we infer

||B(U ) − B(V )||H = ‖�(U ) − �(V )‖2 = sup
‖w‖2≤1

|(�(U ) − �(V ), w)|. (2.10)

In what follows, we shall give proper estimates on the right hand side of (2.10). Given
w ∈ L2(), adding and subtracting the terms γ ‖∇u‖22�ũ and |�(U )|q−2�(U )�ũ in the
expression �(U ) − �(V ), we denote

|(�(U ) − �(V ), w )| =
∣∣∣∣∣

6∑
i=1

Ii

∣∣∣∣∣ , (2.11)
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where

I1 = (
β(�u − �ũ) + γ ‖∇u‖22(�u − �ũ), w

)
,

I2 = (
γ
[‖∇u‖22 − ‖∇ũ‖22

]
�ũ, w

)
,

I3 = (
δ |�(U )|q−2 �(U ) (�u − �ũ) , w

)
,

I4 = (
δ
[|�(U )|q−2�(U ) − |�(V )|q−2�(V )

]
�ũ, w

)
,

I5 = ( ( f (̃u) − f (u)), w ) ,

I6 = ( κ(̃v − v), w ) .

Thus, it remains to estimate the terms I1, . . . , I6. Firstly, it is easy to see that

|I1| ≤ (|β| + γ ‖∇u‖22)‖�u − �ũ‖2‖w‖2 ≤
[
|β| + γ R2

λ
1/2
1

]
||U − V ||H‖w‖2,

and

|I2| ≤ γ
∣∣‖∇u‖22 − ‖∇ũ‖22

∣∣ ‖�ũ‖2‖w‖2
≤ γ [‖∇u‖2 + ‖∇ũ‖2] ‖∇u − ∇ũ‖2‖�ũ‖2‖w‖2
≤ γ

λ
1/2
1

[‖�u‖2 + ‖�ũ‖2] ‖�u − �ũ‖2‖�ũ‖2‖w‖2

≤ 2γ R

λ
1/2
1

‖U − V ‖H‖w‖2.

Since (u, v) ∈ H2
0 () × L2(), then �(U ) = − (�u, v) makes sense and so

|I3| ≤ δ [‖�u‖2‖v‖2]q−1 ‖�u − �ũ‖2‖w‖2 ≤ δR2(q−1)||U − V ||H‖w‖2.
Now, let F ∈ C1(R) be given by F(s) = |s|q−2s. From the Mean Value Theorem, one can
easily prove that

|F(ϑ1) − F(ϑ2)| ≤ 22(q−2)(q − 1)
[|ϑ1|q−2 + |ϑ2|q−2] |ϑ1 − ϑ2|, ϑ1, ϑ2 ∈ R.

Taking ϑ1 = �(U ) and ϑ2 = �(V ), we have

|I4| ≤ 22(q−2)(q − 1)δ
[∣∣�(U )

∣∣q−2 + ∣∣�(V )
∣∣q−2

] ∣∣�(U ) − �(V )
∣∣‖�ũ‖2‖w‖2.

As above, recalling that �(U ) = − (�u, v), it follows that

∣∣�(U )
∣∣q−2 + ∣∣�(V )

∣∣q−2 ≤ [‖�u‖2‖v‖2]q−2 + [‖�ũ‖2‖̃v‖2]q−2 ≤ 2R2(q−2).

Similarly, �(U ) − �(V ) = − (�u − �ũ, v) − (�ũ, v − ṽ) , which implies that

|�(U ) − �(V )| ≤ ‖�u − �ũ‖2‖v‖2 + ‖�ũ‖2‖v − ṽ‖2 ≤ 2R||U − V ||H.

Thus, the fourth term can be estimated as follows

|I4| ≤ [√
2R
]2(q−1)

(q − 1)δ||U − V ||H‖w‖2.
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Using Assumption (2.1)–(2.4), again the Mean Value Theorem, Hölder’s inequality with
ρ

2(ρ+1) + 1
2(ρ+1) + 1

2 = 1 and embedding H2
0 () ↪→ L2(ρ+1)(), we get

|I5| =
∣∣∣∣
∫



( f (u) − f (̃u) ) w dx

∣∣∣∣
≤ C f ′

∫


[
1 + 2ρ[|u|ρ + |̃u|ρ] ] |u − ũ| |w| dx

≤ C f ′
[
|| ρ

2(ρ+1) + 2ρ[‖u‖ρ

2(ρ+1) + ‖ũ‖ρ

2(ρ+1)]
]
‖u − ũ‖2(ρ+1)‖w‖2

≤ C f ′
[
|| ρ

2(ρ+1) + 2ρ+1Cρ
ρ Rρ

]
Cρ ||U − V ||H‖w‖2,

whereCρ > 0 is the constant coming from the embedding inequality ‖·‖2(ρ+1) ≤ Cρ‖� ·‖2.
Last, we have

|I6| ≤ |κ| ‖v − ṽ‖2‖w‖2 ≤ |κ| ||U − V ||H‖w‖2.
Going back to (2.11) we obtain

|(�(U ) − �(V ), w)| ≤ L R ||U − V ||H‖w‖2, (2.12)

where L R > 0 is given by

L R = |β| + 2γ R

λ
1/2
1

+ γ R2

λ
1/2
1

+ δ

[
R2

λ
1/2
1

]q−1

+ [√
2R
]2(q−1)

(q − 1)δ

+ C f ′
(
|| ρ

2(ρ+1) + 2ρ+1Cρ
ρ Rρ

)
Cρ + |κ|,

and replacing (2.12) in (2.10), we arrive at the desired locally Lipschitz condition

||B(U ) − B(V )||H ≤ L R ||U − V ||H. (2.13)

Hence, the existence and uniqueness of mild (and strong) solution for (2.1) on [0, Tmax)

follows from Theorems 1.4 and 1.6 in Pazy’s book [22, Chapter 6].
(iii) Remains to prove that Tmax = +∞, that is, the mild (and strong) solution of (2.1) is
globally defined. In fact, if Tmax < ∞, then it well-known that

lim
t→T −

max

||U (t)||H = +∞. (2.14)

On the other hand, the energy functional corresponding to system (1.4)–(1.6) is given by

E(t) = 1

2
||U (t)||2H + β

2
‖∇u(t)‖22 + γ

4
‖∇u(t)‖42 +

∫


[
f̂ (u(t)) − hu(t)

]
dx, (2.15)

where U (t) = (u(t), v(t)), with v = ut , is the mild (or strong ) solution of problem (2.1).
Let us also define the perturbed energy

Ẽ(t) := E(t) + β2

4γ
+ 1

ωλ1
‖h‖22 + C f ||. (2.16)

From Young’s inequality and Assumption (2.1)–(2.5), we get

β

2
‖∇u(t)‖22 ≥ − β2

4γ
− γ

4
‖∇u(t)‖42, (2.17)∫



f̂ (u(t)) dx ≥ −α

2
‖u(t)‖2 − C f || ≥ − α

2λ1
‖�u(t)‖22 − C f ||, (2.18)
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and

−
∫



hu dx ≥ −‖h‖2‖u(t)‖2 ≥ − 1

ωλ1
‖h‖22 − ω

4
‖�u(t)‖22. (2.19)

Thus, combining (2.15)–(2.19), we obtain

Ẽ(t) ≥ 1

2
‖ut (t)‖22 + ω

4
‖�u(t)‖22 ≥ ω

4
||U (t)||2H. (2.20)

Now, taking the multiplier v = ut in (1.4), noting that d
dt E(t) = d

dt Ẽ(t) and from (2.20),
we infer

d

dt
Ẽ(t) + δ |�(U (t))|q = −κ‖ut (t)‖22 ≤ 2|κ|Ẽ(t), (2.21)

from where we obtain
Ẽ(t) ≤ Ẽ(0)e2|κ|t , ∀ t ∈ [0, Tmax).

Again from (2.20) we conclude

||U (t)||H ≤ 4

ω

[
E(0) + β2

4γ
+ 1

ωλ1
‖h‖22 + C f ||

]
e2|κ|t , ∀ t ∈ [0, Tmax), (2.22)

which is a contradiction with (2.14) for Tmax < +∞. Therefore, Tmax = +∞.
(iv) The local continuous dependence stated in (2.9) can be proved as a direct consequence
of the formula (2.8), the locally Lipschitz property (2.13) and Gronwall’s inequality.

Hence, the proof of Theorem 2.1 is complete. ��
Remark 2.2 In order to work with a simplified presentation, we have restricted to the case of
extensible beams with clamped boundary condition (1.5). Nonetheless, our result on well-
posedness (and long-time behavior) also holds true in the case of simply supported boundary
condition u = �u = 0 on � × R

+ without additional difficulty. See e.g. [4,18].

Remark 2.3 We also observe that estimate (2.22) predicts that the solution U = (u, ut )

exists globally with respect to H-topology, but it may growth exponentially as time goes to
infinity. However, in the case κ > 0, we go back to (2.21) and extract the following global
boundedness

Ẽ(t) ≤ Ẽ(0), ∀ t ≥ 0,

which allows us to conclude that the solution is globally bounded on the weak phase H.

Hence, is this case, we can analyze the asymptotic behavior of mild (and strong) solutions
with respect to H-topology. In the next section we shall be restricted to the case κ > 0.

3 Long-Time Behavior

3.1 Technical Results

We start this section with some technical results on the trajectory solution U (t) =
(u(t), ut (t)) ∈ H of problem (1.4)–(1.6) for t ≥ 0.

Proposition 3.1 Let us take the assumptions of Theorem 2.1 into account with κ > 0. Then
there exists a small constant ε > 0 (which may depend on initial data) such that

Ẽ(t) + 2δ

q

∫ t

0
e−ε(t−s)|�(U (t))|qds ≤ 3Ẽ(0)e−εt + ωR∗

16
, t ≥ 0, (3.1)

123
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where Ẽ(t) is set in (2.16) and

R∗ := 48

ω

[
β2

2γ
+ 1

ωλ1
‖h‖22 + C f ||

]
. (3.2)

In addition, it holds the identity

Ẽ(t) + κ

∫ t

0
‖ut (s)‖22 ds + δ

∫ t

0
|�(U (s))|q ds = Ẽ(0), t ≥ 0. (3.3)

Proof Let us start by defining the perturbed energy

Ẽε(t) = Ẽ(t) + ε

∫


ut (t)u(t) dx, (3.4)

with ε > 0 to be fixed later. Then, from Young’s inequality and (2.20),∣∣Ẽε(t) − Ẽ(t)
∣∣ ≤ 2ε

λ
1/2
1 ω

Ẽ(t),

which implies, after choosing ε ≤ λ
1/2
1 ω

4 , the next equivalence

1

2
Ẽ(t) ≤ Ẽε(t) ≤ 3

2
Ẽ(t), t ≥ 0. (3.5)

On the other hand, from (2.21) one sees

d

dt
Ẽ(t) = −κ‖ut (t)‖22 − δ |�(U (t))|q . (3.6)

Besides, deriving Ẽε(t) in (3.4), using Eq. (1.4) and substituting (3.6) in the resulting expres-
sion, it follows that

d

dt
Ẽε(t) + (κ − ε)‖ut (t)‖22 + ε‖�u(t)‖22 + εβ‖∇u(t)‖22 + εγ ‖∇u(t)‖42
+ ε

∫


f (u(t))u(t) − ε

∫


hu(t) dx + δ |�(U (t))|q

≤ − εκ

∫


ut (t)u(t) dx + εδ |�(U (t))|q−2 �(U (t))‖∇u(t)‖22. (3.7)

From condition (2.5), we get

ε

∫


f (u(t))u(t) dx ≥ ε

∫


f̂ (u(t)) dx − εα

2
‖u(t)‖22

≥ ε

∫


f̂ (u(t)) dx − εα

2λ1
‖�u(t)‖22,

and using Hölder and Young’s inequalities we have∣∣∣∣εκ
∫



ut (t)u(t) dx

∣∣∣∣ ≤ εκ

λ
1/2
1

‖ut (t)‖2‖�u(t)‖2 ≤ κ

2
‖ut (t)‖22 + ε2κ

2λ1
‖�u(t)‖22.

Now, taking ε > 0 so that ε ≤ min
{

λ1ω
2κ , κ

3

}
and returning to (3.7), we infer

d

dt
Ẽε(t) + εE(t) + εβ

2
‖∇u(t)‖22 + 3εγ

4
‖∇u(t)‖42 + δ |�(U (t))|q

≤ εδ |�(U (t))|q−2 �(U (t))‖∇u(t)‖22.

123



1166 Journal of Dynamics and Differential Equations (2020) 32:1157–1175

Moreover, since

εβ

2
‖∇u(t)‖22 + 3εγ

4
‖∇u(t)‖42 ≥ −εβ2

4γ
+ εγ

4
‖∇u(t)‖42,

we obtain

d

dt
Ẽε(t) + εE(t) − β2

4γ
+ εγ

4
‖∇u(t)‖42 + δ |�(U (t))|q

≤ εδ |�(U (t))|q−2 �(U (t))‖∇u(t)‖22. (3.8)

Adding the term ε
[

β2

4γ + 1
ωλ1

‖h‖22 + C f ||
]
in both sides of (3.8) we deduce

d

dt
Ẽε(t) + ε Ẽ(t) + εγ

4
‖∇u(t)‖42 + δ |�(U (t))|q

≤ εδ |�(U (t))|q−2 �(U (t))‖∇u(t)‖22︸ ︷︷ ︸
:=J

+ ε
ωR∗

48
, (3.9)

where R∗ is given in (3.2). From Young’s inequality with q−1
q + 1

q = 1, yields

J ≤ δ
q−1

q |�(U (t))|q−1 εδ
1
q ‖∇u(t)‖22

≤ q − 1

q
δ |�(U (t))|q + εqδ

q
‖∇u(t)‖2q

2 .

Using (2.20) and (3.6), since q ≥ 2 and considering C0 = C0(||U (0)||H) > 0 such that
Ẽ(0) ≤ C0, we get

εqδ

q
‖∇u(t)‖2q

2 = εqδ

q
‖∇u(t)‖2(q−2)

2 ‖∇u(t)‖42

≤ εqδ

q

⎡
⎣ 4

ωλ
1
2
1

Ẽ(0)

⎤
⎦

(q−2)

‖∇u(t)‖42

≤ εqδ

q

⎡
⎣ 4

ωλ
1
2
1

C0

⎤
⎦

(q−2)

‖∇u(t)‖42,

and so

J ≤ q − 1

q
δ |�(U (t))|q + εqδ

q

[
4C0

ωλ
1/2
1

]q−2

‖∇u(t)‖42. (3.10)

Replacing (3.10) in (3.9) and choosing ε > 0 such that ε ≤
(

qγ
4δ

) 1
q−1
[

ωλ
1/2
1

4C0

] q−2
q−1

,we obtain

d

dt
Ẽε(t) + ε Ẽ(t) + δ

q
|�(U (t))|q ≤ ε

ωR∗

48
. (3.11)

Therefore, from the above choices on ε > 0, the estimates (3.5) and (3.11) hold true. Com-
bining them, we arrive at

d

dt
Ẽε(t) + 2ε

3
Ẽε(t) + δ

q
|�(U (t))|q ≤ ε

ωR∗

48
. (3.12)
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Multiplying (3.12) by e
2ε
3 t and integrating from 0 to t , then a straightforward computation

leads to

Ẽε(t) + δ

q

∫ t

0
e− 2ε

3 (t−s)|�(U (t))|qds ≤ Ẽε(0)e
− 2ε

3 t + ωR∗

32
.

Hence, using (3.5) and denoting ε = 2ε
3 , we achieve inequality (3.1). In addition, identity

(3.3) follows readily by integrating (3.6). This completes the proof of Proposition 3.1 ��

It follows immediately from Proposition 3.1 the next two consequences.

Corollary 3.2 (Exponential Stabiliby). Under the assumptions of Proposition 3.1 with β =
C f = 0 and h ≡ 0, the system (1.4)–(1.6) is exponentially stable. More precisely, there exists
a constant ε > 0 (which may depend on initial data) such that the energy E(t) defined in
(2.15) satisfies

E(t) ≤ 3E(0)e−εt , t ≥ 0.

Proof It is enough to combine (2.16) and (3.1)–(3.2), where Ẽ = E and R∗ = 0. ��

Corollary 3.3 (Global Boundedness). Let assumptions of Proposition 3.1 be in force. Then,
for every R > 0 with ||(u0, u1)||H ≤ R, there exists a time tR > 0 such that

||U (t)||H ≤ R∗, ∀ t ≥ tR, (3.13)

where U (t) = (u(t), ut (t)) is the unique (mild) solution of (1.4)-(1.6) with U (0) = (u0, u1)

and R∗ > 0 is given in (3.2). In particular, every trajectory solution with bounded initial
data is itself globally bounded. More precisely, there exists a constant CR > 0 such that

||U (t)||2H +
∫ t

0
|�(U (s))|q ds ≤ CR, ∀ t ≥ 0. (3.14)

Proof From (2.20), (3.1) and denoting by CR > 0 such that Ẽ(0) ≤ CR, then

||U (t)||2H ≤ 12CR

ω
e−εt + R∗

4
, t ≥ 0.

Thus, taking tR > 0 large enough such that tR ≥ ε−1 ln
[
16CR
ωR∗

]
, we conclude (3.13). The

global estimate (3.14) follows promptly from (2.20) and (3.3). ��

Proposition 3.4 (Stabilizability Inequality). Let us take the assumptions of Theorem 2.1 into
account with κ > 0 and β ≥ −� , where � ∈ [0, λ1). Given a bounded set B ⊂ H, let
Ui = (ui , ui

t ), i = 1, 2, be two (mild) solutions of problem (1.4)-(1.6) such that Ui (0) =
(ui

0, ui
1) ∈ B. Then, there exist a uniform constant σ > 0 and constants �̃B , �B > 0

depending on B such that

||U 1(t) − U 2(t)||2H ≤ �̃B ||U 1(0) − U 2(0)||2He−σ t

+ �B

∫ t

0
e−σ(t−s)

[
‖∇w(s)‖22 + ‖w(s)‖22(ρ+1)

]
ds, (3.15)

for all t > 0, where w = u1 − u2.
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Proof The proof is done for strong solutions and using standard density arguments it holds
true for mild solutions. We start by noting that function (w,wt ) = U 1 − U 2 is the mild (or
strong) solution of problem

wt t + �2w + κwt − β�w − γ ‖∇u1‖22�w − γ
[ ‖∇u1‖22 − ‖∇u2‖22

]
�u2

− δ
∣∣�(U 1(t))

∣∣q−2
�(U 1(t))�w − δ���u2 + f (u1) − f (u2) = 0, (3.16)

with initial condition
(w(0), wt (0)) = U 1(0) − U 2(0),

where we denote

�� := |�(U 1(t))|q−2�(U 1(t)) − |�(U 2(t))|q−2�(U 2(t)).

Also, the corresponding energy functional to (3.16) is given by

E(t) := ‖wt (t)‖22 + ‖�w(t)‖22 + β‖∇w(t)‖22 + γ ‖∇u1(t)‖22‖∇w(t)‖22.
Inequality (3.14) in Corollary 3.3 implies that there exists a constant K B > 0 depending on
B such that

||Ui (t)||2H +
∫ t

0

∣∣∣�(Ui (s))
∣∣∣q ds ≤ K B , ∀ t ≥ 0, i = 1, 2. (3.17)

Then, defining ω1 = 1 − �
λ1

> 0 and denoting K̃ B = 1 + |β|
λ
1/2
1

+ γ
λ1

K B , we have

ω1||U 1(t) − U 2(t)||2H ≤ E(t) ≤ K̃ B ||U 1(t) − U 2(t)||2H. (3.18)

On the other hand, taking the multiplier wt in (3.16), we get

1

2

d

dt
E(t) ≤ − κ‖wt (t)‖22 +

5∑
i=1

Ji , (3.19)

where

J1 = γ�(U 1(t))‖∇w(t)‖22,
J2 = γ

[ ‖∇u1(t)‖22 − ‖∇u2(t)‖22
] ∫



�u2(t)wt (t) dx,

J3 = δ
∣∣�(U 1(t))

∣∣q−2
�(U 1(t))

∫


�w(t)wt (t) dx,

J4 = δ��

∫


�u2(t)wt (t)dx,

J5 =
∫



[
f (u2(t)) − f (u1(t))

]
wt (t) dx .

Let us estimate the termsJ1, . . . ,J5 of (3.19). For simplicity, the same constant K B > 0 will
be used to denote several different constants depending on B in the next estimates. Initially,
since �(U (t)) = −(�u1(t), u1

t (t)) and from (3.17), we observe that

|J1| ≤ γ ‖�u1(t)‖2‖u1
t (t)‖2‖∇w(t)‖22 ≤ K B‖∇w(t)‖22,

123



Journal of Dynamics and Differential Equations (2020) 32:1157–1175 1169

and

|J2| ≤ γ [‖∇u1(t)‖ + ‖∇u2(t)‖2]‖∇w(t)‖2‖�u2(t)‖2‖wt (t)‖2
≤ κ

4
‖wt (t)‖22 + K B‖∇w(t)‖22.

From definition of E(t),

|J3| ≤ δ |�(U (t))|q−1 ‖�w(t)‖2‖wt (t)‖2 ≤ δ |�(U (t))|q−1 E(t).

Also, using (3.17), the Mean Value Theorem (for some θ ∈ (0, 1)) and the identity �(U 1)−
�(U 2) = −[(�u1, wt

)+ (
�w, u2

t

)], then
|J4| ≤ K B

∣∣θ�(U 1(t)) + (1 − θ)�(U 2(t))
∣∣q−2 [

�(U 1(t)) − �(U 2(t))
] ‖wt (t)‖2

≤ K B

[∣∣�(U 1(t))
∣∣q−2 + ∣∣�(U 2(t))

∣∣q−2
] ∣∣(�u1(t), wt (t)) + (�w(t), u2

t (t))
∣∣ E(t)1/2

≤ K B

[∣∣�(U 1(t))
∣∣q−2 + ∣∣�(U 2(t))

∣∣q−2
]
E(t).

Finally, using Assumption (2.1)–(2.4), again the Mean Value Theorem, generalized Hölder
and Young’s inequality and (3.17), yields

|J5| ≤ κ

4
‖wt (t)‖22 + K B‖w(t)‖22(ρ+1).

Replacing these last five estimates in (3.19), we obtain

d

dt
E(t) ≤ − κ‖wt (t)‖22 + K B�(t)E(t) + K B

[
‖∇w(t)‖22 + ‖w(t)‖22(ρ+1)

]
, (3.20)

for some constant K B > 0, where we denote

�(t) :=
[∣∣�(U 1(t))

∣∣q−1 +
2∑

i=1

∣∣∣�(Ui (t))
∣∣∣q−2

]
.

Now, for μ > 0 to be determined later, let us consider the perturbed functional

Eμ(t) = E(t) + μ

∫


wt (t)w(t) dx . (3.21)

Using Young’s inequality and choosing μ ≤ λ
1/2
1
2 , it is easy to see that

1

2
E(t) ≤ Eμ(t) ≤ 3

2
E(t), t ≥ 0. (3.22)

Additionally, deriving (3.21) and taking Eq. (3.16) into account, it follows that

d

dt
Eμ(t) = d

dt
E(t) + μ‖wt (t)‖22 − μ‖�w(t)‖22 − μβ‖∇w(t)‖22

− μγ ‖∇u1(t)‖22‖∇w(t)‖22 +
5∑

i=1

Li , (3.23)
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where

L1 = μγ
[ ‖∇u1(t)‖22 − ‖∇u2(t)‖22

] ∫


�u2(t)w(t) dx,

L2 = −μδ |�(U (t))|q−2 �(U (t))‖∇w(t)‖22,
L3 = μδ��

∫


�u2(t)w(t) dx,

L4 = μ

∫


[
f (u2(t)) − f (u1(t))

]
w(t) dx,

L5 = −μκ

∫


wt (t)w(t) dx .

The estimates for L1, . . . ,L5 are truly similar to those made for J1, . . . ,J5. In the same
spirit, we infer that there exists a constant K B > 0 such that

|L1| ≤ K B‖∇w(t)‖22,
|L2| ≤ K B‖∇w(t)‖22,

|L3| ≤ K B

[
2∑

i=1

∣∣∣�(Ui (t))
∣∣∣q−2

]
E(t),

|L4| ≤ K B‖w(t)‖22(ρ+1),

|L5| ≤ κ

4
‖wt (t)‖22 + μ2κ

λ1
‖�w(t)‖22, (3.24)

Replacing (3.20) and (3.24) in (3.23), taking μ ≤ min
{

κ
4 , λ1

2κ

}
and neglecting nonnegative

terms, we get

d

dt
Eμ(t) + μ

2
E(t) − K B�(t)E(t) ≤ K B

[
‖∇w(t)‖22 + ‖w(t)‖22(ρ+1)

]
, (3.25)

for some constant K B > 0. Combining (3.22) and (3.25) we have

d

dt
Eμ(t) + �μ(t)Eμ(t) ≤ K B

[
‖∇w(t)‖22 + ‖w(t)‖22(ρ+1)

]
,

where

�μ(t) = μ

3
− K B�(t), K B > 0.

Applying Gronwall’s inequality we deduce

Eμ(t) ≤ e− ∫ t
0 �μ(s) dsEμ(0) + K B

∫ t

0
e− ∫ t

s �μ(τ) dτ
[
‖∇w(s)‖22 + ‖w(s)‖22(ρ+1)

]
ds.(3.26)

Now, this is the precise (and crucial) moment we use the Lq -regularity of the Balakrishnan–
Taylor term �(U ) in (3.17). Indeed, from this and in view of Young’s inequality with 0 <

μ ≤ min

{
λ
1/2
1
2 , κ

4 , λ1
2κ

}
and exponents q−1

q + 1
q = 1, q−2

q + 2
q = 1, it results

∫ t

s
[K B�(s)] ds ≤ μ

6
(t − s) + cμK B

2∑
i=1

∫ t

s

∣∣∣�(Ui (s))
∣∣∣q ds

≤ μ

6
(t − s) + K B , ∀ t > s ≥ 0,
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for some constant K B > 0. Then,

e− ∫ t
s �μ(s) ds ≤ K Be− μ

6 (t−s), ∀ t > s ≥ 0, (3.27)

for some constant K B > 0. Replacing (3.27) in (3.26) we obtain

Eμ(t) ≤ K BEμ(0)e− μ
6 t + K B

∫ t

0
e− μ

6 (t−s)
[
‖∇w(s)‖22 + ‖w(s)‖22(ρ+1)

]
ds,

for all t > 0 and some constant K B > 0. Using again (3.22) we arrive at

E(t) ≤ 3K BE(0)e− μ
6 t + 2K B

∫ t

0
e− μ

6 (t−s)
[
‖∇w(s)‖22 + ‖w(s)‖22(ρ+1)

]
ds, t > 0.

(3.28)
Finally, combining (3.18) and (3.28), we conclude the stabilizability inequality (3.15) by

taking σ = μ
6 > 0, �̃B = 3K B K̃ B

ω1
> 0 and �B = 2K B

ω1
> 0. This completes the proof of

Proposition 3.4. ��

3.2 The Dynamical System and Attractors

By means of the well-posedness assured by Theorem 2.1 we can define a dynamical system
(H, S(t)), where the evolution operator

H � U0 �→ S(t)U0 = U (t) ∈ H, t ≥ 0, (3.29)

is set through the unique mild solution U (t) = (u(t), ut (t)) of problem (1.4)-(1.6). The
following properties are immediately ensured:

I. Dissipative dynamical system. Inequality (3.13) in Corollary 3.3 implies that (H, S(t))
has a bounded absorbing set B ⊂ H and, consequently, the existence of bounded posi-
tively invariant absorbing sets onH. Hence, (H, S(t)) is a dissipative dynamical system.

II. Gradient dynamical system. Identity (3.3) in Proposition 3.1 implies that Ẽ(t) is a strict
Lyapunov functional on H, that is, (H, S(t)) is a gradient dynamical system.

In what follows, we shall prove the existence of attractors, as well as its properties, to the
dynamical system (H, S(t)) generated by (3.29). To do so, we shall combine Proposition 3.4
with the abstracts concepts within the theory of infinite-dimensional dynamical systems,
see e.g. [1,6–8,11,14,19,27]. More specifically, we use the following notion of quasi-stable
dynamical systems, accordingly to [8, Definition 7.9.2] which started with the prior work
[6], restricted to our particular dynamical system. Such approach has been recently used in
the literature, see for instance Feng et al. [13].

Definition 3.1 The dynamical system (H, S(t)) generated by (3.29) is called to be quasi-
stable on a set B ⊂ H if there exist a compact seminorm nX (·, ·) on X := H2

0 () and
nonnegative scalar functions a(t) and c(t) locally bounded in [0,∞), and b(t) ∈ L1(R+)

with lim
t→∞ b(t) = 0, such that

‖S(t)U1 − S(t)U2‖2H ≤ a(t)‖U1 − U2‖2H, (3.30)

and

‖S(t)U1 − S(t)U2‖2H ≤ b(t)‖U1 − U2‖2H + c(t) sup
s∈[0,t]

[nX (u(s), v(s))]2 , (3.31)
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for any U1, U2 ∈ B, where we denote

S(t)Ui = (ui (t), ui
t (t)), i = 1, 2, and (u, v) = (u1 − u2, u1

t − u2
t ).

Proposition 3.4 is, in fact, a key result in order to achieve the quasi-stability property to the
dynamical system (H, S(t)) defined in (3.29) and, in particular, its asymptotic smoothness.

Theorem 3.5 Under the assumptions of Proposition 3.4with ρ satisfying (2.7), the dynamical
system (H, S(t)) generated by (3.29) is quasi-stable on any bounded positively invariant set
B ⊂ H. In particular, it is also asymptotically smooth.

Proof Let B ⊂ H be a bounded positively invariant set of S(t), U1, U2 ∈ B, and

S(t)Ui = (ui (t), ui
t (t)), i = 1, 2, u = u1 − u2.

Firstly, under the above notations, one sees promptly from (2.9) that (3.30) holds true with
a(t) = eCB t , CB > 0, being locally bounded in [0,∞). Then, setting

[nX (u)]2 := ‖∇u‖22 + ‖u‖22(ρ+1), X = H2
0 (),

and noting that embeddings H2
0 () ↪→ L2(ρ+1)(), H2

0 () ↪→ H1
0 () are compact, it

follows that nX (·) is a compact seminorm on X . Additionally, from (3.15) one has

‖S(t)U1 − S(t)U2‖2H ≤ b(t)‖U1 − U2‖2H + c(t) sup
s∈[0,t]

[nX (u(s))]2 ,

where

b(t) = �̃Be−σ t and c(t) = �B

∫ t

0
e−σ(t−s)ds, t ≥ 0.

Thus, b ∈ L1(R+) with lim
t→∞ b(t) = 0, and c(t) is globally bounded

c∞ = sup
t∈R+

c(t) < ∞. (3.32)

Hence, condition (3.31) also holds true, which completes the proof that (H, S(t)) is
quasi-stable on any bounded positively invariant set in H. In particular, (H, S(t)) is an
asymptotically smooth dynamical system from Proposition 7.9.4 in [8]. ��
Theorem 3.6 (Global Attractor). Under the assumptions of Theorem 3.5, we have:

(a) the dynamical system (H, S(t)) generated by (3.29) possesses a unique compact and
connected global attractor A ⊂ H;

(b) the global attractor A is precisely the unstable manifold

A = M
u(N ),

emanating from the set of stationary solutions

N = {
(u, 0) ∈ H; �2u − [

β + γ ‖∇u‖22
]
�u + f (u) = h

} ;
(c) the compact global attractor A has finite fractal dimension dimH

f A;
(d) every full trajectory � = {(u(t); ut (t)); t ∈ R} from the attractor A has the following

regularity
(ut , utt ) ∈ L∞(R; H2

0 () × L2()).

Moreover, there exists a constant R = R(c∞, nX , λ1) > 0 such that

sup
�⊂A

sup
t∈R

(‖�ut (t)‖22 + ‖utt (t)‖22
) ≤ R2.
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Proof (a) It follows from [8, Theorem 7.2.3], once (H, S(t)) is a dissipative asymptotically
smooth dynamical system. See also Corollary 7.9.5 in [8].

(b) It follows from [8, Theorem 7.5.6], since (H, S(t)) is a gradient dynamical system that
has a compact global attractor.

(c) It follows from [8,Theorem7.9.6], because (H, S(t))possesses a compact global attractor
A and is quasi-stable on A by virtue of Theorem 3.5.

(d) It follows from [8, Theorem 7.9.8], seeing that property (3.31) holds with the function
c(t) satisfying (3.32).

��

Corollary 3.7 (Minimal Attractor). From the items (a), (b) of Theorem 3.6 one has that any
trajectory stabilizes to the set of stationary solutions N , that is,

lim
t→+∞ distH (S(t)z,N ) = 0, ∀ z ∈ H.

In particular, N is the global minimal attractor Amin to the dynamical system (H, S(t)).

Proof It is a consequence of [8, Theorem 7.5.10]. ��

To finish this work we also explore the concept of fractal exponential attractors for quasi-
stable systems. For the sake of the reader we recall this notion, accordingly to [11], restricted
to our particular dynamical system. See also [8, Definition 7.4.4].

Definition 3.2 A compact set Aexp ⊂ H is said to be a fractal exponential attractor to the
dynamical system (H, S(t)) generated by (3.29) if Aexp is a positively invariant set of finite
fractal dimension inH and for every bounded set B ⊂ H there exist constants tB , CB , σB > 0
such that

sup
U0∈B

distH(S(t)U0,Aexp) ≤ CB e−σB (t−tB ), t ≥ tB .

If there exists an exponential attractor only having finite dimension in some extended space
H̃ ⊇ H, then this exponentially attracting set is called generalized fractal exponential attrac-
tor.

Theorem 3.8 (Fractal Exponential Attractor). Under the assumptions of Theorem 3.5, the
dynamical system (H, S(t)) generated by (3.29) possesses a generalized fractal exponential
attractor Aexp with finite dimension in the extended space

H−1 := L2() × H−2().

Moreover, there exists a generalized fractal exponential attractor with finite fractal dimension
in a smaller extended space H−r , where

H ⊂ H−r ⊆ H−1, 0 < r ≤ 1.

Proof It follows from [8, Theorem 7.9.9], since the dynamical system (H, S(t)) is dissipative
and quasi-stable on any bounded positively invariant absorbing set B0, and also the Hölder
continuity property of the mapping t �→ S(t)U0 inH−r , for every U0 ∈ B0, is standard, see
e.g. [18, Theorem 2.3-(vi)]. ��
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